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Aerospace Toolbox Product Description
Analyze and visualize aerospace vehicle motion using reference standards and models

Aerospace Toolbox provides standards-based tools and functions for analyzing the motion, mission,
and environment of aerospace vehicles. It includes aerospace math operations, coordinate system
and spatial transformations, and validated environment models for interpreting flight data. The
toolbox also includes 2D and 3D visualization tools and standard cockpit instruments for observing
vehicle motion.

For flight vehicles, you can import Data Compendium (Datcom) files directly into MATLAB® to
represent vehicle aerodynamics. The aerodynamics can be combined with reference parameters to
define your aircraft configuration and dynamics for control design and flying qualities analysis.

Aerospace Toolbox lets you design and analyze scenarios consisting of satellites and ground stations.
You can propagate satellite trajectories from orbital elements or two-line element sets, load in
satellite and constellation ephemerides, perform mission analysis tasks such as line-of-sight access,
and visualize the scenario as a ground track or globe.

1 Getting Started
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Aerospace Toolbox and Aerospace Blockset
The Aerospace product family includes the Aerospace Toolbox and Aerospace Blockset products. The
toolbox provides static data analysis capabilities, while the blockset provides an environment for
dynamic modeling and vehicle component modeling and simulation. The Aerospace Blockset software
uses part of the functionality of the toolbox as an engine. Use these products together to model
aerospace systems in the MATLAB and Simulink® environments.

 Aerospace Toolbox and Aerospace Blockset
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Fundamental Coordinate System Concepts
Coordinate systems allow you to track an aircraft or spacecraft position and orientation in space. The
Aerospace Toolbox coordinate systems are based on these underlying concepts from geodesy,
astronomy, and physics. For more information on geographic information, see “Mapping Toolbox”.

Definitions
The Aerospace Toolbox software uses right-handed (RH) Cartesian coordinate systems. The rightmost
rule establishes the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. Loosely speaking, acceleration is
defined with respect to the distant cosmos. In an inertial frame, Newton's second law (force = mass X
acceleration) holds.

Strictly defined, an inertial frame is a member of the set of all frames not accelerating relative to one
another. A noninertial frame is any frame accelerating relative to an inertial frame. Its acceleration,
in general, includes both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The toolbox models the Earth shape (the geoid) as an oblate spheroid, a special type of ellipsoid with
two longer axes equal (defining the equatorial plane) and a third, slightly shorter (geopolar) axis of
symmetry. The equator is the intersection of the equatorial plane and the Earth surface. The
geographic poles are the intersection of the Earth surface and the geopolar axis. In general, the
Earth geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero longitude or prime
meridian passes through Greenwich, England.

Approximations
The Aerospace Toolbox software makes three standard approximations in defining coordinate systems
relative to the Earth.

• The Earth surface or geoid is an oblate spheroid, defined by its longer equatorial and shorter
geopolar axes. In reality, the Earth is slightly deformed with respect to the standard geoid.

• The Earth rotation axis and equatorial plane are perpendicular, so that the rotation and geopolar
axes are identical. In reality, these axes are slightly misaligned, and the equatorial plane wobbles
as the Earth rotates. This effect is negligible in most applications.

• The only noninertial effect in Earth-fixed coordinates is due to the Earth rotation about its axis.
This is a rotating, geocentric system. The toolbox ignores the Earth motion around the Sun, the
Sun motion in the Galaxy, and the Galaxy's motion through cosmos. In most applications, only the
Earth rotation matters.

This approximation must be changed for spacecraft sent into deep space, that is, outside the
Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets
The Aerospace Toolbox software uses the standard WGS-84 geoid to model the Earth. You can change
the equatorial axis length, the flattening, and the rotation rate.

2 Using Aerospace Toolbox
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You can represent the motion of spacecraft with respect to any celestial body that is well
approximated by an oblate spheroid by changing the spheroid size, flattening, and rotation rate. If the
celestial body is rotating westward (retrogradely), make the rotation rate negative.

References
[1] Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems,

R-004-1992, ANSI/AIAA, February 1992.

[2] Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA, Reston, Virginia,
2000.

[3] Stevens, B. L., and F. L. Lewis, Aircraft Control, and Simulation, 2nd ed., Wiley-Interscience, New
York, 2003.

[4] Thomson, W. T., Introduction to Space Dynamics, John Wiley & Sons, New York, 1961/Dover
Publications, Mineola, New York, 1986.

See Also

Related Examples
• “Coordinate Systems for Modeling” on page 2-4
• “Coordinate Systems for Navigation” on page 2-6
• “Coordinate Systems for Display” on page 2-9
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Coordinate Systems for Modeling
Modeling aircraft and spacecraft are simplest if you use a coordinate system fixed in the body itself.
In the case of aircraft, the forward direction is modified by the presence of wind, and the craft's
motion through the air is not the same as its motion relative to the ground.

Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation to the moving craft. The
craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.
• The y-axis points to the right of the x-axis (facing in the pilot's direction of view), perpendicular to

the x-axis.
• The z-axis points down through the bottom of the craft, perpendicular to the x-y plane and

satisfying the RH rule.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles P, Q, R or Φ, Θ, Ψ. They are

• P or Φ: Roll about the x-axis
• Q or Θ: Pitch about the y-axis
• R or Ψ: Yaw about the z-axis

Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

2 Using Aerospace Toolbox
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Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid aircraft. The coordinate
system orientation is defined relative to the craft's velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.
• The y-axis points to the right of the x-axis (facing in the direction of V), perpendicular to the x-

axis.
• The z-axis points perpendicular to the x-y plane in whatever way needed to satisfy the RH rule

with respect to the x- and y-axes.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles Φ, γ, χ. They are

• Φ: Bank angle about the x-axis
• γ: Flight path about the y-axis
• χ: Heading angle about the z-axis

Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

See Also

Related Examples
• “Fundamental Coordinate System Concepts” on page 2-2
• “Coordinate Systems for Navigation” on page 2-6
• “Coordinate Systems for Display” on page 2-9
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Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft or spacecraft with
respect to the rotating Earth. Navigation coordinates are defined with respect to the center and
surface of the Earth.

Geocentric and Geodetic Latitudes
The geocentric latitude λ on the Earth surface is defined by the angle subtended by the radius vector
from the Earth center to the surface point with the equatorial plane.

The geodetic latitude μ on the Earth surface is defined by the angle subtended by the surface normal
vector n and the equatorial plane.

NED Coordinates
The north-east-down (NED) system is a noninertial system with its origin fixed at the aircraft or
spacecraft's center of gravity. Its axes are oriented along the geodetic directions defined by the Earth
surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.
• The y-axis points east parallel to the geoid surface, along a latitude curve.
• The z-axis points downward, toward the Earth surface, antiparallel to the surface's outward

normal n.

Flying at a constant altitude means flying at a constant z above the Earth's surface.
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ECI Coordinates
The Earth-centered inertial (ECI) system is non-rotating. For most applications, assume this frame to
be inertial, although the equinox and equatorial plane move very slightly over time. The ECI system is
considered to be truly inertial for high-precision orbit calculations when the equator and equinox are
defined at a particular epoch (e.g. J2000). Aerospace functions and blocks that use a particular
realization of the ECI coordinate system provide that information in their documentation. The ECI
system origin is fixed at the center of the Earth (see figure).

• The x-axis points towards the vernal equinox (First Point of Aries ♈).
• The y-axis points 90 degrees to the east of the x-axis in the equatorial plane.
• The z-axis points northward along the Earth rotation axis.
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Earth-Centered Coordinates

ECEF Coordinates
The Earth-center, Earth-fixed (ECEF) system is a noninertial system that rotates with the Earth. Its
origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth's rotation axis.
• The x-axis points outward along the intersection of the Earth's equatorial plane and prime

meridian.
• The y-axis points into the eastward quadrant, perpendicular to the x-z plane so as to satisfy the

RH rule.

See Also

Related Examples
• “Fundamental Coordinate System Concepts” on page 2-2
• “Coordinate Systems for Modeling” on page 2-4
• “Coordinate Systems for Display” on page 2-9
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Coordinate Systems for Display
The Aerospace Toolbox software lets you use FlightGear coordinates for rendering motion.

FlightGear is an open-source, third-party flight simulator with an interface supported by the
Aerospace Toolbox product.

• “Flight Simulator Interface Example” on page 2-42 discusses the toolbox interface to FlightGear.
• See the FlightGear documentation at www.flightgear.org for complete information about this flight

simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the standard body
coordinate system about the y-axis by -180 degrees:

• The x-axis is positive toward the back of the vehicle.
• The y-axis is positive toward the right of the vehicle.
• The z-axis is positive upward, e.g., wheels typically have the lowest z values.

See Also

Related Examples
• “Fundamental Coordinate System Concepts” on page 2-2
• “Coordinate Systems for Modeling” on page 2-4
• “Coordinate Systems for Navigation” on page 2-6
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Aerospace Units
The Aerospace Toolbox functions support standard measurement systems. The Unit Conversion
functions provide means for converting common measurement units from one system to another, such
as converting velocity from feet per second to meters per second and vice versa.

The unit conversion functions support all units listed in this table.

Quantity MKS (SI) English
Acceleration meters/second2 (m/s2), kilometers/

second2 (km/s2), (kilometers/
hour)/second (km/h-s), g-unit (g)

inches/second2 (in/s2), feet/
second2 (ft/s2), (miles/hour)/
second (mph/s), g-unit (g)

Angle radian (rad), degree (deg),
revolution

radian (rad), degree (deg),
revolution

Angular acceleration radians/second2 (rad/s2), degrees/
second2 (deg/s2)

radians/second2 (rad/s2), degrees/
second2 (deg/s2)

Angular velocity radians/second (rad/s), degrees/
second (deg/s), revolutions/minute
(rpm), revolutions/second (rps)

radians/second (rad/s), degrees/
second (deg/s), revolutions/minute
(rpm), revolutions/second (rps)

Density kilogram/meter3 (kg/m3) pound mass/foot3 (lbm/ft3), slug/
foot3 (slug/ft3), pound mass/inch3

(lbm/in3)
Force newton (N) pound (lb)
Length meter (m) inch (in), foot (ft), mile (mi),

nautical mile (nm)
Mass kilogram (kg) slug (slug), pound mass (lbm)
Pressure pascal (Pa) pound/inch2 (psi), pound/foot2

(psf), atmosphere (atm)
Temperature kelvin (K), degrees Celsius (oC) degrees Fahrenheit (oF), degrees

Rankine (oR)
Velocity meters/second (m/s), kilometers/

second (km/s), kilometers/hour
(km/h)

inches/second (in/sec), feet/second
(ft/sec), feet/minute (ft/min),
miles/hour (mph), knots
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Digital DATCOM Data
In this section...
“Digital DATCOM Data Overview” on page 2-11
“USAF Digital DATCOM File” on page 2-11
“Data from DATCOM Files” on page 2-11
“Imported DATCOM Data” on page 2-12
“Missing DATCOM Data” on page 2-13
“Aerodynamic Coefficients” on page 2-15

Digital DATCOM Data Overview
The Aerospace Toolbox product enables bringing United States Air Force (USAF) Digital DATCOM
files into the MATLAB environment by using the datcomimport function. For more information, see
the datcomimport function reference page. This section explains how to import data from a USAF
Digital DATCOM file.

The example used in the following topics is available as an Aerospace Toolbox example. You can run
the example by entering astimportddatcom in the MATLAB Command Window.

USAF Digital DATCOM File
The following is a sample input file for USAF Digital DATCOM for a wing-body-horizontal tail-vertical
tail configuration running over five alphas, two Mach numbers, and two altitudes and calculating
static and dynamic derivatives. You can also view this file by entering type astdatcom.in in the
MATLAB Command Window.
 $FLTCON NMACH=2.0,MACH(1)=0.1,0.2$
 $FLTCON NALT=2.0,ALT(1)=5000.0,8000.0$   
 $FLTCON NALPHA=5.,ALSCHD(1)=-2.0,0.0,2.0,    
  ALSCHD(4)=4.0,8.0,LOOP=2.0$
 $OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$  
 $SYNTHS XCG=7.08,ZCG=0.0,XW=6.1,ZW=-1.4,ALIW=1.1,XH=20.2,
   ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$ 
 $BODY NX=10.0,                          
   X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,   
   R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$     
 $WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,   
   TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$   
NACA-W-6-64A412
 $HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,  
   CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$   
NACA-H-4-0012
 $VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,  
   CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$  
NACA-V-4-0012
CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG 
DAMP
NEXT CASE

The output file generated by USAF Digital DATCOM for the same wing-body-horizontal tail-vertical
tail configuration running over five alphas, two Mach numbers, and two altitudes can be viewed by
entering type astdatcom.out in the MATLAB Command Window.

Data from DATCOM Files
Use the datcomimport function to bring the Digital DATCOM data into the MATLAB environment.
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alldata = datcomimport('astdatcom.out', true, 0);

Imported DATCOM Data
The datcomimport function creates a cell array of structures containing the data from the Digital
DATCOM output file.
data = alldata{1}
data = 
 struct with fields:

        case: 'SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG'
        mach: [0.1000 0.2000]
         alt: [5000 8000]
       alpha: [-2 0 2 4 8]
       nmach: 2
        nalt: 2
      nalpha: 5
       rnnub: []
      hypers: 0
        loop: 2
        sref: 225.8000
        cbar: 5.7500
       blref: 41.1500
         dim: 'ft'
       deriv: 'deg'
      stmach: 0.6000
      tsmach: 1.4000
        save: 0
       stype: []
        trim: 0
        damp: 1
       build: 1
        part: 0
     highsym: 0
     highasy: 0
     highcon: 0
        tjet: 0
      hypeff: 0
          lb: 0
         pwr: 0
        grnd: 0
       wsspn: 18.7000
       hsspn: 5.7000
      ndelta: 0
       delta: []
      deltal: []
      deltar: []
         ngh: 0
      grndht: []
      config: [1x1 struct]
          cd: [5x2x2 double]
          cl: [5x2x2 double]
          cm: [5x2x2 double]
          cn: [5x2x2 double]
          ca: [5x2x2 double]
         xcp: [5x2x2 double]
         cla: [5x2x2 double]
         cma: [5x2x2 double]
         cyb: [5x2x2 double]
         cnb: [5x2x2 double]
         clb: [5x2x2 double]
       qqinf: [5x2x2 double]
         eps: [5x2x2 double]
    depsdalp: [5x2x2 double]
         clq: [5x2x2 double]
         cmq: [5x2x2 double]
        clad: [5x2x2 double]
        cmad: [5x2x2 double]
         clp: [5x2x2 double]
         cyp: [5x2x2 double]
         cnp: [5x2x2 double]
         cnr: [5x2x2 double]
         clr: [5x2x2 double]
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Missing DATCOM Data
By default, missing data points are set to 99999 and data points are set to NaN where no DATCOM
methods exist or where the method is not applicable.

It can be seen in the Digital DATCOM output file and examining the imported data that CYβ, Cnβ, CLq,
and Cmq have data only in the first alpha value. Here are the imported data values.
data.cyb
ans(:,:,1) =

  1.0e+004 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

  1.0e+004 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

data.cnb
ans(:,:,1) =

  1.0e+004 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

  1.0e+004 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

data.clq
ans(:,:,1) =

  1.0e+004 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

  1.0e+004 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

data.cmq
ans(:,:,1) =
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  1.0e+004 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

  1.0e+004 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

The missing data points will be filled with the values for the first alpha, since these data points are
meant to be used for all alpha values.
aerotab = {'cyb' 'cnb' 'clq' 'cmq'};

for k = 1:length(aerotab)
    for m = 1:data.nmach
        for h = 1:data.nalt
            data.(aerotab{k})(:,m,h) = data.(aerotab{k})(1,m,h);
        end
    end
end

Here are the updated imported data values.
data.cyb
ans(:,:,1) =

   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035

ans(:,:,2) =

   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035

data.cnb
ans(:,:,1) =

  1.0e-003 *

    0.9142    0.8781
    0.9142    0.8781
    0.9142    0.8781
    0.9142    0.8781
    0.9142    0.8781

ans(:,:,2) =

  1.0e-003 *

    0.9190    0.8829
    0.9190    0.8829
    0.9190    0.8829
    0.9190    0.8829
    0.9190    0.8829

data.clq
ans(:,:,1) =

    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984
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    0.0974    0.0984
    0.0974    0.0984

ans(:,:,2) =

    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984

data.cmq
ans(:,:,1) =

   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899

ans(:,:,2) =

   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899

Aerodynamic Coefficients
You can now plot the aerodynamic coefficients:

• “Plotting Lift Curve Moments” on page 2-15
• “Plotting Drag Polar Moments” on page 2-16
• “Plotting Pitching Moments” on page 2-17

Plotting Lift Curve Moments
h1 = figure;
figtitle = {'Lift Curve' ''};
for k=1:2
    subplot(2,1,k)
    plot(data.alpha,permute(data.cl(:,k,:),[1 3 2]))
    grid
    ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])
    title(figtitle{k});
end
xlabel('Angle of Attack (deg)')
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Plotting Drag Polar Moments
h2 = figure;
figtitle = {'Drag Polar' ''};
for k=1:2
    subplot(2,1,k)
    plot(permute(data.cd(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))
    grid
    ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])
    title(figtitle{k})
end
xlabel('Drag Coefficient')
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Plotting Pitching Moments
h3 = figure;
figtitle = {'Pitching Moment' ''};
for k=1:2
    subplot(2,1,k)
    plot(permute(data.cm(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))
    grid
    ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])
    title(figtitle{k})
end
xlabel('Pitching Moment Coefficient')

See Also
datcomimport
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Aerospace Toolbox Animation Objects
To visualize flight data in the Aerospace Toolbox environment, you can use the following animation
objects and their associated methods. These animation objects use the MATLAB time series object,
timeseries to visualize flight data.

• Aero.Animation — Visualize flight data without any other tool or toolbox. The following objects
support this object.

• Aero.Body
• Aero.Camera
• Aero.Geometry

For more information, see “Aero.Animation Objects” on page 2-19.
• Aero.VirtualRealityAnimation — Visualize flight data with the Simulink 3D Animation™

product. The following objects support this object.

• Aero.Node
• Aero.Viewpoint

For more information, see “Aero.VirtualRealityAnimation Objects” on page 2-27.
• Aero.FlightGearAnimation — Visualize flight data with the FlightGear simulator. For more

information, see “Aero.FlightGearAnimation Objects” on page 2-40.
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Aero.Animation Objects
The toolbox interface to animation objects uses the Handle Graphics capability. The Overlaying
Simulated and Actual Flight Data (astmlanim) example visually compares simulated and actual flight
trajectory data by creating animation objects, creating bodies for those objects, and loading the flight
trajectory data.

• Create and configure an animation object.
• Load recorded data for flight trajectories.
• Display body geometries in a figure window.
• Play back flight trajectories using the animation object.
• Manipulate the camera.
• Move and reposition bodies.
• Create a transparency in the first body.
• Change the color of the second body.
• Turn off the landing gear of the second body.

Running the Example
1 Start the MATLAB software.
2 Enter astmlanim in the MATLAB Command Window.

While running, the example performs several steps by issuing a series of commands.

See Also
Aero.Animation | Aero.Body | Aero.Camera | Aero.Geometry
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Simulated and Actual Flight Data Using Aero.Animation
Objects

Creating and Configuring an Animation Object
This series of commands creates an animation object and configures the object.

1 Create an animation object.

h = Aero.Animation;
2 Configure the animation object to set the number of frames per second (FramesPerSecond)

property. This configuration controls the rate at which frames are displayed in the figure window.

h.FramesPerSecond = 10;
3 Configure the animation object to set the seconds of animation data per second time scaling

(TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling property determine the time step of
the simulation. These settings result in a time step of approximately 0.5 s.

4 Create and load bodies for the animation object. This example uses these bodies to work with and
display the simulated and actual flight trajectories. The first body is orange; it represents
simulated data. The second body is blue; it represents the actual flight data.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
idx2 = h.createBody('pa24-250_blue.ac','Ac3d');

Both bodies are AC3D format files. AC3D is one of several file formats that the animation objects
support. FlightGear uses the same file format. The animation object reads in the bodies in the
AC3D format and stores them as patches in the geometry object within the animation object.

Loading Recorded Data for Flight Trajectories
This series of commands loads the recorded flight trajectory data, which is contained in files in the
matlabroot\toolbox\aero\astdemos folder.

• simdata – Contains simulated flight trajectory data, which is set up as a 6DoF array.
• fltdata – Contains actual flight trajectory data which is set up in a custom format. To access this

custom format data, the example must set the body object TimeSeriesSourceType parameter to
Custom and then specify a custom read function.

1 Load the flight trajectory data.

load simdata
load fltdata

2 Set the time series data for the two bodies.

h.Bodies{1}.TimeSeriesSource = simdata;
h.Bodies{2}.TimeSeriesSource = fltdata;

3 Identify the time series for the second body as custom.
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h.Bodies{2}.TimeSeriesSourceType = 'Custom';
4 Specify the custom read function to access the data in fltdata for the second body. The

example provides the custom read function in matlabroot\toolbox\aero\astdemos
\CustomReadBodyTSData.m.

h.Bodies{2}.TimeseriesReadFcn = @CustomReadBodyTSData;

Displaying Body Geometries in a Figure Window
This command creates a figure object for the animation object.

h.show();

Recording Animation Files
Enable recording of the playback of flight trajectories using the animation object on page 2-21.

h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG';

Enable animation recording at any point that you want to preserve an animation sequence.

Note When choosing the video compression type, keep in mind that you will need the corresponding
viewer software. For example, if you create an AVI format, you need a viewer such as Windows
Media® Player to view the file.

After you play the animation as described in “Playing Back Flight Trajectories Using the Animation
Object” on page 2-21, astMotion_JPEG contains a recording of the playback.

Playing Back Flight Trajectories Using the Animation Object
This command plays back the animation bodies for the duration of the time series data. This playback
shows the differences between the simulated and actual flight data.

h.play();
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If you used the Video properties to store the recording, see “Viewing Recorded Animation Files” on
page 2-22 for a description of how to view the files.

Viewing Recorded Animation Files
If you do not have an animation file to view, see “Recording Animation Files” on page 2-21.

1 Open the folder that contains the animation file you want to view.
2 View the animation file with an application of your choice.

If your animation file is not yet running, start it now from the application.
3 To prevent other h.play commands from overwriting the contents of the animation file, disable

the recording after you are satisfied with the contents.

h.VideoRecord = 'off';

Manipulating the Camera
This command series shows how you can manipulate the camera on the two bodies and redisplay the
animation. The PositionFcn property of a camera object controls the camera position relative to the
bodies in the animation. In “Playing Back Flight Trajectories Using the Animation Object” on page 2-
21, the camera object uses a default value for the PositionFcn property. In this command series,
the example references a custom PositionFcn function that uses a static position based on the
position of the bodies. No dynamics are involved.

Note The custom PositionFcn function is located in the matlabroot\toolbox\aero\astdemos
folder.
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1 Set the camera PositionFcn to the custom function staticCameraPosition.

h.Camera.PositionFcn = @staticCameraPosition;
2 Run the animation again.

h.play();

Moving and Repositioning Bodies
This series of commands illustrates how to move and reposition bodies.

1 Set the starting time to 0.

t = 0;
2 Move the body to the starting position that is based on the time series data. Use the

Aero.Animation object updateBodies method.

h.updateBodies(t);
3 Update the camera position using the custom PositionFcn function set in the previous section.

Use the Aero.Animation object updateCamera method.

h.updateCamera(t);
4 Reposition the bodies by first getting the current body position, then separating the bodies.

a Get the current body positions and rotations from the objects of both bodies.

pos1 = h.Bodies{1}.Position;
rot1 = h.Bodies{1}.Rotation;
pos2 = h.Bodies{2}.Position;
rot2 = h.Bodies{2}.Rotation;

b Separate and reposition the bodies by moving them to new positions.

h.moveBody(1,pos1 + [0 0 -3],rot1);
h.moveBody(2,pos1 + [0 0  0],rot2);

 Simulated and Actual Flight Data Using Aero.Animation Objects

2-23



Creating a Transparency in the First Body
This series of commands illustrates how to create and attach a transparency to a body. The animation
object stores the body geometry as patches. This example manipulates the transparency properties of
these patches (see Patch Properties).

Note The use of transparencies might decrease animation speed on platforms that use software
OpenGL® rendering (see opengl).

1 Change the body patch properties. Use the Aero.Body PatchHandles property to get the patch
handles for the first body.

patchHandles2 = h.Bodies{1}.PatchHandles;
2 Set the face and edge alpha values that you want for the transparency.

desiredFaceTransparency = .3;
desiredEdgeTransparency = 1;

3 Get the current face and edge alpha data and change all values to the alpha values that you want.
In the figure, the first body now has a transparency.
for k = 1:size(patchHandles2,1)
    tempFaceAlpha = get(patchHandles2(k),'FaceVertexAlphaData');

2 Using Aerospace Toolbox

2-24



    tempEdgeAlpha = get(patchHandles2(k),'EdgeAlpha');
       set(patchHandles2(k),...
        'FaceVertexAlphaData',repmat(desiredFaceTransparency,size(tempFaceAlpha)));
    set(patchHandles2(k),...
        'EdgeAlpha',repmat(desiredEdgeTransparency,size(tempEdgeAlpha)));
end

Changing the Color of the Second Body
This series of commands illustrates how to change the color of a body. The animation object stores
the body geometry as patches. This example manipulates the FaceVertexColorData property of
these patches.

1 Change the body patch properties. Use the Aero.Body PatchHandles property to get the patch
handles for the first body.

patchHandles3 = h.Bodies{2}.PatchHandles;
2 Set the patch color to red.

desiredColor = [1 0 0];
3 Get the current face color and data and propagate the new patch color, red, to the face.

• The if condition prevents the windows from being colored.
• The name property is stored in the body geometry data

(h.Bodies{2}.Geometry.FaceVertexColorData(k).name).

 Simulated and Actual Flight Data Using Aero.Animation Objects

2-25



• The code changes only the indices in patchHandles3 with nonwindow counterparts in the
body geometry data.

Note If you cannot access the name property to determine the parts of the vehicle to color,
you must use an alternative way to selectively color your vehicle.

for k = 1:size(patchHandles3,1)
    tempFaceColor = get(patchHandles3(k),'FaceVertexCData');
    tempName = h.Bodies{2}.Geometry.FaceVertexColorData(k).name;
    if isempty(strfind(tempName,'Windshield')) &&...
       isempty(strfind(tempName,'front-windows')) &&...
       isempty(strfind(tempName,'rear-windows'))
    set(patchHandles3(k),...
        'FaceVertexCData',repmat(desiredColor,[size(tempFaceColor,1),1]));
    end
end

Turning Off the Landing Gear of the Second Body
This command series illustrates how to turn off the landing gear on the second body by turning off
the visibility of all the vehicle parts associated with the landing gear.

Note The indices into the patchHandles3 vector are determined from the name property. If you
cannot access the name property to determine the indices, you must use an alternative way to
determine the indices that correspond to the geometry parts.

for k = [1:8,11:14,52:57]
    set(patchHandles3(k),'Visible','off')
end

See Also
Aero.Animation | Aero.Body | Aero.Camera | Aero.Geometry
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Aero.VirtualRealityAnimation Objects
The Aerospace Toolbox interface to virtual reality animation objects uses the Simulink 3D Animation
software. For more information, see Aero.VirtualRealityAnimation, Aero.Node, and
Aero.Viewpoint.

• Create, configure, and initialize an animation object.
• Enable the tracking of changes to virtual worlds.
• Load the animation world.
• Load time series data for simulation.
• Set coordination information for the object.
• Add a chase helicopter to the object.
• Load time series data for chase helicopter simulation.
• Set coordination information for the new object.
• Add a new viewpoint for the helicopter.
• Play the animation.
• Create a new viewpoint.
• Add a route.
• Add another helicopter.
• Remove bodies.
• Revert to the original world.

Running the Example
1 Start the MATLAB software.
2 Enter astvranim in the MATLAB Command Window.

While running, the example performs several steps by issuing a series of commands.

See Also
Aero.VirtualRealityAnimation | Aero.Node | Aero.Viewpoint

Related Examples
• “Example of Visualize Aircraft Takeoff and Chase Helicopter with the Virtual Reality Animation

Object” on page 2-28
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Example of Visualize Aircraft Takeoff and Chase Helicopter with
the Virtual Reality Animation Object

Visualize Aircraft Takeoff via Virtual Reality Animation Object
This example shows how to visualize aircraft takeoff and chase helicopter with the virtual reality
animation object. In this example, you can use the Aero.VirtualRealityAnimation object to set up a
virtual reality animation based on the asttkoff.wrl file. The scene simulates an aircraft takeoff. The
example adds a chase vehicle to the simulation and a chase viewpoint associated with the new
vehicle.

Create the Animation Object

This code creates an instance of the Aero.VirtualRealityAnimation object.

h = Aero.VirtualRealityAnimation;

Set the Animation Object Properties

This code sets the number of frames per second and the seconds of animation data per second time
scaling. 'FramesPerSecond' controls the rate at which frames are displayed in the figure window.
'TimeScaling' is the seconds of animation data per second time scaling.

The 'TimeScaling' and 'FramesPerSecond' properties determine the time step of the
simulation. The settings in this example result in a time step of approximately 0.5s. The equation is:

(1/FramesPerSecond)*TimeScaling + extra terms to handle for sub-second precision.

h.FramesPerSecond = 10;
h.TimeScaling = 5;

This code sets the .wrl file to be used in the virtual reality animation.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

Change Directory

The VirtualRealityAnimation object methods use temporary .wrl files to keep track of changes to the
world. This requires the directory containing the original .wrl file to be writable. This code runs the
example from a temporary directory to ensure there are no issues with directory permissions. Note, a
license for Simulink® 3D Animation™ is required to run this example.

% Copy file to temporary directory
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
% Set world filename to the copied .wrl file.
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

Initialize the Virtual Reality Animation Object

The initialize method loads the animation world described in the 'VRWorldFilename' field of
the animation object. When parsing the world, node objects are created for existing nodes with DEF
names. The initialize method also opens the Simulink 3D Animation viewer.

h.initialize();
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Set Additional Node Information

This code sets simulation timeseries data. takeoffData.mat contains logged simulated data.
takeoffData is set up as a 'StructureWithTime', which is one of the default data formats.

load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

Set Coordinate Transform Function

The virtual reality animation object expects positions and rotations in aerospace body coordinates. If
the input data is different, you must create a coordinate transformation function in order to correctly
line up the position and rotation data with the surrounding objects in the virtual world. This code sets
the coordinate transformation function for the virtual reality animation.

In this particular case, if the input translation coordinates are [x1,y1,z1], they must be adjusted as
follows: [X,Y,Z] = -[y1,x1,z1]. The custom transform function can be seen here: matlabroot/
toolbox/aero/astdemos/vranimCustomTransform.m
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h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

Add a Chase Helicopter

This code shows how to add a chase helicopter to the animation object.

You can view all the nodes currently in the virtual reality animation object by using the nodeInfo
method. When called with no output argument, this method prints the node information to the
command window. With an output argument, the method sets node information to that argument.

h.nodeInfo;

Node Information
1    Camera1
2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1

This code moves the camera angle of the virtual reality figure to view the aircraft.

set(h.VRFigure,'CameraDirection',[0.45 0 -1]);
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Use the addNode method to add another node to the object. By default, each time you add or remove
a node or route, or when you call the saveas method, Aerospace Toolbox displays a message about
the current .wrl file location. To disable this message, set the 'ShowSaveWarning' property in the
VirtualRealityAnimation object.

h.ShowSaveWarning = 0;
h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);
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Another call to nodeInfo shows the newly added Node objects.

h.nodeInfo

Node Information
1    Camera1
2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1
9    Lynx
10    Lynx_Inline

Adjust newly added helicopter to sit on runway.

[~, idxLynx] = find(strcmp('Lynx',h.nodeInfo));
h.Nodes{idxLynx}.VRNode.translation = [0 1.5 0];
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This code sets data properties for the chase helicopter. The 'TimeseriesSourceType' is the
default 'Array6DoF', so no additional property changes are needed. The same coordinate transform
function (vranimCustomTransform) is used for this node as the preceding node. The previous call
to nodeInfo returned the node index (2).

load chaseData
h.Nodes{idxLynx}.TimeseriesSource = chaseData;
h.Nodes{idxLynx}.CoordTransformFcn = @vranimCustomTransform;

Create New Viewpoint

This code uses the addViewpoint method to create a new viewpoint named 'chaseView'. The new
viewpoint will appear in the viewpoint pulldown menu in the virtual reality window as "View From
Helicopter". Another call to nodeInfo shows the newly added node objects. The node is created as a
child of the chase helicopter.

h.addViewpoint(h.Nodes{idxLynx}.VRNode,'children','chaseView','View From Helicopter');

Play Animation

The play method runs the simulation for the specified timeseries data.
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h.play();

Play Animation From Helicopter

This code sets the orientation of the viewpoint via the vrnode object associated with the node object
for the viewpoint. In this case, it will change the viewpoint to look out the left side of the helicopter at
the plane.

[~, idxChaseView] = find(strcmp('chaseView',h.nodeInfo));
h.Nodes{idxChaseView}.VRNode.orientation = [0 1 0 convang(200,'deg','rad')];
set(h.VRFigure,'Viewpoint','View From Helicopter');

Add ROUTE

This code calls the addRoute method to add a ROUTE command to connect the plane position to the
Camera1 node. This will allow for the "Ride on the Plane" viewpoint to function as intended.

h.addRoute('Plane','translation','Camera1','translation');
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The scene from the helicopter viewpoint

This code plays the animation.

h.play();
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Add Another Body

This code adds another helicopter to the scene. It also changes to another viewpoint to view all three
bodies in the scene at once.

set(h.VRFigure,'Viewpoint','See Whole Trajectory');
h.addNode('Lynx1',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);
h.nodeInfo

Node Information
1    Camera1
2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1
9    Lynx
10    Lynx_Inline
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11    chaseView
12    Lynx1
13    Lynx1_Inline

Adjust newly added helicopter to sit above runway.

[~, idxLynx1] = find(strcmp('Lynx1',h.nodeInfo));
h.Nodes{idxLynx1}.VRNode.translation = [0 1.3 0];

Remove Body

This code uses the removeNode method to remove the second helicopter. removeNode takes either
the node name or node index (as obtained from nodeInfo). The associated inline node is removed as
well.

h.removeNode('Lynx1');
h.nodeInfo

Node Information
1    Camera1
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2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1
9    Lynx
10    Lynx_Inline
11    chaseView

Revert To Original World

The original filename is stored in the 'VRWorldOldFilename' property of the animation object. To
bring up the original world, set 'VRWorldFilename' to the original name and reinitializing it.

h.VRWorldFilename = h.VRWorldOldFilename{1};
h.initialize();
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Close and Delete World

To close and delete

h.delete();

See Also
Aero.Node | Aero.Viewpoint | Aero.VirtualRealityAnimation

Related Examples
• “Aero.VirtualRealityAnimation Objects” on page 2-27
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Aero.FlightGearAnimation Objects
The Aerospace Toolbox interface to the FlightGear flight simulator enables you to visualize flight data
in a three-dimensional environment. The third-party FlightGear simulator is an open source software
package available through a GNU® General Public License (GPL). This section describes how to
obtain and install the third-party FlightGear flight simulator. It also describes how to play back 3-D
flight data by using a FlightGear example, provided with your Aerospace Toolbox software.

About the FlightGear Interface
The FlightGear flight simulator interface included with the Aerospace Toolbox product is a
unidirectional transmission link from the MATLAB software to FlightGear. It uses FlightGear's
published net_fdm binary data exchange protocol. Data is transmitted via UDP network packets to a
running instance of FlightGear. The toolbox supports multiple standard binary distributions of
FlightGear. For interface details, see “Flight Simulator Interface Example” on page 2-42.

FlightGear is a separate software entity that is not created, owned, or maintained by MathWorks.

• To report bugs in or request enhancements to the Aerospace Toolbox FlightGear interface, contact
MathWorks technical support at https://www.mathworks.com/support.html.

• To report bugs or request enhancements to FlightGear itself, go to www.flightgear.org and
use the contact page.

Supported FlightGear Versions

The Aerospace Toolbox product supports FlightGear versions starting from v2.6.

Obtaining FlightGear Software

You can obtain FlightGear software from www.flightgear.org in the download area or by ordering
CDs from FlightGear. The download area contains extensive documentation for installation and
configuration. Because FlightGear is an open source project, source downloads are also available for
customization and porting to custom environments.

Configuring Your Computer for FlightGear
You must have a high-performance graphics card with stable drivers to use FlightGear. For more
information, see the FlightGear CD distribution or the hardware requirements and documentation
areas of the FlightGear website, www.flightgear.org.

Setup on Linux, Mac OS X, and Other Platforms

FlightGear distributions are available for Linux®, Mac OS X, and other UNIX® platforms from the
FlightGear website, www.flightgear.org. Installation on these platforms, like Windows®, requires
careful configuration of graphics cards and drivers. Consult the documentation and hardware
requirements sections at the FlightGear website.

FlightGear and Video Cards in Windows Systems

Your computer built-in video card, such as NVIDIA® cards, can have issues working with FlightGear
shaders. Consider this workaround:
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• Disable the FlightGear shaders by specifying the DisableShaders property of the
Aero.FlightGearAnimation object to the GenerateRunScript
(Aero.FlightGearAnimation) method.

Install and Start FlightGear
The extensive FlightGear documentation guides you through the installation. For complete
installation instructions, consult the documentation section of the FlightGear website
www.flightgear.org.

Note:

• Generous central processor speed, system and video RAM, and virtual memory are essential for
good flight simulator performance.

For more information, see https://wiki.flightgear.org/Hardware_recommendations.
• Have sufficient disk space for the FlightGear download and installation.
• Before you install FlightGear, configure your computer graphics card. See the preceding section,
“Configuring Your Computer for FlightGear” on page 2-40.

• Before installing FlightGear, shut down all running applications (including the MATLAB software).
• Install FlightGear in a folder path name composed of ASCII characters.
• The operational stability of FlightGear is especially sensitive during startup. It is best to not move,

resize, mouse over, overlap, or cover up the FlightGear window until the initial simulation scene
appears after the startup splash screen fades out.

• The current releases of FlightGear are optimized for flight visualization at altitudes below 100,000
feet. FlightGear does not work well or at all with very high altitude and orbital views.

The Aerospace Toolbox product supports FlightGear on a number of platforms (System
Requirements). The following table lists the properties to be aware of before you start using
FlightGear.

FlightGear Property Folder Description Platforms Typical Location
FlightGearBase‐
Directory

FlightGear installation
folder.

Windows C:\Program Files\FlightGear
(default)

Linux Directory into which you installed
FlightGear

Mac /Applications
(folder into which you dragged the
FlightGear icon)

GeometryModelName Model geometry folder Windows C:\Program Files\FlightGear\‐
data\Aircraft\HL20
(default)

Linux $FlightGearBaseDirectory/data/
Aircraft/HL20

Mac $FlightGearBaseDirectory/‐
FlightGear.app/Contents/‐
Resources/data/Aircraft/HL20
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Installing Additional FlightGear Scenery
When you install the FlightGear software, the installation provides a basic level of scenery files. The
FlightGear documentation guides you through installing scenery as part the general FlightGear
installation.

If you need to install more FlightGear scenery files, see the instructions at http://
www.flightgear.org. Those instructions describe how to install the additional scenery in a default
location.

If you install additional scenery in a non-standard location, you may need to update the FG_SCENERY
environment variable in the script output from the GenerateRunScript function to include the new
path. For a description of the FG_SCENERY variable, see the documentation at http://
www.flightgear.org.

If you do not download scenery in advance, you can direct FlightGear to download it automatically
during simulation using the InstallScenery property of the Aero.FlightGearAnimation object
for the GenerateRunScript (Aero.FlightGearAnimation) method.

For Windows systems, you may encounter an error message while launching FlightGear with the
InstallScenery option enabled:

Error creating directory: No such file or directory

This error likely indicates that your default FlightGear download folder is not writeable, the path
cannot be resolved, or the path contains UNC path names. To work around the issue, edit the
runfg.bat file to specify a new folder path to store the scenery data:

1 Edit runfg.bat.
2 To the list of command options, append --download-dir= and specify a folder to which to

download the scenery data. For example:

--download-dir=C:\Users\user1\Documents\FlightGear

All data downloaded during this FlightGear session is saved to the specified directory. To avoid
downloading duplicate scenery data, use the same directory in succeeding FlightGear sessions

3 To open FlightGear, run runfg.bat.

Note Each time that you run the GenerateRunScript function, it creates a new script. It
overwrites any edits that you have added.

Flight Simulator Interface Example
The Aerospace Toolbox product provides an example named Displaying Flight Trajectory Data. This
example shows you how you can visualize flight trajectories with FlightGear Animation object. The
example is intended to be modified depending on the particulars of your FlightGear installation. Use
this example to play back your own 3-D flight data with FlightGear.

Before attempting to simulate this model, you must have FlightGear installed and configured. See
“About the FlightGear Interface” on page 2-40.

To run the example:

2 Using Aerospace Toolbox

2-42

https://www.flightgear.org/
https://www.flightgear.org/
https://www.flightgear.org/
https://www.flightgear.org/


• Import the aircraft geometry into FlightGear.
• Run the example. The example performs the following steps:

• Loads recorded trajectory data.
• Creates a time series object from trajectory data.
• Creates a FlightGearAnimation object.

• Modify the animation object properties, if needed.
• Create a run script for launching the FlightGear flight simulator.
• Start the FlightGear flight simulator.
• Play back the flight trajectory.

Import the Aircraft Geometry into FlightGear

Before running the example, copy the aircraft geometry model into FlightGear. From the following
procedures, choose the one appropriate for your platform. This section assumes that you have read
“Install and Start FlightGear” on page 2-41.

If your platform is Windows:

1 Go to your installed FlightGear folder. Open the data folder, and then the Aircraft folder:
FlightGear\data\Aircraft\.

2 If you have previously run the Aerospace Blockset NASA HL-20 with FlightGear Interface
example, you might already have an HL20 subfolder there.

Otherwise, copy the HL20 folder from the matlabroot\toolbox\aero\astdemos\ folder to
the FlightGear\data\Aircraft\ folder. This folder contains the preconfigured geometries for
the HL-20 simulation and HL20-set.xml. The file matlabroot\toolbox\aero\aerodemos
\HL20\models\HL20.xml defines the geometry.

If your platform is Linux:

1 Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder:
$FlightGearBaseDirectory/data/Aircraft/.

2 If you have previously run the Aerospace Blockset NASA HL-20 with FlightGear Interface
example, you might already have an HL20 subfolder there. If that is the case, you do not have to
do anything, because you can use the existing geometry model.

Otherwise, copy the HL20 folder from the matlabroot/toolbox/aero/aerodemos/ folder to
the $FlightGearBaseDirectory/data/Aircraft/ folder. This folder contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file matlabroot/
toolbox/aero/aerodemos/HL20/models/HL20.xml defines the geometry.

If your platform is Mac:

1 Open a terminal.
2 List the contents of the Aircraft folder. For example, type:

ls $FlightGearBaseDirectory/data/Aircraft/
3 If you have previously run the Aerospace Blockset NASA HL-20 with FlightGear Interface

example, you might already have an HL20 subfolder there. In this case, you do not have to do
anything, because you can use the existing geometry model. Continue to “Running the Example”
on page 2-19.
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Otherwise, copy the HL20 folder from the

matlabroot/toolbox/aero/aerodemos/

folder to the
$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/

folder. This folder contains the preconfigured geometries for the HL-20 simulation and HL20-
set.xml. The file matlabroot/toolbox/aero/aerodemos/HL20/models/HL20.xml defines
the geometry.

Running the Example
1 Start the MATLAB software.
2 Enter astfganim in the MATLAB Command Window.

While running, the example performs several steps by issuing a series of commands.

See Also
Aero.FlightGearAnimation

Related Examples
• “Flight Trajectory Data” on page 2-45
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Flight Trajectory Data

Loading Recorded Flight Trajectory Data
The flight trajectory data for this example is stored in a comma separated value formatted file. To
read this data, use readmatrix.

tdata = readmatrix('asthl20log.csv');

Creating a Time Series Object from Trajectory Data
The time series object, ts, is created from the latitude, longitude, altitude, Euler angle data, and the
time array in tdata using the MATLAB timeseries command. Latitude, longitude, and Euler angles
are also converted from degrees to radians using the convang function.
ts = timeseries([convang(tdata(:,[3 2]),'deg','rad') ...
        tdata(:,4) convang(tdata(:,5:7),'deg','rad')],tdata(:,1));

Creating a FlightGearAnimation Object
This series of commands creates a FlightGearAnimation object:

1 Open a FlightGearAnimation object.

h = fganimation;
2 Set FlightGearAnimation object properties for the time series.

h.TimeseriesSourceType = 'Timeseries';
h.TimeseriesSource = ts;

3 Set FlightGearAnimation object properties relating to FlightGear. These properties include the
path to the installation folder, the version number, the aircraft geometry model, and the network
information for the FlightGear flight simulator.
h.FlightGearBaseDirectory = 'C:\Program Files\FlightGear<your_FlightGear_version>';
h.GeometryModelName = 'HL20';
h.DestinationIpAddress = '127.0.0.1';
h.DestinationPort = '5502';

4 Set the initial conditions (location and orientation) for the FlightGear flight simulator.

h.AirportId = 'KSFO';
h.RunwayId = '10L';
h.InitialAltitude = 7224;
h.InitialHeading = 113;
h.OffsetDistance = 4.72;
h.OffsetAzimuth = 0;

5 Set the seconds of animation data per second of wall-clock time.

h.TimeScaling = 5;
6 Check the FlightGearAnimation object properties and their values.

get(h)

The example stops running and returns the FlightGearAnimation object, h:
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           TimeseriesSource: [1x1 timeseries]
       TimeseriesSourceType: 'Timeseries'
          TimeseriesReadFcn: @TimeseriesRead
                TimeScaling: 5
            FramesPerSecond: 12
          FlightGearVersion: '2018.1'
             OutputFileName: 'runfg.bat'
    FlightGearBaseDirectory: 'C:\Program Files\FlightGear<your_FlightGear_version>'
          GeometryModelName: 'HL20'
       DestinationIpAddress: '127.0.0.1'
            DestinationPort: '5502'
                  AirportId: 'KSFO'
                   RunwayId: '10L'
            InitialAltitude: 7224
             InitialHeading: 113
             OffsetDistance: 4.7200
              OffsetAzimuth: 0
                     TStart: NaN
                     TFinal: NaN
               Architecture: 'Default'

You can now set the object properties for data playback (see “Modifying the FlightGearAnimation
Object Properties” on page 2-46).

Modifying the FlightGearAnimation Object Properties
Modify the FlightGearAnimation object properties as needed. If your FlightGear installation folder is
other than the one in the example (for example, FlightGear), modify the
FlightGearBaseDirectory property by issuing the following command:

h.FlightGearBaseDirectory = 'C:\Program Files\FlightGear';

Similarly, if you want to use a particular file name for the run script, modify the OutputFileName
property.

Verify the FlightGearAnimation object properties:

get(h)

You can now generate the run script (see “Generating the Run Script” on page 2-46).

Generating the Run Script
To start FlightGear with the initial conditions (location, date, time, weather, operating modes) that
you want, create a run script by using the GenerateRunScript command:

GenerateRunScript(h)

By default, GenerateRunScript saves the run script as a text file named runfg.bat. You can
specify a different name by modifying the OutputFileName property of the FlightGearAnimation
object, as described in the previous step.

You do not need to generate the file each time the data is viewed, only when the initial conditions or
FlightGear information changes.

You are now ready to start FlightGear (see “Starting the FlightGear Flight Simulator” on page 2-47).
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Note The FlightGearBaseDirectory and OutputFileName properties must be composed of
ASCII characters.

Starting the FlightGear Flight Simulator
To start FlightGear from the MATLAB command prompt, use the system command to execute the run
script. Provide the name of the output file created by GenerateRunScript as the argument:

system('runfg.bat &');

FlightGear starts in a separate window.

Tip With the FlightGear window in focus, press the V key to alternate between the different aircraft
views: cockpit, helicopter, chase, and so on.

You are now ready to play back data (see “Playing Back the Flight Trajectory” on page 2-47). If you
cannot view scenes, see “Installing Additional FlightGear Scenery” on page 2-42.

Tip If FlightGear uses more computer resources than you want, you can change its scheduling
priority to a lesser one. For example, see commands like Windows start and Linux nice or their
equivalents.

Playing Back the Flight Trajectory
Once FlightGear is running, the FlightGearAnimation object can start to communicate with
FlightGear. To animate the flight trajectory data, use the play command:

play(h)

The following illustration shows a snapshot of flight data playback in tower view without yaw.
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See Also
Aero.FlightGearAnimation

Related Examples
• “Aero.FlightGearAnimation Objects” on page 2-40
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Create and Configure Flight Instrument Component and an
Animation Object

You can display flight data using any of the standard flight instrument components:

• Airspeed indicator
• Altimeter
• Climb indicator
• Exhaust gas temperature (EGT) indicator
• Heading indicator
• Artificial horizon
• Revolutions per minute (RPM) indicator
• Turn coordinator

As a general workflow:

1 Load simulation data.
2 Create an animation object.
3 Create a figure window.
4 Create a flight control panel to contain the flight instrument components.
5 Create the flight instrument components.
6 Trigger a display of the animation in the instrument panel.

Note Use Aerospace Toolbox flight instruments only with figures created using the uifigure
function. Apps created using GUIDE or the figure function do not support flight instrument
components.

Load and Visualize Data
To load and visualize data, consider this workflow:

1 Load simulation data. For example, the simdata variable contains logged simulated flight
trajectory data.

load simdata
2 To visualize animation data, create an animation object. For example:

a Create an Aero.Animation object.

h = Aero.Animation;
b Create a body using the pa24-250_orange.ac AC3D file and its associated patches.

h.createBody('pa24-250_orange.ac','Ac3d');
c Set up the bodies of the animation object h. Set the TimeSeriesSource property to the

loaded simdata.

h.Bodies{1}.TimeSeriesSource = simdata;
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d Set up the camera and figure positions.

h.Camera.PositionFcn = @staticCameraPosition;
h.Figure.Position(1) = h.Figure.Position(1) + 572/2;

e Create and show the figure graphics object for h.

h.updateBodies(simdata(1,1));
h.updateCamera(simdata(1,1));
h.show();

To create the flight instrument components, see “Create Flight Instrument Components” on page 2-
50

Create Flight Instrument Components
This workflow assumes that you have loaded data and created an animation object as described in
“Load and Visualize Data” on page 2-49.

1 Create a uifigure figure window. This example creates fig, to contain the flight instrument for
h.
fig = uifigure('Name','Flight Instruments',...
'Position',[h.Figure.Position(1)-572 h.Figure.Position(2)+h.Figure.Position(4)-502 572 502],...
'Color',[0.2667 0.2706 0.2784],'Resize','off');

2 Create a flight instrument panel image for the flight instruments and save it as a graphic file,
such as a PNG file.

3 Read the flight instrument panel image into MATLAB and create and load it into UI axes in App
Designer using the uiaxes function. To display the flight instrument panel image in the current
axes, use the image function. For example:
imgPanel = imread('astFlightInstrumentPanel.png');
ax = uiaxes('Parent',fig,'Visible','off','Position',[10 30 530 460],...
'BackgroundColor',[0.2667 0.2706 0.2784]);
image(ax,imgPanel);

4 Create a flight instruments component. For example, create an artificial horizon component.
Specify the parent object as the uifigure and the position and size of the artificial horizon.

hor = uiaerohorizon('Parent',fig,'Position',[212 299 144 144]);
5 To trigger a display of the animation in the instrument panel, you must input a time step. For

example, connect a time input device such as a slider or knob that can change the time. As you
change the time on the time input device, the flight instrument component updates to show the
result. This example uses the uislider function to create a slider component.
sl = uislider('Parent',fig,'Limits',[simdata(1,1),...
simdata(end,1)],'FontColor','white');
sl.Position = [50 60 450 3];

6 The slider component has a ValueChangingFcn callback, which executes when you move the
slider thumb. To update the flight instruments and animation figure, assign the
ValueChangingFcn callback to a helper function. This example uses the
astHelperFlightInstrumentsAnimation helper function.
sl.ValueChangingFcn = @(sl,event) astHelperFlightInstrumentsAnimation(fig,simdata,h,event);

7 To display the time selected in the slider, use the uilabel function to create a label component.
This code creates the label text in white and places the label at position [230 10 90 30].
lbl = uilabel('Parent',fig,'Text',['Time: ' num2str(sl.Value,4) ' sec'],'FontColor','white');
lbl.Position = [230 10 90 30];
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For a complete example, see “Display Flight Trajectory Data Using Flight Instruments and Flight
Animation” on page 5-110.

See Also
Functions
uiaeroairspeed | uiaeroaltimeter | uiaeroclimb | uiaeroegt | uiaeroheading |
uiaerohorizon | uiaerorpm | uiaeroturn | uifigure | uiaxes | uislider | uilabel | imread

Properties
AirspeedIndicator Properties | Altimeter Properties | ArtificialHorizon Properties | ClimbIndicator
Properties | EGTIndicator Properties | HeadingIndicator Properties | RPMIndicator Properties |
TurnCoordinator Properties

More About
• “Flight Instruments”
• “Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110
• “Flight Instrument Components in App Designer” on page 2-52
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Flight Instrument Components in App Designer
Create aerospace-specific applications in App Designer using common aircraft flight instruments. App
Designer is a rich development environment that provides layout and code views, a fully integrated
version of the MATLAB editor, and a large set of interactive components. For more information on
App Designer, see “Develop Apps Using App Designer”. To use the flight instrument components in
App Designer, you must have an Aerospace Toolbox license.

For a simple flight instruments app example that uses the App Designer, see the Getting Started
examples when you first start App Designer. To create an app to visualize saved flight data for a Piper
PA-24 Comanche, use this workflow.

1 Start App Designer by typing appdesigner at the command line, and then select Blank App on
the Getting Started page.

2 Drag aerospace components from the Component Library to the app canvas.
3 To load simulation data, add a startup function to the app, and then create an animation object.
4 Enter the callbacks, functions, and properties for the components to the app. Also add associated

code.
5 Trigger a display of the animation in the instrument app.
6 Save and run the app.

The following topics contain more detailed steps for this workflow as an example. This example uses
an Aero.Animation object.

Start App Designer and Create a New App
1 Start App Designer. In the MATLAB Command Window, type:

appdesigner
2 In the App Designer welcome window, click Blank App. App Designer displays with a blank

canvas.
3 To look at the blank app template, click Code View. Notice that the app contains a template with

sections for app component properties, component initialization, and app creation and deletion.
4 To return to the canvas view, click Design View.

Drag Aerospace Components into the App
To add components to the blank canvas:

1 In the Component Library, navigate to Aerospace.
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2 From the library, drag these aerospace components to the canvas:

• Airspeed Indicator
• Artificial Horizon
• Turn Coordinator
• Heading Indicator
• Climb Indicator
• Altimeter

3 This example uses an Aero.Animation object to visualize the flight status of an aircraft over
time. To set the current time, add a time input device such as a slider or knob. As you change the
time on the time input device, the flight instrument components and the animation window
update to show the results. The example code provides further details.

For this example:

• Add a Slider component as a time input device.
• To display the current time from the slider, edit the label of the slider. For example:

• Change the label to Time: 00.0 sec.
• Change the upper limit to 50.

4 Click Code View and note that the properties and component initialization sections now contain
definitions for the new components. The code managed by App Designer is noneditable (grayed
out).

5 In the Property Inspector section on the right of the canvas, rename these components:

• UIfigure component to FlightInstrumentsFlightDataPlaybackUIFigure
• Slider component to Time000secSlider

Add Code to Load and Visualize Data for the App
This workflow assumes that you have started App Designer, created a blank app, and added
aerospace components to the app.
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1 In the code view for the app, place the cursor after the properties section and, in the Insert
section, click Callback.

The Add Callback Function dialog box displays.
2 In the Add Callback Function dialog box:

a From the Callback list, select StartupFcn.
b In the Name parameter, enter a name for the startup function, for example startupFcn.

A callbacks section is added.
3 Add additional properties to the class for the simulation data and the animation object. Place

your cursor just after the component properties section and, in the Insert section, click Property
> Public Property. In the new properties template, add code so that it looks like this:

simdata % Saved flight data [time X Y Z phi theta psi]
animObj % Aero.Animation object

simdata is the saved flight data. animObj is the Aero.Animation object for the figure window.
4 To the startupFcn section, add code to the startup function that loads simulation data. For

example, the simdata.mat file contains logged simulated flight trajectory data.
% Code that executes after component creation
function startupFcn(app)
            
       % Load saved flight status data
       savedData = load(fullfile(matlabroot, 'toolbox', 'aero', 'astdemos', 'simdata.mat'), 'simdata');
       yaw = savedData.simdata(:,7);
       yaw(yaw<0) = yaw(yaw<0)+2*pi; % Unwrap yaw angles
       savedData.simdata(:,7) = yaw;
       app.simdata = savedData.simdata;  % Load saved flight status data

5 To visualize animation data, create an animation object. For example, after loading the simulation
data:

a Create an Aero.Animation object.
app.animObj = Aero.Animation;

b Use the piper pa-24 comanche geometry for the animation object.
app.animObj.createBody('pa24-250_orange.ac','Ac3d'); % Piper PA-24 Comanche geometry

c Use the data loaded previously, app.simdata, as the source for the animation object.

app.animObj.Bodies{1}.TimeseriesSourceType = 'Array6DoF'; % [time X Y Z phi theta psi]
app.animObj.Bodies{1}.TimeSeriesSource = app.simdata;

d Initialize the camera and figure positions.
app.animObj.Camera.PositionFcn = @staticCameraPosition;
app.animObj.Figure.Position = [app.FlightInstrumentsFlightDataPlaybackUIFigure.Position(1)+625,...
    app.FlightInstrumentsFlightDataPlaybackUIFigure.Position(2),...
    app.FlightInstrumentsFlightDataPlaybackUIFigure.Position(3),...
    app.FlightInstrumentsFlightDataPlaybackUIFigure.Position(4)];
app.animObj.updateBodies(app.simdata(1,1)); % Initialize animation window at t=0
app.animObj.updateCamera(app.simdata(1,1));

e Create and show the figure graphics object.

app.animObj.show();

Add Code to Trigger a Display of the Animation Object
This workflow assumes that you have added a startup function to the app to load simulation data and
create an animation object. To trigger an update of the animation object and flight instruments:
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1 In the code view for the app, add a callback for the slider. For example, navigate to the Property
Inspector section and select app.Time000secSlider.

2 Enter a name for valueChangingFcn, for example, Time000secSliderValueChanging, and
press Enter.

In the code view, App Designer adds a callback function Time000secSliderValueChanging.
3 Add code to display the current time in the slider label Time000secSliderLabel, for example:

% Display current time in slider component
t = event.Value;
app.Time000secSliderLabel.Text = sprintf('Time: %.1f sec', t);

4 Add code to compute data values for each flight instrument component corresponding with the
selected time on the slider, for example:
% Find corresponding time data entry
k = find(app.simdata(:,1)<=t);
k = k(end);
            
       app.Altimeter.Altitude = convlength(-app.simdata(k,4), 'm', 'ft');
       app.HeadingIndicator.Heading = convang(app.simdata(k,7),'rad','deg');
       app.ArtificialHorizon.Roll = convang(app.simdata(k,5),'rad','deg');
       app.ArtificialHorizon.Pitch = convang(app.simdata(k,6),'rad','deg');
            
       if k>1
           % Estimate velocity and angular rates
           Vel = (app.simdata(k,2:4)-app.simdata(k-1,2:4))/(app.simdata(k,1)-app.simdata(k-1,1));
           rates = (app.simdata(k,5:7)-app.simdata(k-1,5:7))/(app.simdata(k,1)-app.simdata(k-1,1));
               
           app.AirspeedIndicator.Airspeed = convvel(sqrt(sum(Vel.^2)),'m/s','kts');
           app.ClimbIndicator.ClimbRate = convvel(-Vel(3),'m/s','ft/min');

           % Estimate turn rate and slip behavior 
           app.TurnCoordinator.Turn = convangvel(rates(1)*sind(30) + rates(3)*cosd(30),'rad/s','deg/s');
           app.TurnCoordinator.Slip = 1/(2*pi)*convang(atan(rates(3)*sqrt(sum(Vel.^2))/9.81)-app.simdata(k,5),'rad','deg');
       else
           % time = 0
           app.ClimbIndicator.ClimbRate = 0;
           app.AirspeedIndicator.Airspeed = 0;
           app.TurnCoordinator.Slip = 0;
           app.TurnCoordinator.Turn = 0;
       end

5 Add code to update the animation window display, for example:

%% Update animation window display
app.animObj.updateBodies(app.simdata(k,1));
app.animObj.updateCamera(app.simdata(k,1));

Add Code to Close the Animation Window with UIfigure Window
This workflow assumes that you are ready to define the close function for the
FlightInstrumentsFlightDataPlaybackUIFigure figure window.

1 Add a CloseRequestFcn function. In the code view for the app, place the cursor after the
properties section for FlightInstrumentsFlightDataPlaybackUIFigure and, in the Insert
section, click Callback.

The Add Callback Function dialog box displays.
2 In the Add Callback Function dialog box:

a From the Callback list, select CloseRequestFcn.
b In the Name parameter, enter a name for the close function, for example

FlightInstrumentsFlightDataPlaybackUIFigureCloseRequest.

A callbacks section is added.
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3 In the new callback template, add code to delete the animation object, such as:

% Close animation figure with app
delete(app.animObj);
delete(app);

Save and Run the App
This workflow assumes that you have added code to close the uifigure window. To save and run the
app:

1 Save the app with the file name myFlightInstrumentsExample. Note that this name is applied
to the classdef.

2 Click Run.

After saving your changes, you can run the app from the App Designer window, or by typing its
name (without the .mlapp extension) at the MATLAB Command Window. When you run the app
from the command prompt, the file must be in the current folder or on the MATLAB path.

3 To visualize the saved flight data, change the slider position. Observe the flight instruments as
the aircraft changes orientation in the animation window.

For a complete example, see “Aerospace Flight Instruments in App Designer” on page 5-113.

See Also
Functions
uiaeroairspeed | uiaeroaltimeter | uiaeroclimb | uiaeroegt | uiaeroheading |
uiaerohorizon | uiaerorpm | uiaeroturn | uifigure | uiaxes | uislider | uilabel

Properties
AirspeedIndicator Properties | Altimeter Properties | ArtificialHorizon Properties | ClimbIndicator
Properties | EGTIndicator Properties | HeadingIndicator Properties | RPMIndicator Properties |
TurnCoordinator Properties
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More About
• “Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
• “Aerospace Flight Instruments in App Designer” on page 5-113
• “Flight Instruments”
• “Develop Apps Using App Designer”
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Work with Fixed-Wing Aircraft Using Functions
To easily create fixed-wing aircraft in Aerospace Toolbox, use the fixedWingAircraft function and
its supporting functions. These functions enable you to:

• Define aircraft dynamics
• Define aircraft dynamics from DATCOM files
• Perform static stability analyses using object methods
• Generate state-space representation with linearization methods

Suggested Workflow
As a guideline, consider this workflow when designing and building your fixed-wing aircraft objects
with these functions:

To Use
Define a fixed-wing aircraft. fixedWingAircraft — The aircraft object holds

the main definition of fixed-wing aircraft. The
aircraft has a main set of body coefficients, which
you can manipulate with the
fixedWingCoefficient function.

Define the condition (state) of a fixed-wing
aircraft at an instance in time.

fixedWingState — Use this function when:

• Your calculations require a specific aircraft
state, such as those for forces and moments.

• Gathering specific points of data from
Simulink.LookupTable objects (requires a
Simulink license).

To define data for any and all coefficients that
describe the behavior of the aircraft.

fixedWingCoefficient — Numeric coefficient
objects hold the data for all coefficients that
describe the behavior of the aircraft.

Define an aerodynamic surface on a fixed-wing
aircraft.

fixedWingSurface — Control surfaces hold the
definitions of the aircraft aerodynamic surfaces.

Define a thrust vector on a fixed-wing aircraft. fixedWingThrust — Thrust vector objects hold
the definitions of the aircraft thrust.

Define the fixed-wing aircraft state environment. aircraftEnvironment — Aircraft environment
objects hold the fixed-wing aircraft state
environment such as air temperature, pressure,
density, gravity, and so forth.

Define the properties for the fixed-wing aircraft. aircraftProperties — Aircraft property
objects define common properties to maintain
and define aircraft. Use this object throughout
the fixed-wing aircraft design process.

After creating these fixed-wing aircraft components, use object methods to work with them. For
example, use object methods to perform static stability and linear analysis.
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Static Stability Analysis
To perform static stability analysis of your fixed-wing aircraft, use associated object methods:

1 Create a criteria table against which to perform static stability analysis.

To create a criteria table, use the Aero.FixedWing.criteriaTable method. This method
creates a 6-by-N table, where N is the number of criteria variables.

2 To evaluate the changes in forces and moments after a perturbation as either greater than, equal
to, or less than 0 using the matching entry in the criteria table, use the staticStability
method. The method uses this evaluation process.

• If the evaluation of a criteria is met, the aircraft is statically stable at that condition.
• If the evaluation of a criteria is not met, the aircraft is statically unstable at that condition.
• If the result of the perturbation is 0, the aircraft is statically neutral at that condition.

Use this method only in the preliminary design phase. The staticStability method does not
perform a requirements-based analysis.

For more information on object methods, see “Analyze Fixed-Wing Aircraft with Objects” on page 2-
60.

For an example of static stability analysis, see “Determine Nonlinear Dynamics and Static Stability of
Fixed-Wing Aircraft” on page 5-129 .

Linear Analysis
To perform the linear analysis of the fixed-wing object at a given fixed-wing state, use the linearize
method. This method linearizes a fixed-wing aircraft around an initial state and creates a state-space
model for the linear analysis. To perform linear analysis:

1 Calculate the static stability of the fixed-wing aircraft using the staticStability method.
2 Linearize the fixed-wing aircraft using the linearize method.

For an example of fixed-wing aircraft linear analysis, see “Perform Controls and Static Stability
Analysis with Linearized Fixed-Wing Aircraft” on page 5-114.

Linear analysis requires the Control System Toolbox™ license.

See Also
fixedWingAircraft | fixedWingState | fixedWingCoefficient | fixedWingSurface |
fixedWingThrust | aircraftEnvironment | aircraftProperties

Related Examples
• “Get Started With Fixed-Wing Aircraft” on page 5-181
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Analyze Fixed-Wing Aircraft with Objects
To analyze fixed-wing aircraft in Aerospace Toolbox, use the Aero.FixedWing class and its
supporting classes. These classes enable you to:

• Define aircraft dynamics
• Define aircraft dynamics from DATCOM files
• Perform static stability analyses
• Generate state-space representation with linearization methods

Suggested Workflow
As a guideline, consider this workflow when designing and building your fixed-wing aircraft with
these classes:

To Use
Define a fixed-wing aircraft. Aero.FixedWing — Aero.FixedWing objects

hold the main definition of fixed-wing aircraft.
The object has a main set of body coefficients,
which you can manipulate with the
Aero.FixedWing.Coefficient object.

Define the condition (state) of a fixed-wing
aircraft at an instance in time.

Aero.FixedWing.State — Use these objects
when:

• Your calculations require a specific aircraft
state, such as those for forces and moments.

• Gathering specific points of data from
Simulink.LookupTable objects (requires a
Simulink license).

To define data for any and all coefficients that
describe the behavior of the aircraft.

Aero.FixedWing.Coefficient —
Aero.FixedWing.Coefficient objects hold
the data for all Coefficients that describe the
behavior of the aircraft.

Define an aerodynamic surface on a fixed-wing
aircraft.

Aero.FixedWing.Surface —
Aero.Aircraft.Surface objects hold the
definitions of the aircraft aerodynamic surfaces.

Define a thrust vector on a fixed-wing aircraft. Aero.FixedWing.Thrust —
Aero.Aircraft.Thrust Objects hold the
definitions of the aircraft thrust.

Define the fixed-wing aircraft state environment. Aero.Aircraft.Environment —
Aero.Aircraft.Environment objects hold the
fixed-wing aircraft state environment such as air
temperature, pressure, density, gravity, and so
forth.
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To Use
Define the properties for the fixed-wing aircraft. Aero.Aircraft.Properties —

Aero.Aircraft.Properties objects define
common properties to maintain and define
aircraft. Use this object throughout the fixed-
wing aircraft design process.

To define the control states of a fixed-wing state. Aero.Aircraft.ControlState —
Aero.Aircraft.ControlState holds the
definitions of the aircraft control surface
deflection angles.

Static Stability Analysis
To perform static stability analysis of your fixed-wing aircraft:

1 Create a criteria table against which to perform static stability analysis.

To create a criteria table, use the Aero.FixedWing.criteriaTable method. This method
creates a 6-by-N table, where N is the number of criteria variables.

2 To evaluate the changes in forces and moments after a perturbation as either greater than, equal
to, or less than 0 using the matching entry in the criteria table, use staticStability method.
The method uses this evaluation process:

• If the evaluation of a criteria is met, the aircraft is statically stable at that condition.
• If the evaluation of a criteria is not met, the aircraft is statically unstable at that condition.
• If the result of the perturbation is 0, the aircraft is statically neutral at that condition.

Use this method only in the preliminary design phase. The staticStability method does not
perform a requirements-based analysis.

For an example of static stability analysis, see “Determine Nonlinear Dynamics and Static Stability of
Fixed-Wing Aircraft” on page 5-129 .

Linear Analysis
To perform the linear analysis of the fixed-wing object at a given fixed-wing state, use the linearize
method. This method linearizes a fixed-wing aircraft around an initial state and creates a state-space
model for the linear analysis. To perform linear analysis:

1 Calculate the static stability of the fixed-wing aircraft using the staticStability method.
2 Linearize the fixed-wing aircraft using the linearize method.

For an example of fixed-wing aircraft linear analysis, see “Perform Controls and Static Stability
Analysis with Linearized Fixed-Wing Aircraft” on page 5-114.

Linear analysis requires the Control System Toolbox license.

Examples
Aerospace Toolbox provides these examples to help you work with fixed-wing aircraft using the fixed-
wing classes.
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Action Example
Create and analyze a fixed-wing aircraft in
MATLAB using Cessna C182 geometry and
coefficient data.

“Determine Nonlinear Dynamics and Static
Stability of Fixed-Wing Aircraft” on page 5-129

Convert a fixed-wing aircraft to a linear time
invariant (LTI) state-space model for linear
analysis.

“Perform Controls and Static Stability Analysis
with Linearized Fixed-Wing Aircraft” on page 5-
114

Construct and define a custom state for a fixed-
wing aircraft.

“Customize Fixed-Wing Aircraft with Additional
Aircraft States” on page 5-121

See Also
Aero.Aircraft.ControlState | Aero.Aircraft.Environment |
Aero.Aircraft.Properties | Aero.FixedWing | Aero.FixedWing.Coefficient |
Aero.FixedWing.State | Aero.FixedWing.Surface | Aero.FixedWing.Thrust

Related Examples
• “Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129
• “Perform Controls and Static Stability Analysis with Linearized Fixed-Wing Aircraft” on page 5-

114
• “Customize Fixed-Wing Aircraft with Additional Aircraft States” on page 5-121
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Satellite Scenario Key Concepts
Aerospace Toolbox provides the ability to model and visualize satellites in orbit, compute access with
ground stations, visualize and analyze communication links using the satelliteScenario object.
This topic provides an overview of the technical terms frequently encountered in scenario
visualization.

Coordinate Systems
Geodetic Coordinates

A geodetic system uses the coordinates (lat,lon,h) to represent position relative to a reference
ellipsoid. All geodetic coordinates in satellite scenario use the WGS84 ellipsoid as the reference
ellipsoid. The coordinate origin of WGS 84 is meant to be located at the Earth's center of mass.

• lat, the latitude, originates at the equator. More specifically, the latitude of a point is the angle a
normal to the ellipsoid at that point makes with the equatorial plane, which contains the center
and equator of the ellipsoid. An angle of latitude is within the range [–90°, 90°]. Positive latitudes
correspond to north and negative latitudes correspond to south.

• lon, the longitude, originates at the prime meridian. More specifically, the longitude of a point is
the angle that a plane containing the ellipsoid center and the meridian containing that point
makes with the plane containing the ellipsoid center and prime meridian. Positive longitudes are
measured in a counterclockwise direction from a vantage point above the North Pole. Typically,
longitude is within the range [–180°, 180°] or [0°, 360°].
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• h, the ellipsoidal height, is measured along a normal of the reference spheroid.

Earth-Centered Earth-Fixed Coordinates

An Earth-centered Earth-fixed (ECEF) system uses the Cartesian coordinates (X,Y,Z) to represent
position relative to the center of the reference ellipsoid. The distance between the center of the
ellipsoid and the center of the Earth depends on the reference ellipsoid.

• The positive X-axis intersects the surface of the ellipsoid at 0° latitude and 0° longitude, where the
equator meets the prime meridian.

• The positive Y-axis intersects the surface of the ellipsoid at 0° latitude and 90° longitude.
• The positive Z-axis intersects the surface of the ellipsoid at 90° latitude and 0° longitude, the

North Pole.
1

1. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks®.
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Frame of Reference and North East Down (NED) Frame

To describe a point in space, you need a frame of reference that does not rotate with respect to the
stars. The Geocentric Celestial Reference Frame (GCRF), with the origin at the Earth’s center and
orthogonal vectors I, J, and K, is used as frame of reference while adding satellite objects to
satelliteScenario. The fundamental plane is the I, J plane, which is closely aligned with the
equator with a small offset, and K aligns closely with the north pole. You can describe the location of
a satellite using a position vector and a velocity vector in the geocentric-equatorial coordinate
system.
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When referring to a satellites position, velocity, acceleration, orientation and angular velocity, the
coordinate system in which they are expressed should always be mentioned. Global systems such as
GCRF and geodetic systems describe the position of an object using a triplet of coordinates. Local
systems such as NED, and AER systems require two triplets of coordinates: one triplet describes the
location of the origin, and the other triplet describes the location of the object with respect to the
origin.

A north-east-down (NED) system uses the Cartesian coordinates (xNorth,yEast,zDown) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Typically, the local origin of an NED system is above the surface of the Earth.

• The positive xNorth-axis points north along the meridian of longitude containing lon0.
• The positive yEast-axis points east along the parallel of latitude containing lat0.
• The positive zDown-axis points downward along the ellipsoid normal.

An NED coordinate system is commonly used to specify location relative to a moving satellite. Note
that the coordinates are not fixed to the frame of the satellite.
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Roll, Pitch, and Yaw

Three lines run through a satellite and intersect at right angles at the satellite's center of mass. These
axes move with the satellite and rotate relative to the Earth along with the craft.

• Rotation around the front-to-back axis is called roll.
• Rotation around the side-to-side axis is called pitch.
• Rotation around the vertical axis is called yaw.

The yaw, pitch, and roll angles of satellites follow an ISO convention. These angles have positive
clockwise directions when looking in the positive direction of the axes. Unless otherwise specified, by
default Aerospace Toolbox uses yaw-pitch-roll rotation order for these angles.

Azimuth-Elevation-Range Coordinates

An azimuth-elevation-range (AER) system uses the spherical coordinates (az,elev,range) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Azimuth, elevation, and slant range depend on a local Cartesian system, for example,
an NED system.

• az, the azimuth, is the clockwise angle in the xEast-yNorth plane from the positive yNorth-axis to
the projection of the object into the plane.

• elev, the elevation, is the angle from the xEast-yNorth plane to the object.
• range, the slant range, is the Euclidean distance between the object and the local origin.
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Orbital Elements
Orbital elements are parameters required to uniquely identify a specific orbit. It takes at least six
parameters to uniquely define an orbit and a satellite's position within the orbit. Three of the
parameters describe what the orbital plane looks like and the position of the satellite in the ellipse,
and the other three parameters describe how that plane is oriented in the celestial inertial reference
frame and where the satellite is in that plane. These six parameters are called the Keplerian elements
or orbital elements.
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In this diagram, the orbital plane (yellow) intersects a reference plane (gray). For Earth-orbiting
satellites, the reference plane is usually the I-J plane of the Geocentric Celestial Reference Frame
(GCRF).

Two elements define the shape and size of the ellipse:

• Eccentricity (e) — Shape of the ellipse, describing how elongated it is compared to a circle.
• Semimajor axis (a) — Sum of the periapsis and apoapsis distances divided by two. Periapsis is

the point at which an orbiting object is closest to the center of mass of the body it is orbiting.
Apoapsis is the point at which an orbiting object is farthest away from the center of mass of the
body it is orbiting. For classic two-body orbits, the semimajor axis is the distance between the
centers of the bodies.

The next two elements define the orientation of the orbital plane in which the ellipse is embedded:

• Inclination (i) — Vertical tilt of the ellipse with respect to the reference plane, measured at the
ascending node (where the orbit passes upward through the reference plane, the green angle i in
the diagram). Tilt angle is measured perpendicular to line of intersection between orbital plane
and reference plane. Any three points on an ellipse will define the ellipse orbital plane.
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Starting with an equatorial orbit, the orbital plane can be tilted up. The angle tilted up from the
equator is referred to as the inclination angle, i. Since the center of the earth must always be in
the orbital plane, the point in the orbit where the satellite passes the equator on its way up is
referred to as the ascending node, and the point where the satellite passes the equator on the way
down is the descending node. Drawing a line through these two points on the equator is what
defines the line of nodes.

• Right ascension of ascending node (Ω) — Horizontal orientation of the ascending node of the
ellipse (where the orbit passes upward through the reference plane) with respect to the reference
frame's I axis.

The rotation of the right ascension of the ascending node (RAAN) can be any number between 0
and 360°.

The remaining two elements are as follows:

• Argument of periapsis (ω) — Orientation of the ellipse in the orbital plane, as an angle
measured from the ascending node to the periapsis.

• True Anomaly (v) — Position of the orbiting body along the ellipse at a specific time. The
satellites position on the path is measured counter-clockwise from periapsis and is called the true
anomaly, ν.

Two Line Element (TLE) Files
Aerospace Toolbox accepts Two Line Element (TLE) files as inputs to satellite. To download TLE
files, visit the Space track website.

A two-line element set is a data format encoding a list of orbital elements of an Earth orbiting object
for a given point in time, the epoch. Orbital elements parameters can be encoded as text in a number
of formats. The most common of them is the NASA/NORAD "two-line elements" format. As commonly
used today, each satellite gets three lines – one line containing the satellite’s name, followed by the
standard two lines of elements.

Data for each satellite consists of three lines.

Satellite 1
1 25544U 98067A   04236.56031392  .00020137  00000-0  16538-3 0  9993
2 25544  51.6335 344.7760 0007976 126.2523 325.9359 15.70406856328906

• Line 1 is a eleven-character satellite name.
• Line 2 and 3 are the standard Two-Line element set format identical to that used by NORAD and

NASA.

Column Description Example
1 Line Number 1
3 — 7 Satellite Number 25544
8 Elset Classification U
10 — 17 International Designator 98067A
19 — 32 Element Set Epoch (UTC) 04236.56031392
34 — 43 First derivative of the Mean Motion with

respect to time
.00020137
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Column Description Example
45 — 52 Second derivative of the Mean Motion with

respect to Time (decimal point assumed)
00000-0

54 — 61 BSTAR Drag Term. 16538-3
63 Element set type 0
65 — 68 Element number 999
69 Check Sum (Modulo 10) 3

Column Description Examples
1 Line Number of Element Data 2
3 — 7 Satellite Number 25544
9 — 16 Inclination [Degrees] 51.6335
18 — 25 Right Ascension of the Ascending Node

[Degrees]
344.7760

27 — 33 Eccentricity (Leading decimal point assumed) 0007976
35 — 42 Argument of Perigee [Degrees] 126.2523
44 — 51 Mean Anomaly [Degrees] 325.9359
53 — 63 Mean Motion [Revs per day] 15.70406856
64 — 68 Revolution number at epoch [Revs] 32890
69 Check Sum (Modulo 10) 6

Depending on the application and object orbit, the data derived from TLEs older than 30 days can
become unreliable. Orbital positions can be calculated from TLEs through the SGP4 and SDP4
algorithms.

References
[1] “HSF - Orbital Elements.” Accessed November 30, 2020. https://spaceflight.nasa.gov/realdata/

elements/graphs.html.

[2] “CelesTrak: ‘FAQs: Two-Line Element Set Format,” March 26, 2016. https://web.archive.org/web/
20160326061740/http://celestrak.com/columns/v04n03/.

See Also
Objects
satellite | satelliteScenario | groundStation | access | satelliteScenarioViewer

Functions
show | play

More About
• “Satellite Scenario Overview” on page 2-72
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Satellite Scenario Overview
You can build a complete satellite scenario simulation using functions and objects. You can extend
satellite scenarios for detailed communication simulations using Satellite Communications Toolbox.
The workflow for satellite scenario simulation consists of four main components. These components
are

• satelliteScenario represents a 3-D arena consisting of satellites, ground stations, and the
interactions between them. Use this object to model satellite constellations, model ground station
networks, perform access analyses between the satellites and ground stations, and visualize the
results.

• satellite adds satellites to the scenario using two line element (TLE) files or orbital elements.
For more details on orbital elements and TLE files, see “Two Line Element (TLE) Files” on page 2-
70.

• groundStation adds ground stations to the scenario using default parameters or the specified
latitude and longitude.

• satelliteScenarioViewer creates a 3D viewer for the scenario.
• play simulates the satellite scenario and plays the results in the visualization window specified by

satelliteScenarioViewer.

Many of the methods included in the flowchart are created by multiple objects.

• access is created by satellite, groundStation, and conicalSensor.
• show and hide are created by satellite, groundStation, groundTrack and access.
• conicalSensor is created by satellite, groundStation and gimbal.
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See Also
Objects
satelliteScenario | satellite | access | groundStation | satelliteScenarioViewer |
conicalSensor

Functions
show | play | hide

More About
• “Satellite Scenario Key Concepts” on page 2-63
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Flight Control Analysis Tools
To help you visualize handling and flight control results, Aerospace Toolbox provides functions for:

• Short-period undamped natural frequency responses — shortPeriodCategoryAPlot,
shortPeriodCategoryBPlot, and shortPeriodCategoryCPlot

• Boundary lines — boundaryline
• Altitude contours — altitudeEnvelopeContour

For an example of how to plot the results of the 3DOF airframe in the Sky Hogg model from the
Aerospace Blockset, see “Plot Short-Period Undamped Natural Frequency Results” on page 2-74.
This example describes how to use the Aerospace Blockset asbFlightControlAnalysis function
to guide you through computing longitudinal and lateral-directional flying qualities. From the results,
you can extract the short-period undamped natural frequency response for plotting using the
shortPeriodCategoryAPlot function.

Plot Short-Period Undamped Natural Frequency Results
Aerospace Blockset flight analysis tools generate many variables that you can explore. For example,
the analysis of a 3DOF or 6DOF airframe generates the short-period undamped natural frequency
response ωnSP. This example describes how to compute lateral-directional handling qualities and plot
the category A flight phase for the short-period undamped natural frequency response ωnSP using one
of the shortperiod functions.

Note This topic requires an Aerospace Blockset license.

1 Start the flight control analysis template for the 3DOF configuration.

asbFlightControlAnalysis('3DOF')

The 3DOF Sky Hogg Longitudinal Flying Quality Analysis project starts in the
Simulink Editor.

2 To compute longitudinal and lateral-directional flying qualities, in the Analysis Workflow
section, click through the guided workflow, click OK when prompted.

3 After computing longitudinal and lateral-directional flying qualities, find and double-click the
lonFQ structure in your workspace.
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In the variables viewer, double-click the ShortPeriodMode variable.

4 Check that the wn variable exists. The wn variable is the short-period undamped natural
frequency response you want to plot.

5 Plot the short-period undamped natural frequency response. In the MATLAB Command Window,
use the shortPeriodCategoryAPlot function. For example, for a load factor per angle of
attack of 10, enter this command.

shortPeriodCategoryAPlot(10, lonFQ.ShortPeriodMode.wn, 'ro')

A figure window with the plotted short-period undamped natural frequency response displays.

6 To evaluate if the results are within your tolerance limits, check that the red dot is within your
limits.

See Also
altitudeEnvelopeContour | boundaryline | shortPeriodCategoryAPlot |
shortPeriodCategoryBPlot | shortPeriodCategoryCPlot
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Add-On for Ephemeris and Geoid Data
Support

3



Add Ephemeris and Geoid Data for Aerospace Products
Add ephemeris and/or geoid data to use it with the Aerospace Toolbox functions and Aerospace
Blockset blocks. You can add data for these functions and blocks.

Aerospace Toolbox Functions Aerospace Blockset Blocks
geoidheight

Note Only for the EGM2008 Geopotential Model.
Aerospace Toolbox provides EGM96 Geopotential
Model data.

Geoid Height

Note Only for the EGM2008 Geopotential Model.
Aerospace Toolbox provides EGM96 Geopotential
Model data.

earthNutation Earth Nutation
moonLibration Moon Libration
planetEphemeris Planetary Ephemeris

To add ephemeris and geoid data for these functions and blocks.

1 In a MATLAB Command Window, type:

aeroDataPackage

The Add-On Explorer starts.
2 Select the data you want to add, for example:

• Geoid Data for Aerospace Toolbox
• Ephemeris Data for Aerospace Toolbox

3 On the data page, click the Install button.

Note You must have write privileges for the folder to which you are adding data.

To check for updates, repeat this process when a new version of MATLAB software is released. You
can also check for updates between releases using this process.

See Also
aeroDataPackage
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access
Package: matlabshared.satellitescenario

Add access analysis objects to satellite scenario

Syntax
access(obj1,...,objN)
ac = access(obj1,...,objN)
ac = access( ___ ,'Viewer',Viewer)

Description
access(obj1,...,objN) adds Access objects defined by obj1, obj2, and so on.

ac = access(obj1,...,objN) returns a handle to the added access objects. The length of the
vector corresponds to the number of Access objects added to the handle to the added access.

ac = access( ___ ,'Viewer',Viewer) sets the viewer in addition to any input argument
combination from previous syntaxes. For example, 'Viewer',v1 picks the viewer v1.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10; 
rightAscensionOfAscendingNode = 0; 
argumentOfPeriapsis = 0; 
trueAnomaly = 0; 
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
        rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)
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intvls=8×8 table
       Source              Target          IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _____________    __________________    ______________    ____________________    ____________________    ________    __________    ________

    "Satellite 2"    "Ground station 1"          1           01-May-2020 11:36:00    01-May-2020 12:04:00      1680          1            1    
    "Satellite 2"    "Ground station 1"          2           01-May-2020 14:20:00    01-May-2020 15:11:00      3060          1            2    
    "Satellite 2"    "Ground station 1"          3           01-May-2020 17:27:00    01-May-2020 18:18:00      3060          3            3    
    "Satellite 2"    "Ground station 1"          4           01-May-2020 20:34:00    01-May-2020 21:25:00      3060          4            4    
    "Satellite 2"    "Ground station 1"          5           01-May-2020 23:41:00    02-May-2020 00:32:00      3060          5            5    
    "Satellite 2"    "Ground station 1"          6           02-May-2020 02:50:00    02-May-2020 03:39:00      2940          6            6    
    "Satellite 2"    "Ground station 1"          7           02-May-2020 05:59:00    02-May-2020 06:47:00      2880          7            7    
    "Satellite 2"    "Ground station 1"          8           02-May-2020 09:06:00    02-May-2020 09:56:00      3000          8            9    

Play the scenario to visualize the ground stations.

play(sc)
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Input Arguments
obj1,...,objN — Satellite, ground station, or conical sensor
Satellite object | GroundStation object | ConicalSensor object

Satellite, GroundStation, or ConicalSensors object. These objects must belong to the same
satelliteScenario object. The function adds the access analysis object to the Accesses property
of obj1,...,objN.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Viewer',v1 picks the viewer v1.

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

Output Arguments
ac — Access analysis
Access object scalar

Access analysis between input objects, returned as an Access object scalar.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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Access
Access analysis object belonging to scenario

Description
The Access object defines an access analysis object belonging to a Satellite, GroundStation or
ConicalSensor.

Creation
You can create an Access object using the access object function of GroundStation or
Satellite.

Properties
Sequence — Satellite, ground station, or conical sensor ID
row vector of positive real numbers

You can set this property only when calling access. After you call access, this property is read-only.

Satellite, ground station, or conical sensor ID defining the nodes of access analysis.

LineWidth — Visual width of access analysis object
1 (default) | scalar

Visual width of access analysis object in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of analysis line
[0.5 0 1] (default) | RGB triplet | hexadecimal color code | color name | short name

Color of access analysis line, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Object Functions
show Show object in satellite scenario viewer
accessStatus Status of access between first and last node defining access analysis
accessIntervals Intervals during which access status is true
accessPercentage Percentage of time when access exists between first and last node defining

access analysis
hide Hides satellite scenario entity from viewer

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.
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startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10; 
rightAscensionOfAscendingNode = 0; 
argumentOfPeriapsis = 0; 
trueAnomaly = 0; 
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
        rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
       Source              Target          IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _____________    __________________    ______________    ____________________    ____________________    ________    __________    ________

    "Satellite 2"    "Ground station 1"          1           01-May-2020 11:36:00    01-May-2020 12:04:00      1680          1            1    
    "Satellite 2"    "Ground station 1"          2           01-May-2020 14:20:00    01-May-2020 15:11:00      3060          1            2    
    "Satellite 2"    "Ground station 1"          3           01-May-2020 17:27:00    01-May-2020 18:18:00      3060          3            3    
    "Satellite 2"    "Ground station 1"          4           01-May-2020 20:34:00    01-May-2020 21:25:00      3060          4            4    
    "Satellite 2"    "Ground station 1"          5           01-May-2020 23:41:00    02-May-2020 00:32:00      3060          5            5    
    "Satellite 2"    "Ground station 1"          6           02-May-2020 02:50:00    02-May-2020 03:39:00      2940          6            6    
    "Satellite 2"    "Ground station 1"          7           02-May-2020 05:59:00    02-May-2020 06:47:00      2880          7            7    
    "Satellite 2"    "Ground station 1"          8           02-May-2020 09:06:00    02-May-2020 09:56:00      3000          8            9    

Play the scenario to visualize the ground stations.

play(sc)
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See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | satellite

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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accessIntervals
Package: satelliteScenario

Intervals during which access status is true

Syntax
int = accessIntervals(ac)

Description
int = accessIntervals(ac) returns a table of intervals during which the access status
corresponding to each access object in the input vector is true.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10; 
rightAscensionOfAscendingNode = 0; 
argumentOfPeriapsis = 0; 
trueAnomaly = 0; 
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
        rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
       Source              Target          IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _____________    __________________    ______________    ____________________    ____________________    ________    __________    ________

    "Satellite 2"    "Ground station 1"          1           01-May-2020 11:36:00    01-May-2020 12:04:00      1680          1            1    
    "Satellite 2"    "Ground station 1"          2           01-May-2020 14:20:00    01-May-2020 15:11:00      3060          1            2    
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    "Satellite 2"    "Ground station 1"          3           01-May-2020 17:27:00    01-May-2020 18:18:00      3060          3            3    
    "Satellite 2"    "Ground station 1"          4           01-May-2020 20:34:00    01-May-2020 21:25:00      3060          4            4    
    "Satellite 2"    "Ground station 1"          5           01-May-2020 23:41:00    02-May-2020 00:32:00      3060          5            5    
    "Satellite 2"    "Ground station 1"          6           02-May-2020 02:50:00    02-May-2020 03:39:00      2940          6            6    
    "Satellite 2"    "Ground station 1"          7           02-May-2020 05:59:00    02-May-2020 06:47:00      2880          7            7    
    "Satellite 2"    "Ground station 1"          8           02-May-2020 09:06:00    02-May-2020 09:56:00      3000          8            9    

Play the scenario to visualize the ground stations.

play(sc)

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.
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Outputs Arguments
int — Intervals during which access is true
table

Intervals during which access is true, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, defining the
access analysis.

• If Source is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Source.

• If Target is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Target. Otherwise,
StartOrbit and EndOrbit are NaN because they are associated with ground stations.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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accessPercentage
Package: matlabshared.satellitescenario

Percentage of time when access exists between first and last node defining access analysis

Syntax
ap = accessPercentage(ac)

Description
ap = accessPercentage(ac) returns the percentages of time from start time to stop time of the
satellite scenario when access exists between the first and last node of each access object in the input
vector.

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.

Outputs Arguments
ap — Access percentage
row vector of nonnegative numbers

Access percentage, returned as a row vector of nonnegative numbers.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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accessStatus
Package: matlabshared.satellitescenario

Status of access between first and last node defining access analysis

Syntax
s = accessStatus(ac)
s = accessStatus(ac,timeIn)
[s,timeOut] = accessStatus( ___ )

Description
s = accessStatus(ac) returns the access status history between the first and last node defining
each access object in the input vector.

s = accessStatus(ac,timeIn) returns the status of each access analysis object at the specified
datetime in timeIn.

[s,timeOut] = accessStatus( ___ ) returns the status of each access analysis object and the
corresponding datetime in Universal Time Coordinated (UTC).

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of Access objects.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Outputs Arguments
s — Access analysis status
scalar or row vector of logical values

Access analysis status, returned as a scalar or row vector of logical values. If timeIn is specified,
s is a row vector, otherwise, the output is a scalar. The status at a given instant is 1 (true) if access
exists between each pair of adjacent nodes defined by Sequence. For example, in a given pair, say
defined by node1 and node2, node1 has access to node2 and vice versa.

• If a node is a satellite, then the satellite has access to the adjacent node if both nodes are in line of
sight of each other.
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• If a node is a ground station, then the ground station has access to the adjacent node if the
elevation angle of the node with respect to the ground station is greater than or equal to the
MinElevationAngle property of GroundStation.

• If a node is a conical sensor, then the conical sensor has access to the adjacent node if the latter is
in the field of view of the former. If the conical sensor is attached to a ground station directly or
via a gimbal, then the elevation angle of the adjacent node with respect to the ground station must
be greater than or equal to the MinElevationAngle property of GroundStation.

timeOut — Time samples of output access status
scalar | vector

Time samples of the output access status, returned as a scalar or vector. If the time history of the
access status is returned, timeOut is a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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aer
Package: matlabshared.satellitescenario

Calculate azimuth angle, elevation angle, and range in NED frame from another satellite or ground
station

Syntax
az = aer(objIn,target)
[az,el] = aer(objIn,target)
[az,el,range] = aer(objIn,target)
[az,el,range,timeOut] = aer(objIn,target)
[ ___ ] = aer(objIn,target,timeIn)

Description
az = aer(objIn,target) returns the history of azimuth angles, between satellite or ground
station objIn and another satellite or ground station target belonging to a given
satelliteScenario object.

[az,el] = aer(objIn,target) returns the history of elevation angles, el, between satellite or
ground station objIn and another satellite or ground station target.

[az,el,range] = aer(objIn,target) returns the history of the range of target with respect
to objIn.

[az,el,range,timeOut] = aer(objIn,target) returns the corresponding time in timeOut.

[ ___ ] = aer(objIn,target,timeIn) returns the outputs at the specified datetime timeIn.
Specify any output argument combinations from previous syntaxes.

Input Arguments
objIn — First scenario component
Satellite object | GroundStation object

First scenario component, specified as a Satellite or GroundStation object.

target — Second scenario component
Satellite object | GroundStation object

Second scenario component, specified as a Satellite or GroundStation object.

timeIn — Time at which output is calculated
scalar

Time at which output is calculated, specified as a scalar. If no time zone is specified in timeIn, the
time zone is assumed to be UTC.
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Output Arguments
az — Azimuth angles
scalar | vector

Azimuth angles of target in the local azimuth, elevation and range (AER) system, returned as a scalar
or vector. Azimuths are measured clockwise from North. Values are specified in degrees in the
interval [0, 360). The vector elements correspond to the time samples from the satellite scenario
StartTime to StopTime properties, as specified by the SampleTime property. The azimuth angle is
defined in the North-East-Down (NED) frame of (and centered at) objIn such that 0 degrees is
North, 90 degrees is East, 180 degrees is South, and 270 degrees is West.

el — Elevation angles
scalar | vector

Elevation angles of target in the local AER system, returned as a scalar or vector. Elevations are
measured with respect to a plane that is perpendicular to the normal of the surface of the earth. If
objIn is on the surface of the Earth, then the plane is tangent to the Earth.

Values are specified in degrees in the closed interval [0 180]. The vector elements correspond to the
time samples from the satellite scenario StartTime to StopTime properties, as specified by the
SampleTime property. The elevation angle is defined in the NED frame of (and centered at) objIn
such that 0 deg implies target is on the North East (NE) plane, 90 degrees implies target is
directly above objIn, and -90 degrees implies target is directly below objIn.

range — Distances from local origin
scalar | vector

Distances from the local origin in meters, returned as a scalar or vector.

timeOut — Time samples between start and stop time of scenario
scalar | vector

Time samples corresponding to az, el, and range, returned as a scalar or vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | conicalSensor | hide

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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addBody
Class: Aero.Animation
Package: Aero

Add loaded body to animation object and generate its patches

Syntax
idx = addBody(h,b)
idx = h.addBody(b)

Description
idx = addBody(h,b) and idx = h.addBody(b) add a loaded body, b, to the animation object h
and generates its patches. idx is the index of the body to be added.

Input Arguments
h Animation object.
b Loaded body.

Output Arguments
idx Index of the body to be added.

Examples
Add a second body to the list that is a pointer to the first body. This means that if you change the
properties of one body, the properties of the other body change correspondingly.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
b = h.Bodies{1};
idx2 = h.addBody(b);
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addNode (Aero.VirtualRealityAnimation)
Add existing node to current virtual reality world

Syntax
addNode(h, node_name, wrl_file)
h.addNode(node_name, wrl_file)

Description
addNode(h, node_name, wrl_file) and h.addNode(node_name, wrl_file) add an existing
node, node_name, to the current virtual reality world. The wrl_file is the file from which the new
node is taken. addNode adds a new node named node_name, which contains (or points to) the
wrl_file. node_name must be unique from other node names in the same .wrl file. wrl_file
must contain the node to be added. You must specify the full path for this file. The vrnode object
associated with the node object must be defined using a DEF statement in the .wrl file. This method
creates a node object on the world of type Transform.

When you use the addNode method to add a node, all the objects in the .wrl file will be added to the
virtual reality animation object under one node. If you want to add separate nodes for the objects in
the .wrl file, place each node in a separate .wrl file.

Examples
Add node to world defined in chaseHelicopter.wrl.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

See Also
Aero.Node | move | removeNode | updateNodes | Aero.VirtualRealityAnimation

Introduced in R2007b
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addRoute (Aero.VirtualRealityAnimation)
Add VRML ROUTE statement to virtual reality animation

Syntax
addRoute(h, nodeOut, eventOut, nodeIn, eventIn)
h.addRoute(nodeOut, eventOut, nodeIn, eventIn)

Description
addRoute(h, nodeOut, eventOut, nodeIn, eventIn) and h.addRoute(nodeOut,
eventOut, nodeIn, eventIn) add a VRML ROUTE statement to the virtual reality animation,
where nodeOut is the node from which information is routed, eventOut is the event (property),
nodeIn is the node to which information is routed, and eventIn is the receiving event (property).

Examples
Add a ROUTE command to connect the Plane position to the Camera1 node.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);
h.addRoute('Plane','translation','Camera1','translation');

See Also
addViewpoint

Introduced in R2007b
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addViewpoint (Aero.VirtualRealityAnimation)
Add viewpoint for virtual reality animation

Syntax
addViewpoint(h, parent_node, parent_field, node_name)
h.addViewpoint(parent_node, parent_field, node_name)
addViewpoint(h, parent_node, parent_field, node_name, description)
h.addViewpoint(parent_node, parent_field, node_name, description)
addViewpoint(h, parent_node, parent_field, node_name, description, position)
h.addViewpoint(parent_node, parent_field, node_name, description, position)
addViewpoint(h, parent_node, parent_field, node_name, description, position,
orientation)
h.addViewpoint(parent_node, parent_field, node_name, description, position,
orientation)

Description
addViewpoint(h, parent_node, parent_field, node_name) and
h.addViewpoint(parent_node, parent_field, node_name) add a viewpoint named
node_name whose parent_node is the parent node field of the vrnode object and whose
parent_field is a valid parent field of the vrnode object to the virtual world animation object, h.

addViewpoint(h, parent_node, parent_field, node_name, description) and
h.addViewpoint(parent_node, parent_field, node_name, description) add a viewpoint
named node_name whose parent_node is the parent node field of the vrnode object and whose
parent_field is a valid parent field of the vrnode object to the virtual world animation object, h.
description is the character vector or string you want to describe the viewpoint.

addViewpoint(h, parent_node, parent_field, node_name, description, position)
and h.addViewpoint(parent_node, parent_field, node_name, description,
position) add a viewpoint named node_name whose parent_node is the parent node field of the
vrnode object and whose parent_field is a valid parent field of the vrnode object to the virtual
world animation object, h. description is the character vector or string you want to describe the
viewpoint and position is the position of the viewpoint. Specify position using VRML coordinates
(x y z).

addViewpoint(h, parent_node, parent_field, node_name, description, position,
orientation) and h.addViewpoint(parent_node, parent_field, node_name,
description, position, orientation) add a viewpoint named node_name whose
parent_node is the parent node field of the vrnode object and whose parent_field is a valid
parent field of the vrnode object to the virtual world animation object, h. description is the
character vector or string you want to describe the viewpoint, position is the position of the
viewpoint, and orientation is the orientation of the viewpoint. Specify position using VRML
coordinates (x y z). Specify orientation in a VRML axes angle format (x y z Θ).

Note If you call addViewpoint with only the description argument, you must set the position and
orientation of the viewpoint with the Simulink 3D Animation vrnode/setfield function. This
requires you to use VRML coordinates.
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Examples
Add a viewpoint named chaseView.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
h.addViewpoint(h.Nodes{2}.VRNode,'children','chaseView','View From Helicopter');

See Also
addRoute | removeViewpoint

Introduced in R2007b
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Aero.Aircraft.ControlState class
Package: Aero

Define control states of fixed-wing state

Description
An object of the Aero.Aircraft.ControlState class defines and manages the control states of
fixed-wing states.

Note This class supports fixed-wing objects. Do not directly use this class. To set up the command
state vectors on a fixed-wing object, see the setupControlStates method.

Class Attributes

Sealed true

For information on class attributes, see “Class Attributes”.

Properties
Position — Current control state value
scalar numeric

Current control state value, specified as a scalar numeric.

Attributes:

GetAccess public
SetAccess public

Data Types: double

MaximumValue — Maximum value of control surface
infinity (default) | scalar numeric

Maximum value of control surface, specified as a scalar numeric.

Attributes:

GetAccess public
SetAccess public

Data Types: double

MinimumValue — Minimum value of control surface
negative infinity (default) | scalar numeric

Minimum value of control surface, specified as a scalar numeric.
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Attributes:

GetAccess public
SetAccess public

Data Types: double

DependsOn — Control states
["", ""] (default) | two-element vector

Control states upon which the control state depends, specified as a two-element vector.

For asymmetrical control surfaces, the two asymmetrical control states are settable, but the resulting
effective control state is not.
Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Settable — Current control state value
'on' | 'off'

Current control state value, specified as 'on' or 'off'. Specify 'on' to make the control state
settable. Otherwise, set to 'off'.

Tip For asymmetrical control surfaces, the two asymmetrical control states are settable, but the
resulting effective control state is not.

Attributes:

GetAccess public
SetAccess public

Data Types: double

Properties — Aero.Aircraft.Properties object
scalar

Aero.Aircraft.Properties object, specified as a scalar.
Attributes:

GetAccess public
SetAccess public

Examples

Create and Use Fixed-Wing Object

Create and set up dynamic behavior and the current state for the fixed-wing object aircraft.

 Aero.Aircraft.ControlState class

4-23



Create a fixed-wing object.

aircraft = Aero.FixedWing()

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

To define the aircraft dynamic behavior, set a coefficient for it.

aircraft = setCoefficient(aircraft, "CD", "Zero", 0.27)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

Define the aircraft's current state.

state = Aero.FixedWing.State("Mass", 500)

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 500
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
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            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 4905
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"
           ControlStates: [1×0 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

Calculate the forces and moments on the aircraft.

[F, M] = forcesAndMoments(aircraft, state)

F =

           0
           0
        4905

M =

     0
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     0
     0

Limitations
You cannot subclass Aero.Aircraft.ControlState.

See Also
Aero.FixedWing | Aero.FixedWing.State | setupControlStates

Topics
“Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129
“Perform Controls and Static Stability Analysis with Linearized Fixed-Wing Aircraft” on page 5-114

Introduced in R2021a
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Aero.Aircraft.Environment class
Package: Aero

Properties defining and managing aircraft environment

Description
An object of the Aero.Aircraft.Environment class defines and manages aircraft environments.

Class Attributes

Sealed true

For information on class attributes, see “Class Attributes”.

Creation
Description

aeroAircraftEnvironment = Aero.Aircraft.Environment creates a single
Aero.Aircraft.Environment object with default property values.

aeroAircraftEnvironment = Aero.Aircraft.Environment(N) creates an N-by-N matrix of
Aero.Aircraft.Environment objects with default property values.

aeroAircraftEnvironment = Aero.Aircraft.Environment(M,N,P,...) or
Aero.Aircraft.Environment([M N P ...]) creates an M-by-N-by-P-by-... array of
Aero.Aircraft.Environment objects with default property values.

aeroAircraftEnvironment = Aero.Aircraft.Environment(size(A)) creates an
Aero.Aircraft.Environment object that is the same size as A and all
Aero.Aircraft.Environment objects.

aeroAircraftEnvironment =
Aero.Aircraft.Environment(__,property,propertyValue) creates an array of
Aero.Aircraft.Environment objects with property, propertyValue pairs applied to each of
the Aero.Aircraft.Environment array objects. For a list of properties, see “Properties” on page
4-28.

Input Arguments

N — Number of aircraft objects
scalar

Number of aircraft objects, specified as a scalar.

M — Number of aircraft objects
scalar

Number of aircraft objects, specified as a scalar.
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P — Number of aircraft objects
scalar

Number of aircraft objects, specified as a scalar.

A — Size of aircraft object
scalar

Size of aircraft object, specified as a scalar.

Properties
WindVelocity — Wind velocity in NED coordinates
[0, 0, 0] (default) | three-element vector

Wind velocity in NED coordinates, specified as a three-element vector in these units:

Unit Unit System
Meters per second (m/s) 'Metric'
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: double

Density — Density of air
1.225 (default) | scalar numeric

Density of air, specified as a scalar, in these units:

Unit Unit System
Kilograms per meter3 (kg/m3) 'Metric'
Slugs per foot3 (slug/ft3) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: double

Temperature — Static air temperature
288.15 (default) | scalar numeric

Static air temperature, specified as a scalar numeric in units specified by the temperature system.
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Attributes:

GetAccess public
SetAccess public

Data Types: double

Pressure — Static air pressure
101325 (default) | scalar numeric

Static air pressure, specified as a scalar numeric in these units:

Unit Unit System
Pascals (Pa) 'Metric'
Pounds per feet2 (psf) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: double

SpeedOfSound — Speed of sound
340.2941 (default) | scalar numeric

Speed of sound, specified as a scalar numeric in these units:

Unit Unit System
Meters per second (m/s) 'Metric'
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: double

Gravity — Acceleration due to gravity
9.81 (default) | scalar numeric

Acceleration due to gravity, specified as a scalar numeric in these units:

Unit Unit System
Meters per second2 (m/s2) 'Metric'
Feet per seconds (ft/s2) 'English (kts)' and 'English (ft/s)'
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Attributes:

GetAccess public
SetAccess public

Data Types: double

Properties — Aero.Aircraft.Properties object
scalar

Aero.Aircraft.Properties object, specified as a scalar.

Attributes:

GetAccess public
SetAccess public

Examples

Create Aero.Aircraft.Environment Object

Create an Aero.Aircraft.Environment object.

Create an Aero.Aircraft.Environment object.

env = Aero.Aircraft.Environment('Gravity', 32.2)

env = 

  Environment with properties:

    WindVelocity: [0 0 0]
         Density: 1.2250
     Temperature: 288.1500
        Pressure: 101352
    SpeedOfSound: 340.2941
         Gravity: 32.2000
      Properties: [1×1 Aero.Aircraft.Properties]

Limitations
You cannot subclass Aero.Aircraft.Environment.

See Also
Aero.FixedWing | setupControlStates

Topics
“Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129
“Perform Controls and Static Stability Analysis with Linearized Fixed-Wing Aircraft” on page 5-114

Introduced in R2021a
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Aero.Aircraft.Properties class
Package: Aero

Properties defining and managing aircraft

Description
An object of the Aero.Aircraft.Propereties class defines and manages aircraft components.
Use this object to model and analyze an aircraft. The object contains the static data for the aircraft,
such as reference values, coefficients, and deflection angles.

Class Attributes

Sealed true

For information on class attributes, see “Class Attributes”.

Creation
Description

aeroAircraft = Aero.Aircraft.Properties creates a single Aero.Aircraft.Properties
object with default property values.

aeroAircraft = Aero.Aircraft.Properties(N) creates an N-by-N matrix of
Aero.Aircraft.Properties objects with default property values.

aeroAircraft = Aero.Aircraft.Properties(M,N,P,...) or
Aero.Aircraft.Properties([M N P ...]) creates an M-by-N-by-P-by-... array of
Aero.Aircraft.Properties objects with default property values.

aeroAircraft = Aero.Aircraft.Properties(size(A)) creates an
Aero.Aircraft.Properties object that is the same size as A and all
Aero.Aircraft.Properties objects.

aeroAircraft = Aero.Aircraft.Properties(__,property,propertyValue) creates an
array of Aero.Aircraft.Properties objects with property, propertyValue pairs applied to
each of the Aero.Aircraft.Properties array objects. For a list of properties, see “Properties” on
page 4-32.

Input Arguments

N — Number of aircraft objects
scalar

Number of aircraft objects, specified as a scalar.

M — Number of aircraft objects
scalar

Number of aircraft objects, specified as a scalar.
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P — Number of aircraft objects
scalar

Number of aircraft objects, specified as a scalar.

A — Size of aircraft object
scalar

Size of aircraft object, specified as a scalar.

Properties
Name — Object name
scalar

Object name, specified as a scalar string or character vector. The update method of an
Aero.FixedWing.* object uses this name to update the
Simulink.LookupTable.StructTypeInfo.Name property.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Description — Object description
string array

Object description, specified as a scalar string or character vector.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Type — Object type
scalar string

Object type, specified as a scalar string or character vector.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Version — Object version
scalar string

Object version, specified as a scalar string or character vector.
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Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Examples

Create Aero.Aircraft.Properties Object

Create an Aero.Aircraft.Properties object and set object name to MyAircraft.

Create a fixed-wing object.

props = Aero.Aircraft.Properties('Name','MyAircraft')

props = 

  Properties with properties:

           Name: "MyAircraft"
    Description: ""
           Type: ""
        Version: ""

Limitations
• This class requires a Simulink license.
• You cannot subclass Aero.Aircraft.Properties.

See Also
Aero.FixedWing

Topics
“Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129

Introduced in R2021a
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Aero.Animation class
Package: Aero

Visualize aerospace animation

Description
Use the Aero.Animation class to visualize flight data without any other tool or toolbox. You only need
the Aerospace Toolbox to visualize this data.

Construction
Aero.Animation Construct animation object

Methods
addBody Add loaded body to animation object and generate its patches
createBody Create body and its associated patches in animation
delete Destroy animation object
hide Hide animation figure
initialize Create animation object figure and axes and build patches for bodies
initIfNeeded Initialize animation graphics if needed
moveBody Move body in animation object
play Animate Aero.Animation object given position/angle time series
removeBody Remove one body from animation
show Show animation object figure
updateBodies Update bodies of animation object
updateCamera Update camera in animation object
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Properties
Bodies Specify name of animation object
Camera Specify camera that animation object contains
Figure Specify name of figure object
FigureCustomizationFcn Specify figure customization function
FramesPerSecond Animation rate
Name Specify name of animation object
TCurrent Current time
TFinal End time
TimeScaling Scaling time
TStart Start time
VideoCompression Video recording compression file type
VideoFileName Video recording file name
VideoQuality Video recording quality
VideoRecord Video recording
VideoTFinal Video recording stop time for scheduled recording
VideoTStart Video recording start time for scheduled recording

See Also
Aero.FlightGearAnimation | Aero.VirtualRealityAnimation

Topics
“Aero.Animation Objects” on page 2-19
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Aero.Animation
Class: Aero.Animation
Package: Aero

Construct animation object

Syntax
h = Aero.Animation

Description
h = Aero.Animation constructs an animation object. The animation object is returned to h.

Note The Aero.Animation constructor does not retain the properties of previously created
animation objects, even those that you have saved to a MAT-file. This means that subsequent calls to
the animation object constructor always create animation objects with default properties.

Examples
h=Aero.Animation
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Aero.Body
Create body object for use with animation object

Syntax
h = Aero.Body

Description
h = Aero.Body constructs a body for an animation object. The animation object is returned in h. To
use the Aero.Body object, you typically:

1 Create the animation body.
2 Configure or customize the body object.
3 Load the body.
4 Generate patches for the body (requires an axes from a figure).
5 Set time series data source.
6 Move or update the body.

By default, an Aero.Body object natively uses aircraft x-y-z coordinates for the body geometry and
the time series data. It expects the rotation order z-y-x (psi, theta, phi).

Convert time series data from other coordinate systems on the fly by registering a different
CoordTransformFcn function.

Constructor Summary
Constructor Description
Body Construct body object for use with animation object.

Method Summary
Method Description
findstartstoptimes Return start and stop times of time series data.
generatePatches Generate patches for body with loaded face, vertex, and color

data.
load Get geometry data from source.
move Change Aero.Body position and orientation.
update Changes body position and orientation versus time data.
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Property Summary
Property Description Values
CoordTransformFcn Specify a function that controls

the coordinate transformation.
Character vector | string

Name Specify name of body.  
Position Specify position of body. MATLAB array
Rotation Specify rotation of body. MATLAB array
Geometry Specify geometry of body. handle
PatchGenerationFcn Specify patch generation function. MATLAB array
PatchHandles Specify patch handles. MATLAB array
ViewingTransform Specify viewing transform. MATLAB array
TimeseriesSource Specify time series source. MATLAB array
TimeseriesSourceType Specify the type of time series

data stored in
'TimeseriesSource'. Five
values are available. They are
listed in TimeseriesSourceType
Properties. The default value is
'Array6DoF'.

Character vector | string

TimeseriesReadFcn Specify time series read function. MATLAB array

The time series data, stored in the property 'TimeseriesSource', is interpreted according to the
'TimeseriesSourceType' property, which can be one of:
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TimeseriesSourceType Properties

Property Description
'Timeseries' MATLAB time series data with six values per

time:

x y z phi theta psi

The values are resampled.
'StructureWithTime' Simulink struct with time (for example, Simulink

root outport logging 'Structure with time'):

• signals(1).values: x y z
• signals(2).values: phi theta psi

Signals are linearly interpolated vs. time using
interp1.

'Array6DoF' A double-precision array in n rows and 7 columns
for 6-DoF data: time x y z phi theta psi. If
a double-precision array of 8 or more columns is
in 'TimeseriesSource', the first 7 columns are
used as 6-DoF data.

'Array3DoF' A double-precision array in n rows and 4 columns
for 3-DoF data: time x z theta. If a double-
precision array of 5 or more columns is in
'TimeseriesSource', the first 4 columns are
used as 3-DoF data.

'Custom' Position and angle data is retrieved from
'TimeseriesSource' by the currently
registered 'TimeseriesReadFcn'.

See Also
Aero.Geometry

Introduced in R2007a
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Aero.Camera
Construct camera object for use with animation object

Syntax
h = Aero.Camera

Description
h = Aero.Camera constructs a camera object h for use with an animation object. The camera object
uses the registered coordinate transform. By default, this is an aerospace body coordinate system.
Axes of custom coordinate systems must be orthogonal.

By default, an Aero.Body object natively uses aircraft x-y-z coordinates for the body geometry and
the time series data. Convert time series data from other coordinate systems on the fly by registering
a different CoordTransformFcn function.

For more information, see:

• “Overlaying Simulated and Actual Flight Data” on page 5-30
• “Camera Graphics Terminology”
• “Low-Level Camera Properties”

Constructor Summary
Constructor Description
Camera Construct camera object for use with animation object.

Method Summary
Method Description
update Update camera position based on time and position of other

Aero.Body objects.

Property Summary
Property Description Values
CoordTransformFcn Specify a function that controls

the coordinate transformation.
MATLAB array

PositionFcn Specify a function that controls
the position of a camera relative
to an animation body.

MATLAB array

Position Specify position of camera. MATLAB array [-150,-50,0]
Offset Specify offset of camera. MATLAB array [-150,-50,0]

4 Functions

4-40



Property Description Values
AimPoint Specify aim point of camera. MATLAB array [0,0,0]
UpVector Specify up vector of camera. MATLAB array [0,0,-1]
ViewAngle Specify view angle of camera. MATLAB array {3}
ViewExtent Specify view extent of camera. MATLAB array {[-50,50]}
xlim Specify x-axis limit of camera. MATLAB array {[-50,50]}
ylim Specify y-axis limit of camera. MATLAB array {[-50,50]}
zlim Specify z-axis limit of camera. MATLAB array {[-50,50]}
PrevTime Specify previous time of camera. MATLAB array {0}
UserData Specify custom data. MATLAB array {[]}

See Also
Aero.Geometry

Introduced in R2007a
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aeroDataPackage
Start Add-On Explorer to download, install, or uninstall aerospace-specific data

Syntax
aeroDataPackage

Description
aeroDataPackage opens the Add-On Explorer. To see a list of available data, run the Add-On
Explorer and select the data you want.

Examples

Start Add-On Explorer

Start the Add-On Explorer to add data.

aeroDataPackage

Limitations
The aeroDataPackage function is not available for the Aerospace Toolbox Online.

See Also
Topics
“Add Ephemeris and Geoid Data for Aerospace Products” on page 3-2

Introduced in R2014a
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Aero.FixedWing class
Package: Aero

Define fixed-wing aircraft

Description
An object of the Aero.FixedWing class defines a fixed-wing aircraft. Use this object to model and
analyze a fixed-wing aircraft. It contains the static data for the aircraft, such as reference values,
coefficients, and deflection angles.

To perform static analysis of fixed-wing aircraft, use this object in conjunction with the
Aero.FixedWing.State object. The Aero.FixedWing.State object contains the aircraft
information at a particular aircraft state.

For more information on fixed-wing aircraft definitions, see “More About” on page 4-50.

Class Attributes

Sealed true

For information on class attributes, see “Class Attributes”.

Creation
Description

fixedWing = Aero.FixedWing creates a single Aero.FixedWing object with default property
values.

fixedWing = Aero.FixedWing(N) creates an N-by-N matrix of Aero.FixedWing objects with
default property values.

fixedWing = Aero.FixedWing(M,N,P,...) or Aero.FixedWing([M N P ...]) create an M-
by-N-by-P-by-... array of Aero.FixedWing objects with default property values.

fixedWing = Aero.FixedWing(size(A)) creates an Aero.FixedWing object that is the same
size as A and all Aero.FixedWing objects.

fixedWing = Aero.FixedWing(__,property,propertyValue) creates an array of
Aero.FixedWing objects with property, propertyValue pairs applied to each of the
Aero.FixedWing array objects. For a list of properties, see “Properties” on page 4-44.

Input Arguments

N — Number of fixed-wing objects
scalar

Number of fixed-wing objects, specified as a scalar.
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M — Number of fixed-wing objects
scalar

Number of fixed-wing objects, specified as a scalar.

P — Number of fixed-wing objects
scalar

Number of fixed-wing objects, specified as a scalar.

A — Size of fixed-wing object
scalar

Size of fixed-wing object, specified as a scalar.

Properties
Public Properties

UnitSystem — Unit system
'Metric' (default) | 'English (kts)' | 'English (ft/s)' | scalar string | character vector

Unit system, specified as a scalar string or character vector.
Attributes:

GetAccess public
SetAccess public

Data Types: string | char

AngleSystem — Angle system
'Radians' (default) | 'Degrees'

Angle system, specified as 'Radians' or 'Degrees'.
Attributes:

GetAccess public
SetAccess public

Data Types: string | char

TemperatureSystem — Temperature system
'Kelvin' (default) | 'Celsius' | 'Rankine' | 'Fahrenheit'

Temperature system, specified as 'Kelvin', 'Celsius', 'Rankine', or 'Fahrenheit'.
Attributes:

GetAccess public
SetAccess public

Data Types: string | char

ReferenceArea — Reference area
0 (default) | scalar numeric
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Reference area, specified as a scalar numeric, commonly denoted as 'S', in units of:

Units UnitSystem
meters squared (m2) 'Metric'
feet squared (ft2) 'English (kts)' or 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: double

ReferenceSpan — Reference span
0 (default) | scalar numeric

Reference span, specified as a scalar numeric, commonly denoted as 'b', in units of:

Units UnitSystem
meters squared (m) 'Metric'
feet squared (ft) 'English (kts)' or 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: double

ReferenceLength — Reference length
0 (default) | scalar numeric

Reference length, specified as a scalar numeric, commonly denoted as 'c', in units of:

Units UnitSystem
meters squared (m) 'Metric'
feet squared (ft) 'English (kts)' or 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: double

Coefficients — Aero.FixedWing.Coefficients class instance
scalar

Aero.FixedWing.Coefficients class instance, specified as a scalar that contains the coefficients
defining the fixed-wing aircraft. This object ignores this property if no value is set.
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Attributes:

GetAccess public
SetAccess public

Data Types: double

DegreesOfFreedom — Degrees of freedom
'6DOF' (default) | '3DOF' | 'PM4' | 'PM6'

Degrees of freedom, specified as a string or character vector.

Degrees of Freedom Description
'6DOF' Six degrees of freedom. Describes

translational and rotational movement

in 3-D space.
'3DOF' Three degrees of freedom. Describes

translational and rotational movement

in 2-D space.
'PM4' Fourth order point-mass. Describes

translational movement in 2-D space.
'PM6' Sixth order point-mass. Describes

translational movement in 3-D space.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Surfaces — Aero.FixedWing.Surface definitions
vector

Aero.FixedWing.Surface definitions, specified as a vector that contains the definitions of the
surfaces on the fixed-wing aircraft. The object ignores this property if no value is set.
Attributes:

GetAccess public
SetAccess public

Data Types: double

Thrusts — Aero.FixedWing.Thrust definitions
vector

Aero.FixedWing.Thrust definitions, specified as a vector that contains the definitions of the thrust
on the fixed-wing aircraft. The object ignores this property if no value is set.
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Attributes:

GetAccess public
SetAccess public

Data Types: 

Protected Properties

AspectRatio — Aspect ratio
scalar numeric

Aspect ratio, specified as a scalar numeric, commonly denoted as 'AR'. This value depends on the
values of ReferencedArea and ReferenceSpan, with this equation:

AspectRatio = ReferenceSpan2/ReferencedArea

The object ignores this property if no value is set.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

Methods
Public Methods
criteriaTable Construct criteria table for fixed-wing static stability analysis
datcomToFixedWing Construct fixed-wing aircraft from Digital DATCOM structure
forcesAndMoments Calculate forces and moments of fixed-wing aircraft
getCoefficient Get coefficient value for Aero.FixedWing object
getControlStates Get control states for Aero.FixedWing object
linearize Return linear state-space model
nonlinearDynamics Calculate dynamics of fixed-wing aircraft
setCoefficient Set coefficient value for Aero.FixedWing object
staticStability Calculate static stability of fixed-wing aircraft
update Update Aero.FixedWing object

Examples

Create and Use Fixed-Wing Object

Create and set up dynamic behavior and the current state for the fixed-wing object aircraft.

Create a fixed-wing object.

aircraft = Aero.FixedWing()

aircraft = 

  FixedWing with properties:
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        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

To define the aircraft dynamic behavior, set a coefficient for it.

aircraft = setCoefficient(aircraft, "CD", "Zero", 0.27)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

Define the aircraft's current state.

state = Aero.FixedWing.State("Mass", 500)

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 500
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
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                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 4905
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"
           ControlStates: [1×0 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

Calculate the forces and moments on the aircraft.

[F, M] = forcesAndMoments(aircraft, state)

F =

           0
           0
        4905

M =

     0
     0
     0

Limitations
You cannot subclass Aero.FixedWing.
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More About
Fixed-Wing Definitions

The FixedWing object holds the main definition of a fixed-wing aircraft. The object has a main set of
body coefficients defined by these tables:

Body Coefficients in Wind Frame

Body
Coeffici
ents

Wind Frame

 Zero U Alpha AlphaRa
te

Theta Beta BetaRat
e

Phi Psi

CD          
CY          
CL          
CI          
Cm          
Cn          

Body Coefficients in Body Frame

Body
Coeffici
ents

Wind Frame

 Zero U Alpha AlphaRa
te

Theta Beta BetaRat
e

Phi Psi

CX          
CY          
CZ          
CI          
Cm          
Cn          

See Also
Aero.FixedWing.Coefficient | Aero.FixedWing.Surface | Aero.FixedWing.Thrust |
Aero.FixedWing.State | getCoefficient | setCoefficient | Simulink.LookupTable

Topics
“Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129
“Perform Controls and Static Stability Analysis with Linearized Fixed-Wing Aircraft” on page 5-114
“Customize Fixed-Wing Aircraft with Additional Aircraft States” on page 5-121

Introduced in R2021a
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Aero.FixedWing.Coefficient class
Package: Aero

Create Aero.FixedWing aircraft coefficient set

Description
Aero.FixedWing.Coefficient creates an Aero.FixedWing coefficient set that describes the
behavior and body of an aircraft.

Class Attributes

Sealed true

For information on class attributes, see “Class Attributes”.

Creation
Description

fixedWingCoefficient = Aero.FixedWing.Coefficient creates a single
Aero.FixedWing.Coefficient object with default property values.

fixedWingCoefficient = Aero.FixedWing.Coefficient(N) creates an N-by-N matrix of
Aero.FixedWing.Coefficient objects with default property values.

fixedWingCoefficient = Aero.FixedWing.Coefficient(M,N,P,...) or
Aero.FixedWing.Coefficient([M N P ...]) creates an M-by-N-by-P-by-... array of
Aero.FixedWing.Coefficient objects with default property values.

fixedWingCoefficient = Aero.FixedWing.Coefficient(size(A)) creates an
Aero.FixedWing.Coefficient object that is the same size as A and all
Aero.FixedWing.Coefficient objects.

fixedWingCoefficient = Aero.FixedWing.Coefficient(__,property,propertyValue)
creates an array of Aero.FixedWing.Coefficient objects with property, propertyValue pairs
applied to each of the Aero.FixedWing.Coefficient array objects. For a list of properties, see
“Properties” on page 4-52.

Input Arguments

N — Number of fixed-wing coefficient objects
scalar

Number of fixed-wing coefficient objects, specified as a scalar.

M — Number of fixed-wing coefficient objects
scalar

Number of fixed-wing coefficient objects, specified as a scalar.
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P — Number of fixed-wing coefficient objects
scalar

Number of fixed-wing coefficient objects, specified as a scalar.

A — Size of fixed-wing coefficient object
scalar

Size of fixed-wing coefficient object, specified as a scalar.

Properties
Public Properties

Table — Coefficient values
6-by-N table

Coefficient values, specified in a 6-by-N table. Each row in the table must be a member of and in the
same order as the “StateOutput” on page 4-0  property.

Setting the Table property also sets the contents of the Values property and StateVariables to
the Table property variables. To have a Simulink.LookupTable object and a constant value in the
same column, use the setCoefficient or set the desired content of the Values property. Setting
the Table property does not set the ReferenceFrame.

Note Tables must have a single data type per column. If there are both constant values and
Simulink.LookupTable objects in a given column, the Table property automatically converts the
constants to Simulink.LookupTable objects.

Attributes:

GetAccess public
SetAccess public

Data Types: double

Values — Coefficient values
6-by-N cell array

Coefficient values, specified as a 6-by-N cell array. Each entry in the cell array must be a single
coefficient value corresponding to the StateOutput (row) and StateVariable (column) properties.
Each coefficient value must be a scalar numeric value or a Simulink.LookupTable object. If a
value is a Simulink.LookupTable object, the FieldName of each breakpoint must be a valid
property of the Aero.FixedWing.State object.

Unlike the Table property, Values do need to be a single data type per column.

Attributes:

GetAccess public
SetAccess public

Data Types: double
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StateVariables — State variable names
'Zero' (default) | 1-by-N vector

State variable names, specified as a 1-by-N vector of strings. Each entry in this property corresponds
to a column in the Values property. Each entry in StateVariables must be a valid property in the
Aero.FixedWing.State object. Adding a state variable adds a column of zeros to the end of the
Values cell array.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

ReferenceFrame — Reference frame for coefficients
Wind (default) | Body | Stability

Reference frame for coefficients, specified as Wind, Body, or Stability with these outputs:

Reference Frame Coefficient Output
Wind Forces:

Moments:

Body Forces:

Moments:

Stability Forces:

Moments:

Example of Wind table:

Coefficient State
CD state
CY state
CL state
Cl state
Cm state
Cn state

Example of Body table:

Coefficient State
CX state
CY state
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Coefficient State
CZ state
Cl state
Cm state
Cn state

Example of Stability table:

Coefficient State
CD state
CY state
CL state
Cl state
Cm state
Cn state

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

MultiplyStateVariables — Option to multiply coefficients by state variables
on (default) | off

Option to multiply coefficients by state variables when calculating forces and moments. To multiply
coefficients by state variables, set this property to 'on'. Otherwise, set this property to 'off'.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

NonDimensional — Option to specify coefficients are nondimensional
on (default) | off

Option to specify that nondimensional coefficients. To specify nondimensional coefficients, set this
property to 'on'. Otherwise, set this property to 'off'.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Properties — Aero.Aircraft.Properties object
scalar
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Aero.Aircraft.Properties object, specified as a scalar.

Attributes:

GetAccess public
SetAccess public

Protected Properties

StateOutput — Current state output
6-by-1 vector

Current state output, returned as one of these 6-by-1 vectors:

Wind Body Stability
CD CX CD
CY CY CY
CL CZ CL
Cl Cl Cl
Cm Cm Cm
Cn Cn Cn

This property depends on ReferenceFrame.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: char | string

Methods
Public Methods
getCoefficient Get coefficient values from fixed-wing coefficient object
setCoefficient Set coefficient values for fixed-wing coefficient object
update Update Aero.FixedWing.Coefficient object

Examples

Create and Use Fixed-Wing Object

Create and set up dynamic behavior and the current state for the fixed-wing object aircraft.

Create a fixed-wing object.

aircraft = Aero.FixedWing()

aircraft = 

  FixedWing with properties:
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        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

To define the aircraft dynamic behavior, set a coefficient for it.

aircraft = setCoefficient(aircraft, "CD", "Zero", 0.27)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

Define the aircraft's current state.

state = Aero.FixedWing.State("Mass", 500)

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 500
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
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                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 4905
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1×1 Aero.Aircraft.Environment]
           ControlStates: [1×0 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"

Calculate the forces and moments on the aircraft.

[F, M] = forcesAndMoments(aircraft, state)

F =

           0
           0
        4905

M =

     0
     0
     0

Limitations
• This class requires a Simulink license if the coefficient table contains Simulink.LookupTable

objects.
• You cannot subclass Aero.FixedWing.Coefficient.
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See Also
Aero.FixedWing | Aero.FixedWing.Surface | Aero.FixedWing.Thrust |
Simulink.LookupTable | setCoefficient

Introduced in R2021a
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Aero.FixedWing.State class
Package: Aero

Define condition of Aero.FixedWing aircraft at time instant

Description
Use the Aero.FixedWing.State class to define the condition of an Aero.FixedWing aircraft at a
time instant. The Aero.FixedWing.State object contains the information about the current state of
an aircraft at a single instance in time. A subclass can inherit the Aero.FixedWing.State.

• To get dependent properties defined by subclass, use the getState method.
• To set dependent properties, use the setState method.
• To use custom state properties within the Aero.FixedWing object methods, create a subclass.

Class Attributes

Sealed false

For information on class attributes, see “Class Attributes”.

Creation
Description

Aero.FixedWing.State creates a single Aero.FixedWing.State object with default property
values..

Aero.FixedWing.State(N) creates an N-by-N matrix of Aero.FixedWing.State.

Aero.FixedWing.State(M,N,P,...) or Aero.FixedWing.State([M N P ...]) creates an M-
by-N-by-P-by-... array of Aero.FixedWing.State.

Aero.FixedWing.State(size(A)) creates an Aero.FixedWing.State object that is the same
size as A and all Aero.FixedWing.State objects.

Aero.FixedWing.State(__,property,propertyValue) creates an array of
Aero.FixedWing.State objects with property, propertyValue pairs applied to each of the
Aero.FixedWing array objects. For a list of properties, see “Properties” on page 4-60.

Input Arguments

N — Number of fixed-wing objects
scalar

Number of fixed-wing objects, specified as a scalar.

M — Number of fixed-wing objects
scalar
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Number of fixed-wing objects, specified as a scalar.

P — Number of fixed-wing objects
scalar

Number of fixed-wing objects, specified as a scalar.

A — Size of fixed-wing object
scalar

Size of fixed-wing object, specified as a scalar.

Properties
Public Properties

UnitSystem — Unit system
'Metric' (default) | 'English (kts)' | 'English (ft/s)' | scalar string | character vector

Unit system, specified as a scalar string or character vector.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

AngleSystem — Angle system
'Radians' (default) | 'Degrees'

Angle system, specified as 'Radians' or 'Degrees'.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

TemperatureSystem — Temperature system
'Kelvin' (default) | 'Celsius' | 'Rankine' | 'Fahrenheit'

Temperature system, specified as 'Kelvin', 'Celsius', 'Rankine', or 'Fahrenheit'.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Mass — Fixed-wing aircraft mass
0 (default) | scalar numeric

Fixed-wing aircraft mass, specified as a scalar numeric, in the units:
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Unit Unit System
newtons (N) 'Metric'
slugs (slug) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Inertia — Inertial matrix of aircraft
3-by-3 table of numeric values (default) | scalar numeric

Inertial matrix of aircraft, specified as a 3-by-3 table of numeric values specifying the body in this
matrix form:

 X Y Z
X Ixx Ixy Ixz
Y Iyx Iyy Iyz
Z Izx Izy Izz

The matrix has these units:

Unit Unit System
kilogram meters squared (kg m^2) 'Metric'
slug feet squared (slug ft^2) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

CenterOfGravity — Location of center of gravity
[0, 0, 0] (default) | three-element vector

Location of center of gravity on the fixed-wing aircraft in the body frame, specified as a three-element
vector in these units:

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char
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CenterOfPressure — Location of center of pressure
[0, 0, 0] (default) | three-element vector

Location of center of pressure on the fixed-wing aircraft in the body frame, specified as a three-
element vector, in these units:

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

AltitudeMSL — Altitude above sea level
0 (default) | scalar numeric

Altitude above sea level, specified as a scalar numeric, in these units:

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

GroundHeight — Ground height above sea level
0 (default) | scalar numeric

Ground height above sea level, specified as a scalar numeric in these units:

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

XN — North position of fixed-wing aircraft
0 (default) | scalar numeric

North position of fixed-wing aircraft, specified as a scalar numeric in these units:
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Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

XE — East position of fixed-wing aircraft
0 (default) | scalar numeric

East position of fixed-wing aircraft, specified as a scalar numeric in these units:

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

U — Forward component of ground velocity
50 (default) | scalar numeric

Forward component of ground velocity, specified as a scalar numeric in these units:

Unit Unit System
Meters per second (m/s) 'Metric'
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

V — Side component of ground velocity
0 (default) | scalar numeric

Side component of ground velocity, specified as a scalar numeric in these units:

Unit Unit System
Meters per second (m/s) 'Metric'
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Unit Unit System
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

W — Downward component of ground velocity
0 (default) | scalar numeric

Downward component of ground velocity, specified as a scalar numeric in these units:

Unit Unit System
Meters per second (m/s) 'Metric'
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Phi — Euler roll angle
0 (default) | scalar numeric

Euler roll angle, specified as a scalar numeric in units of radians or degrees depending on the
AngleSystem property.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Theta — Euler pitch angle
0 (default) | scalar numeric

Euler pitch angle, specified as a scalar numeric in units of radians or degrees depending on the
AngleSystem property.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char
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Psi — Euler yaw angle
0 (default) | scalar numeric

Euler yaw angle, specified as a scalar numeric in units of radians or degrees depending on the
AngleSystem property.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

P — Body roll rate
0 (default) | scalar numeric

Body roll rate, specified as a scalar numeric in units of radians per second or degrees per second
depending on the AngleSystem property.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Q — Body pitch rate
0 (default) | scalar numeric

Body pitch rate, specified as a scalar numeric in units of radians per second or degrees per second
depending on the AngleSystem property.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

R — Body yaw rate
0 (default) | scalar numeric

Body yaw rate, specified as a scalar numeric in units of radians per second or degrees per second
depending on the AngleSystem property.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

AlphaDot — Angle of attack rate on fixed-wing aircraft
0 (default) | scalar numeric

Angle of attack rate on fixed-wing aircraft, specified as a scalar numeric in units of radians per
second or degrees per second depending on the AngleSystem property.
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Attributes:

GetAccess public
SetAccess public

Data Types: string | char

BetaDot — Angle of sideslip rate on fixed-wing aircraft
0 (default) | scalar numeric

Angle of sideslip rate on the fixed-wing aircraft, specified as a scalar numeric in units of radians per
second or degrees per second depending on the AngleSystem property.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

ControlStates — Current control state values
vector

Current control state values, specified as a vector.

You cannot set effective control variables created with asymmetric control surfaces.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Environment — Definition of current environment
scalar

Definition of current environment, contained in an Aero.Aircraft.Environment object, specified
as a scalar.

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Protected Properties

Weight — Fixed-wing aircraft weight
scalar numeric

Fixed-wing aircraft weight, specified as a scalar numeric, in these units:
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Unit Unit System
newtons (N) 'Metric'
pound-force (lbf) 'English (kts)' and 'English (ft/s)'

Weight depends on the values of the Mass and Gravity properties of the
Aero.Aircraft.Environment object, with the equation

Weight = Mass * Environment.Gravity.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

AltitudeAGL — Altitude above ground level
scalar numeric

Altitude above ground level, specified as a scalar numeric value in these units:

Unit Unit System
meters (m) 'Metric'
feet (ft) 'English (kts)' and 'English (ft/s)'

AltitudeAGL depends on the values of the AltitudeMSL and GroundHeight public properties,
with the equation:

AltitudeAGL = AltitudeMSL - GroundHeight.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

XD — Down position of fixed-wing aircraft
0 (default) | scalar numeric

Down position of fixed-wing aircraft, specified as a scalar numeric in these units:

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

XD depends on the value of the AltitudeMSL public property, with the equation

XD = -1 * AltitudeMSL.
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Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

Airspeed — Current airspeed of fixed-wing aircraft
0 (default) | scalar numeric

Current airspeed of fixed-wing aircraft, specified as a scalar numeric in these units:

Unit Unit System
Meters/sec (m/s) 'Metric'
Feet/sec (ft/s) 'English (ft/s)'
knots (kts) 'English (kts)'

Airspeed depends on the values of the UR, VR, and WR public properties, with the equation

Airspeed = sqrt(UR2 + VR2+WR2).

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

GroundSpeed — Current ground speed of fixed-wing aircraft
three-element vector

Current ground speed of fixed-wing aircraft, specified as a three-element vector in these units:

Unit Unit System
Meters/sec (m/s) 'Metric'
Feet/sec (ft/s) 'English (ft/s)'
knots (kts) 'English (kts)'

Groundspeed depends on the values of the U, V, and R public properties, with the equation

Groundspeed = [U, V, W].

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

MachNumber — Mach number
numeric scalar

Mach number of fixed-wing aircraft, specified as a numeric scalar.
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MachNumber depends on the values of the AirSpeed and SpeedOfSound public properties, with the
equation

MachNumber = AirSpeed/Environment.SpeedOfSound.
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

BodyVelocity — Body velocity of fixed-wing aircraft
three-element vector

Body velocity of fixed-wing aircraft, specified as a three-element vector.

BodyVelocity depends on the values of the GroundSpeed, Phi, Theta, and Psi public properties,
with the equation

BodyVelocity = GroundVelocity - InertialToBodyMatrix * Environment.WindVelocity.
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

GroundVelocity — Ground velocity of fixed-wing aircraft
three-element vector

Ground velocity of the fixed-wing aircraft, specified as a three-element vector, defined with the
equation

GroundVelocity = [U, V, W].
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

UR — X component of body velocity
scalar numeric

X component of body velocity, specified as scalar numeric. UR depends on BodyVelocity.
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

VR — Y component of body velocity
scalar numeric

 Aero.FixedWing.State class

4-69



Y component of body velocity, specified as scalar numeric. UR depends on BodyVelocity.
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

WR — Z component of body velocity
scalar numeric

Z component of body velocity, specified as scalar numeric. UR depends on BodyVelocity.
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

FlightPathAngle — Flight path angle
scalar numeric

Flight path angle, specified as a scalar numeric in units of radians or degrees depending on the
AngleSystem property. FlightPathAngle is defined with the equation:

FlightPathAngle = atan2(W,U).

.
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

CourseAngle — Course angle
scalar numeric

Course angle, specified as a scalar numeric in units of radians or degrees depending on the
AngleSystem property. CourseAngle depends on V and U with the equation

CourseAngle = atan2(V,U).
Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

Alpha — Angle of attack
scalar numeric

Angle of attack, specified as a scalar numeric in units of radians or degrees depending on the
AngleSystem property. Alpha depends on WR and UR with the equation:
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Alpha = atan2(WR,UR).

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

Beta — Angle of side slip
scalar numeric

Angle of side slip, specified as a scalar numeric in units of radians or degrees depends on the
AngleSystem property. Beta depends on VR and Airspeed with the equation:

Beta = asin(VR/Airspeed).

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

InertialToBodyMatrix — Inertial to body axes transformation matrix
3-by-3 matrix

Inertial to body axes transformation matrix, specified as a 3-by-3 matrix to convert stability axes to
body axes. This property depends on the Phi, Theta, and Psi properties.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

BodyToInertialMatrix — Body axes to stability axes transformation matrix
3-by-3 matrix

Body axes to stability axes transformation matrix, specified as a 3-by-3 matrix to convert stability axes
to body axes. This property depends on the Phi, Theta, and Psi properties.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

BodyToWindMatrix — Body to wind axes transformation matrix
3-by-3 matrix

Body to wind axes transformation matrix, specified as a 3-by-3 matrix to convert body axes to wind
axes. This property depends on the Alpha and Beta properties.
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Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

WindToBodyMatrix — Wind to body axes transformation matrix
3-by-3 matrix

Wind to body axes transformation matrix, specified as a 3-by-3 matrix to convert wind axes to the
body axes. This property depends on the Alpha and Beta properties.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

DynamicPressure — Dynamic pressure at current state
scalar numeric

Dynamic pressure at current state, specified as a scalar numeric in these units:

Unit Unit System
Pascals (Pa) 'Metric'
pounds per foot squared (lbf/ft2) 'English (ft/s)' and 'English (kts)'

This property is defined with the equation

DynamicPressure = 0.5 * Environment.Density * Airspeed2.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: double

Methods
Public Methods
getState Get state value
setState Set state value to Aero.FixedWing.State object
setupControlStates Set up control states for Aero.FixedWing.State object

Examples

Create and Use Fixed-Wing Object

Create and set up dynamic behavior and the current state for the fixed-wing object aircraft.
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Create a fixed-wing object.

aircraft = Aero.FixedWing()

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

To define the aircraft dynamic behavior, set a coefficient for it.

aircraft = setCoefficient(aircraft, "CD", "Zero", 0.27)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

Define the aircraft's current state.

state = Aero.FixedWing.State("Mass", 500)

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 500
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
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            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 4905
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"
           ControlStates: [1×0 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

Calculate the forces and moments on the aircraft.

[F, M] = forcesAndMoments(aircraft, state)

F =

           0
           0
        4905

M =

     0
     0
     0

See Also
Aero.FixedWing | getState | setState | setupControlStates
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Introduced in R2021a
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Aero.FixedWing.Surface class
Package: Aero

Define aerodynamic and control surfaces on Aero.FixedWing aircraft

Description
Aero.FixedWing.Coefficient defines the dynamic and control surfaces on an Aero.FixedWing
aircraft.

Class Attributes

Sealed true

For information on class attributes, see “Class Attributes”.

Creation
Description

fixedWingSurface = Aero.FixedWing.Surface creates a single Aero.FixedWing.Surface
object with default property values.

fixedWingSurface = Aero.FixedWing.Surface(N) creates an N-by-N matrix of
Aero.FixedWing.Surface objects with default property values.

fixedWingSurface = Aero.FixedWing.Surface(M,N,P,...) or
Aero.FixedWing.Surface([M N P ...]) creates an M-by-N-by-P-by-... array of
Aero.FixedWing.Surface objects with default property values.

fixedWingSurface = Aero.FixedWing.Surface(size(A)) creates an
Aero.FixedWing.Surface object of the same size as A and all Aero.FixedWing.Surface
objects.

fixedWingSurface = Aero.FixedWing.Surface(__,property,propertyValue) creates an
array of Aero.FixedWing.Surface objects with property, propertyValue pairs applied to each
of the Aero.FixedWing.Surface array objects. For a list of properties, see “Properties” on page 4-
76.

Properties
Public Properties

Surfaces — Aero.FixedWing.Surface objects
vector

Aero.FixedWing.Surface objects providing nested control surfaces, specified as a vector.
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Attributes:

GetAccess public
SetAccess public

Coefficients — Aero.FixedWing.Coefficients objects
scalar

Aero.FixedWing.Coefficients objects that define the control surface, specified as a scalar.
Attributes:

GetAccess public
SetAccess public

MaximumValue — Maximum value of control surfaces
infinity (default) | scalar numeric

Maximum value of control surfaces, specified as a scalar numeric.
Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.
Attributes:

GetAccess public
SetAccess public

Data Types: double

MinimumValue — Minimum value of control surface
negative infinity (default) | scalar numeric

Minimum value of control surface, specified as a scalar numeric.
Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.
Attributes:

GetAccess public
SetAccess public

Data Types: double

Controllable — Controllable control surface
off (default) | on

Controllable control surface specified as on or off. To control the control surface, set this property to
on. Otherwise, set this property to off.
Attributes:

GetAccess public
SetAccess public

Data Types: logical
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Symmetry — Symmetry of control surface
Symmetric (default) | Asymmetric

Symmetry of the control surface, specified as Symmetric or Asymmetric.

The Asymmetric option creates two control variables, denoted by the name on the properties and
appended by _1 and _2. These control variables can be independently controlled but also produce an
effective control variable specified by the name on the properties. You cannot set this effective control
variable. This equation defines the control variable:

name = (name_1-name_2)/2.

You cannot set this effective control variable.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Properties — Aero.Aircraft.Properties object
scalar

Aero.Aircraft.Properties object, specified as a scalar.

Attributes:

GetAccess public
SetAccess public

Data Types: double

Protected Properties

ControlVariables — Control variable names
vector

Control variable names, specified as a vector. This property depends on Properties.Name,
Controllable, and Symmetry.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: char | string

Methods
Public Methods
getCoefficient Get coefficient for fixed-wing surface object
getControlStates Get control states for Aero.FixedWing.Surface object
setCoefficient Set coefficient values for Aero.FixedWing.Surface object
update Update Aero.FixedWing.Surface object

4 Functions

4-78



Examples

Create and Use Fixed-Wing Object

Create and set up dynamic behavior and the current state for the fixed-wing object aircraft.

Create a fixed-wing object.

aircraft = Aero.FixedWing()

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

To define the aircraft dynamic behavior, set a coefficient for it.

aircraft = setCoefficient(aircraft, "CD", "Zero", 0.27)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

Define the aircraft's current state.

state = Aero.FixedWing.State("Mass", 500)

state = 

  State with properties:

                   Alpha: 0
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                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 500
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 4905
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"
           ControlStates: [1×0 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

Calculate the forces and moments on the aircraft.

[F, M] = forcesAndMoments(aircraft, state)

F =

           0
           0
        4905
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M =

     0
     0
     0

Limitations
You cannot subclass Aero.FixedWing.Surface.

See Also
Aero.FixedWing | Aero.FixedWing.Coefficient | Aero.FixedWing.Thrust

Introduced in R2021a
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Aero.FixedWing.Thrust class
Package: Aero

Define thrust vector on fixed-wing aircraft

Description
Aero.FixedWing.Thrust creates an Aero.FixedWing thrust vector that describes the thrust of an
aircraft.

Class Attributes

Sealed true

For information on class attributes, see “Class Attributes”.

Creation
Description

fixedWingThrust = Aero.FixedWing.Thrust creates a single Aero.FixedWing.Thrust
object with default property values.

fixedWingThrust = Aero.FixedWing.Thrust(N) creates an N-by-N matrix of
Aero.FixedWing.Thrust objects with default property values.

fixedWingThrust = Aero.FixedWing.Thrust(M,N,P,...) or Aero.FixedWing.Thrust([M 
N P ...]) creates an M-by-N-by-P-by-... array of Aero.FixedWing.Thrust objects with default
property values.

fixedWingThrust = Aero.FixedWing.Thrust(size(A)) creates an
Aero.FixedWing.Thrust object that is the same size as A and all Aero.FixedWing.Thrust
objects.

fixedWing.Thrust = Aero.FixedWing.Thrust(__,property,propertyValue) creates an
array of Aero.FixedWing.Thrust objects with property, propertyValue pairs applied to each
of the Aero.FixedWing.Thrust array objects. For a list of properties, see “Properties” on page 4-
83.

Input Arguments

N — Number of fixed-wing thrust objects
scalar

Number of fixed-wing thrust objects, specified as a scalar.

M — Number of fixed-wing thrust objects
scalar

Number of fixed-wing thrust objects, specified as a scalar.
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P — Number of fixed-wing thrust objects
scalar

Number of fixed-wing thrust objects, specified as a scalar.

A — Size of fixed-wing thrust object
scalar

Size of fixed-wing thrust object, specified as a scalar.

Properties
Public Properties

Coefficients — Aero.FixedWing.Coefficients object
scalar

Aero.FixedWing.Coefficients object, specified as a scalar, that defines the thrust vector.
Attributes:

GetAccess public
SetAccess public

MaximumValue — Maximum thrust value
1 (default) | scalar numeric

Maximum thrust value, specified as a scalar numeric.
Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.
Attributes:

GetAccess public
SetAccess public

Data Types: double

MinimumValue — Minimum thrust value
0 (default) | scalar numeric

Minimum thrust value, specified as a scalar numeric.
Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.
Attributes:

GetAccess public
SetAccess public

Data Types: double

Controllable — Controllable thrust value
on (default) | off
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Controllable thrust value, specified as on or off. To control the thrust value, set this property to on.
Otherwise, set this property to off.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

Symmetry — Symmetry of thrust control
Symmetric (default) | Asymmetric

Symmetry of the thrust control, specified as Symmetric or Asymmetric.

The Asymmetric option creates two control variables, denoted by the name on the properties and
appended by _1 and _2. These control variables can be independently controlled, but also produce an
effective control variable specified by the name on the properties. You cannot set this effective control
variable. This equation defines the control variable:

name = (name_1-name_2)/2.

You cannot set this effective control variable.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Properties — Aero.Aircraft.Properties object
scalar

Aero.Aircraft.Properties object, specified as a scalar.

Attributes:

GetAccess public
SetAccess public

Data Types: double

Protected Properties

ControlVariables — Control variable names
vector

Control variable names, specified as a vector. This property depends on Properties.Name,
Controllable, and Symmetry.

Attributes:

GetAccess Restricts access
SetAccess protected

Data Types: char | string
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Methods
Public Methods
getCoefficient Get coefficient for fixed-wing thrust object
getControlStates Get control states for Aero.FixedWing.Thrust object
setCoefficient Set coefficient values for Aero.FixedWing.Thrust object
update Update Aero.FixedWing.Thrust object

Examples

Create and Use Fixed-Wing Object

Create and set up dynamic behavior and the current state for the fixed-wing object aircraft.

Create a fixed-wing object:

aircraft = Aero.FixedWing()

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]

To define the aircraft dynamic behavior, set a coefficient for it:

aircraft = setCoefficient(aircraft, "CD", "Zero", 0.27)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 0
        ReferenceSpan: 0
      ReferenceLength: 0
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: NaN
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
           Properties: [1×1 Aero.Aircraft.Properties]
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Define aircraft current state:

state = Aero.FixedWing.State("Mass", 500)

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 500
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 4905
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"
           ControlStates: [1×0 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

Calculate the forces and moments on the aircraft:

[F, M] = forcesAndMoments(aircraft, state)
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F =

           0
           0
        4905

M =

     0
     0
     0

Limitations
You cannot subclass Aero.FixedWing.Thrust.

See Also
Aero.FixedWing | Aero.FixedWing.Coefficient | Aero.FixedWing.Thrust

Introduced in R2021a
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Aero.FlightGearAnimation
Construct FlightGear animation object

Syntax
h = Aero.FlightGearAnimation

Description
h = Aero.FlightGearAnimation constructs a FlightGear animation object. The FlightGear
animation object is returned to h.

Limitations
These capabilities are not available for Aerospace Toolbox Online:

• The Aero.FlightGearAnimation object
• The related example, “Create a Flight Animation from Trajectory Data” on page 5-17

Constructor
Method Description
fganimation Construct FlightGear animation object.

Method Summary
Method Description
ClearTimer Clear and delete timer for animation of FlightGear flight simulator.
delete Destroy FlightGear animation object.
GenerateRunScrip
t

Generate run script for FlightGear flight simulator.

initialize Set up FlightGear animation object.
play Animate FlightGear flight simulator using given position/angle time series.
SetTimer Set name of timer for animation of FlightGear flight simulator.
update Update position data to FlightGear animation object.

Property Summary
Properties Description
TimeseriesSource Specify variable that contains the time series data.
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Properties Description
TimeseriesSourceType Specify the type of time series data stored in 'TimeseriesSource'.

Five values are available. They are listed in TimeseriesSourceType
Properties. The default value is 'Array6DoF'.

TimeseriesReadFcn Specify a function to read the time series data if
'TimeseriesSourceType' is 'Custom'.

TimeScaling Specify the seconds of animation data per second of wall-clock time.
The default ratio is 1.

FramesPerSecond Specify the number of frames per second used to animate the
'TimeseriesSource'. The default value is 12 frames per second.

OutputFileName Specify the name of the output file. The file name is the name of the
command you will use to start FlightGear with these initial
parameters. The default value is 'runfg.bat'.

Note The run script file name must be composed of ASCII characters.
FlightGearBase‐
Directory

Specify the name of your FlightGear installation folder. The default
value is 'D:\Applications\FlightGear'.

Note FlightGear must be installed in a folder path name composed of
ASCII characters.

GeometryModelName Specify the name of the folder containing the desired model geometry
in the FlightGear\data\Aircraft folder. The default value is
'HL20'.

DestinationIpAddress Specify your destination IP address. The default value is
'127.0.0.1'.

DestinationPort Specify your network flight dynamics model (fdm) port. This
destination port should be an unused port that you can use when you
launch FlightGear. The default value is '5502'.

AirportId Specify the airport ID. The list of supported airports is available in the
FlightGear interface, under Location. The default value is 'KSFO'.

RunwayId Specify the runway ID. The default value is '10L'.
InitialAltitude Specify the initial altitude of the aircraft, in feet. The default value is

7224 feet.
InitialHeading Specify the initial heading of the aircraft, in degrees. The default

value is 113 degrees.
OffsetDistance Specify the offset distance of the aircraft from the airport, in miles.

The default value is 4.72 miles.
OffsetAzimuth Specify the offset azimuth of the aircraft, in degrees. The default

value is 0 degrees.
TStart Specify start time as a double.
TFinal Specify end time as a double.
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Properties Description
Architecture Specify the architecture the FlightGear software is running on.

GenerateRunScript takes this setting into account when generating
the bash run script to start FlightGear. The platforms are listed in
Architecture Properties. The default value is 'Default'.

The time series data, stored in the property 'TimeseriesSource', is interpreted according to the
'TimeseriesSourceType' property, which can be one of:

TimeseriesSourceType Properties

Property Description
'Timeseries' MATLAB time series data with six values per

time:

lat lon alt phi theta psi

The values are resampled.
'StructureWithTime' Simulink struct with time (for example, Simulink

root outport logging 'Structure with time'):

• signals(1).values: lat lon alt
• signals(2).values: phi theta psi

Signals are linearly interpolated vs. time using
interp1.

'Array6DoF' A double-precision array in n rows and 7 columns
for 6-DoF data: time lat lon alt phi theta
psi. If a double-precision array of 8 or more
columns is in 'TimeseriesSource', the first 7
columns are used as 6-DoF data.

'Array3DoF' A double-precision array in n rows and 4 columns
for 3-DoF data: time lat alt theta. If a
double-precision array of 5 or more columns is in
'TimeseriesSource', the first 4 columns are
used as 3-DoF data.

'Custom' Position and angle data is retrieved from
'TimeseriesSource' by the currently
registered 'TimeseriesReadFcn'.

Specify one of these values for the Architecture property:

4 Functions

4-90



Architecture Properties

Property Description
'Default' Architecture the MATLAB software is currently

running on. If the property has this value,
GenerateRunScript creates a bash file that can
work in the architecture that MATLAB is
currently running on.

'Win64' Windows (64-bit) architecture.
'Mac' Mac OS X (64-bit) architecture.
'Linux' Linux (64-bit) architecture.

'Default' Architecture the MATLAB software is currently running on. If the
property has this value, GenerateRunScript creates a bash file
that can work in the architecture that MATLAB is currently running
on.

'Win64' Windows (64-bit) architecture.
'Mac' Mac OS X (64-bit) architecture.
'Linux' Linux (64-bit) architecture.

Examples
Construct a FlightGear animation object, h:

h = fganimation

See Also
fganimation | generaterunscript | play

Introduced in R2007a
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aeroReadIERSData
File containing current International Astronomical Union (IAU) 2000A Earth orientation data

Syntax
file=aeroReadIERSData(foldername)
file=aeroReadIERSData(foldername,'url',urladdress)

Description
file=aeroReadIERSData(foldername) creates a MAT-file, file, based on IAU 2000A Earth
orientation data from the International Earth Rotation and Reference Systems Service (IERS). It
saves the file to foldername. file name has the format aeroiersdataYYYYMMDD.mat, where:

• YYYY - Year
• MM - Month
• DD - Day

file=aeroReadIERSData(foldername,'url',urladdress) creates the MAT-file based on Earth
orientation data from a specific web site or data file.

Examples

Create File for Current Day

Create the Earth orientation data file for the current day, in the current folder, using data from the
default web site https://maia.usno.navy.mil/ser7/finals2000A.data.

aeroReadIERSData(pwd)

Create File from Specified Web Site

Create the Earth orientation file for the current day, in the current folder, using data from the
alternate web site https://datacenter.iers.org/data/latestVersion/
10_FINALS.DATA_IAU2000_V2013_0110.txt.

aeroReadIERSData(pwd,'url','https://datacenter.iers.org/data/latestVersion/10_FINALS.DATA_IAU2000_V2013_0110.txt')

Create File from Specified File

Create the Earth orientation file for the current day, in the current folder, using data from a specified
file file:///C:\Documents\final2000A.data.
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aeroReadIERSData(pwd,'url','file:///C:\Documents\finals2000A.data')

Input Arguments
foldername — Folder for IERS data file
folder name

Folder for IERS data file, specified as a character array or string. Before running this function, create
foldername with write permission.
Data Types: char | string

'url',urladdress — Optional web site or Earth orientation data file
https://maia.usno.navy.mil/ser7/finals2000A.data (default) | web site address | file name

Optional web site or file containing the IAU 2000A Earth orientation data, specified as a web site
address or file name.

Note If you receive an error message while accessing the default site, use one of these alternate
sites:

• https://datacenter.iers.org/data/latestVersion/
10_FINALS.DATA_IAU2000_V2013_0110.txt

• ftp://ftp.iers.org/products/eop/rapid/standard/finals2000A.data

Example: https://datacenter.iers.org/data/latestVersion/
10_FINALS.DATA_IAU2000_V2013_0110.txt

Data Types: char | string

Output Arguments
file — Location of Earth orientation data MAT-file
character array

Location of Earth orientation data MAT-file, specified as a character array.

More About
International Astronomical Union (IAU) 2000A Earth Orientation Data Format

The function expects the International Astronomical Union (IAU) 2000A Earth orientation data to use
the format referenced here https://maia.usno.navy.mil/ser7/finals2000A.data:

Column Description
1 to 2 Year (to get true calendar year, add 1900 for

MJD<=51543 or add 2000 for MJD>=51544)
3 to 4 Month number
5 to 6 Day of month
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Column Description
7 Blank
8 to 15 Fractional modified Julian date (MJD UTC)
16 Blank
17 IERS (I) or Prediction (P) flag for Bull. A polar

motion values*
18 Blank
19 to 27 Bull. A PM-x (sec. of arc)*
28-36 Error in PM-x (sec. of arc)*
37 Blank
38-46 Bull. A PM-y (sec. of arc)*
47-55 Error in PM-y (sec. of arc)*
56-57 Blank
58 IERS (I) or Prediction (P) flag for Bulletin A UT1-

UTC values*
59-68 Bull. A UT1-UTC (sec. of time)*
69-78 Error in UT1-UTC (sec. of time)*
79 Blank
80-86 Bull. A LOD (msec. of time) -- not always filled*
87-93 Error in LOD (msec. of time) -- not always filled*
94-95 Blank
96 IERS (I) or Prediction (P) flag for Bull. A nutation

values*
97 Blank
98-106 Bull. A dX wrt IAU2000A nutation (msec. of arc),

free core nutation not removed*
107-115 Error in dX (msec. of arc)
116 Blank
117-125 Bull. A dY wrt IAU2000A nutation (msec. of arc),

free core nutation not removed*
126-134 Error in dY (msec. of arc)
135-144 Bull. B PM-x (sec. of arc)*
145-154 Bull. B PM-x (sec. of arc)*
155-165 Bull. B UT1-UTC (sec. of time)*
166-175 Bull. B dX wrt IAU2000A nutation (msec. of arc)*
176-185 Bull. B dY wrt IAU2000A nutation (msec. of arc)*

* Abbreviated terms:

• Bull. — Bulletin
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• LOD — Length of day
• wrt — With regard to
• pm — Polar motion

See Also
dcmeci2ecef | deltaUT1 | lla2eci | eci2lla | eci2aer | mjuliandate

Introduced in R2017b
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Aero.Geometry
Construct 3-D geometry for use with animation object

Syntax
h = Aero.Geometry

Description
h = Aero.Geometry defines a 3-D geometry for use with an animation object.

This object supports the attachment of transparency data from an Ac3d file to patch generation.

Constructor Summary
Constructor Description
Geometry Construct 3-D geometry for use with animation object.

Method Summary
Method Description
read Read geometry data using current reader.

Property Summary
Property Description Values
Name Specify name of

geometry.
Character vector | string

Source Specify geometry data
source.

{['Auto'], 'Variable', 'MatFile',
'Ac3dFile', 'Custom'}

Reader Specify geometry reader. MATLAB array
FaceVertexColorData Specify the color of the

geometry face vertex.
MATLAB structure with the following fields
name Character vector or

string that contains the
name of the geometry
being loaded.

faces See Faces.
vertices See Vertices.
cdata See CData.
alpha See

FaceVertexAlphaData.
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See Also
read

Introduced in R2007a
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Aero.Node
Create node object for use with virtual reality animation

Syntax
h = Aero.Node

Description
h = Aero.Node creates a node object for use with virtual reality animation. Typically, you do not
need to create a node object with this method. This is because the .wrl file stores the information for
a virtual reality scene. During the initialization of the virtual reality animation object, any node with a
DEF statement in the specified .wrl file has a node object created.

When working with nodes, consider the translation and rotation. Translation is a 1-by-3 matrix in the
aerospace body coordinate system defined for the VirtualRealityAnimation object or another
coordinate system. In the latter case, you can use the CoordTransformFcn function to move it into
the defined aerospace body coordinate system. The defined aerospace body coordinate system is
defined relative to the screen as x-left, y-in, z-down.

Rotation is a 1-by-3 matrix, in radians, that specifies the rotations about the right-hand x-y-z
sequence of coordinate axes. The order of application of the rotation is z-y-x (r-q-p). This function
uses the CoordTransformFcn to apply the translation and rotation from the input coordinate system
to the defined aerospace body coordinate system. The function then moves the translation and
rotation from the defined aerospace body coordinate system to the defined VRML x-y-z coordinates
for the VirtualRealityAnimation object. The defined VRML coordinate system is defined relative to the
screen as x-right, y-up, z-out.

Constructor Summary
Constructor Description
Node Create node object for use with virtual reality animation.

Method Summary
Method Description
findstartstoptimes Return start and stop times for time series data.
move Change node translation and rotation.
update Change node position and orientation versus time data.

Property Summary
Property Description Values
Name Specify name of the node object. Character vector | string
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Property Description Values
VRNode Return the handle to the vrnode

object associated with the node
object.

MATLAB array

CoordtransformFcn Specify a function that controls
the coordinate transformation.

MATLAB array

TimeseriesSource Specify time series source. MATLAB array
TimeseriesSourceType Specify the type of time series

data stored in
'TimeseriesSource'. Five
values are available. They are
listed in TimeseriesSourceType
Properties. The default value is
'Array6DoF'.

Character vector | string

TimeseriesReadFcn Specify time series read function. MATLAB array

The time series data, stored in the property 'TimeseriesSource', is interpreted according to the
'TimeseriesSourceType' property, which can be one of:

TimeseriesSourceType Properties

Property Description
'Timeseries' MATLAB time series data with six values per

time:

lat lon alt phi theta psi

The values are resampled.
'StructureWithTime' Simulink struct with time (for example, Simulink

root outport logging 'Structure with time'):

• signals(1).values: lat lon alt
• signals(2).values: phi theta psi

Signals are linearly interpolated vs. time using
interp1.

'Array6DoF' A double-precision array in n rows and 7 columns
for 6-DoF data: time lat lon alt phi theta
psi. If a double-precision array of 8 or more
columns is in 'TimeseriesSource', the first 7
columns are used as 6-DoF data.

'Array3DoF' A double-precision array in n rows and 4 columns
for 3-DoF data: time lat alt theta. If a
double-precision array of 5 or more columns is in
'TimeseriesSource', the first 4 columns are
used as 3-DoF data.

'Custom' Position and angle data is retrieved from
'TimeseriesSource' by the currently
registered 'TimeseriesReadFcn'.
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Aero.Viewpoint
Create viewpoint object for use in virtual reality animation

Syntax
h = Aero.Viewpoint

Description
h = Aero.Viewpoint creates a viewpoint object for use with virtual reality animation.

Constructor Summary
Constructor Description
Viewpoint Create node object for use with virtual reality animation.

Property Summary
Property Description Values
Name Specify name of the node object. Character vector | string
Node Specify node object that contains

the viewpoint node.
MATLAB array

Introduced in R2007b
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Aero.VirtualRealityAnimation
Construct virtual reality animation object

Syntax
h = Aero.VirtualRealityAnimation

Description
h = Aero.VirtualRealityAnimation constructs a virtual reality animation object. The animation
object is returned to h. The animation object has the following methods and properties.

Limitations
The Aero.VirtualRealityAnimation object is not available for Aerospace Toolbox Online.

Constructor Summary
Constructor Description
VirtualRealityAnimation Construct virtual reality animation object.

Method Summary
Method Description
addNode Add existing node to current virtual reality world.
addRoute Add VRML ROUTE statement to virtual reality animation.
addViewpoint Add viewpoint for virtual reality animation.
delete Destroy virtual reality animation object.
initialize Create and populate virtual reality animation object.
nodeInfo Create list of nodes associated with virtual reality animation object.
play Animate virtual reality world for given position and angle in time

series data.
removeNode Remove node from virtual reality animation object.
removeViewpoint Remove viewpoint node from virtual reality animation.
saveas Save virtual reality world associated with virtual reality animation

object.
updateNodes Set new translation and rotation of moveable items in virtual reality

animation.

Notes on Aero.VirtualRealityAnimation Methods

Aero.VirtualRealityAnimation methods that change the current virtual reality world use a
temporary .wrl file to manage those changes. These methods include:
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• addNode
• removeNode
• addViewpoint
• removeViewpoint
• addRoute

Be aware of the following behavior:

• After the methods make the changes, they reinitialize the world, using the information stored in
the temporary .wrl file.

• When you delete the virtual reality animation object, this action deletes the temporary file.
• Use the saveas method to save the temporary .wrl file.
• These methods do not affect user-created .wrl files.

Property Summary
Property Description Values
Name Specify name of the animation object. Character vector | string
VRWorld Returns the vrworld object associated

with the animation object.
MATLAB array

VRWorldFilename Specify the .wrl file for the vrworld. Character vector | string
VRWorldOldFilename Specify the old .wrl files for the

vrworld.
MATLAB array

VRWorldTempFilename Specify the temporary .wrl file for
the animation object.

Character vector | string

VRFigure Returns the vrfigure object associated
with the animation object.

MATLAB array

Nodes Specify the nodes that the animation
object contains.

MATLAB array

Viewpoints Specify the viewpoints that the
animation object contains.

MATLAB array

TimeScaling Specify the time scaling, in seconds. double
TStart Specify the recording start time, in

seconds.
double

TFinal Specify end time, in seconds. double
TCurrent Specify current time, in seconds. double
FramesPerSecond Specify rate, in frames per second. double
ShowSaveWarning Specify save warning display setting. double

• 0 — No warning is displayed.
• Non-zero — Warning is displayed.

VideoFileName Specify video recording file name. Character vector | string
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Property Description Values
VideoCompression Specify video recording compression

file type. For more information on
video compression, see
VideoWriter.

• 'Archival'

Create Motion JPEG 2000 format
file with lossless compression.

• 'Motion JPEG AVI'

Create compressed AVI format file
using Motion JPEG codec.

• 'Motion JPEG 2000'

Create compressed Motion JPEG
2000 format file.

• 'MPEG-4'

Create compressed MPEG-4
format file with H.264 encoding
(Windows 7 systems only).

• 'Uncompressed AVI'

Create uncompressed AVI format
file with RGB24 video.

Aero.VideoProfileTypeEnum

Default: 'Archival'
VideoQuality Specify video recording quality. For

more information on video quality, see
the Quality property of
VideoWriter.

Value between 0 and 100.

double

Default: 75
VideoRecord Enable video recording. • 'on'

Enable video recording.
• 'off'

Disable video recording.
• 'scheduled'

Schedule video recording. Use this
property with the VideoTStart
and VideoTFinal properties.

Default: 'off'
VideoTStart Specify video recording start time for

scheduled recording.
Value between TStart and TFinal.

double

Default: NaN, which uses the value of
TStart.
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Property Description Values
VideoTFinal Specify video recording stop time for

scheduled recording.
Value between TStart and TFinal.

double

Default: NaN, which uses the value of
TFinal.

Examples
Record Virtual Reality Animation Object Simulation

This example shows how to record virtual reality animation of an object simulation.

• Record the simulation of a virtual reality animation object
• Simulate and record flight data
• Create an animation object

h = Aero.VirtualRealityAnimation;
% Control the frame display rate.

h.FramesPerSecond = 10;

% Configure the animation object to set the seconds of animation data per
% second time scaling (TimeScaling) property.

h.TimeScaling = 5;

% The combination of FramesPerSecond and TimeScaling property determine the
% time step of the simulation. These settings result in a time step of
% approximately 0.5 s.
% This code sets the .wrl file to use in the virtual reality animation.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

% Copy the .wrl file to a temporary directory and set the world file name
% to the copied .wrl file.

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

% Load the animation world described in the 'VRWorldFilename' field of the
% animation object.

h.initialize();

% Set simulation timeseries data. takeoffData.mat contains logged simulated
% data. takeoffData is set up as a 'StructureWithTime', which is one of the
% default data formats.

load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

% Use the example custom function vranimCustomTransform to correctly line
% up the position and rotation data with the surrounding objects in the
% virtual world. This code sets the coordinate transformation function for
% the virtual reality animation.

h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

% Set up recording properties.

 Aero.VirtualRealityAnimation

4-105



h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG_VR';

% Play the animation.

h.play();

% Verify that a file named astMotion_JPEG_VR.avi was created in the current folder.
% Disable recording to preserve the file.

h.VideoRecord = 'off';

Record Virtual Reality Animation for Four Seconds

This example shows how to simulate flight data for four seconds.

% Create an animation object.
h = Aero.VirtualRealityAnimation;

% Control the frame display rate.
h.FramesPerSecond = 10;

% Configure the animation object to set the seconds of animation data per 
% second time scaling (TimeScaling) property.
h.TimeScaling = 5;

% The combination of FramesPerSecond and TimeScaling properties determines 
% the time step of the simulation. These settings result in a time step of 
% approximately 0.5 s.
% This code sets the .wrl file to use in the virtual reality animation.
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

% Copy the .wrl file to a temporary directory and set the world file name 
% to the copied .wrl file.
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

% Load the animation world described in the 'VRWorldFilename' field of the 
% animation object. 
h.initialize();

% Set simulation timeseries data. takeoffData.mat contains logged simulated 
% data. takeoffData is set up as a 'StructureWithTime', which is one of the 
% default data formats.
load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

% Use the example custom function vranimCustomTransform to correctly line 
% up the position and rotation data with the surrounding objects in the 
% virtual world. This code sets the coordinate transformation function for 
% the virtual reality animation.
h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

% Set up recording properties.
h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG';

% Play the animation from TFinal to TStart.
h.TSTart = 1;
h.TFinal = 5;
h.play();

% Verify that a file named astMotion_JPEG_VR.avi was created in the 
% current folder. When you rerun the recording, notice that the play time 
% is faster than when you record for the length of the simulation time.
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% Disable recording to preserve the file.
h.VideoRecord = 'off';

Schedule Three Second Recording of Virtual Reality Object Simulation

This example shows how to schedule a three second recording a virtual reality object animation
simulation.

% Create an animation object.
h = Aero.VirtualRealityAnimation;

% Control the frame display rate.
h.FramesPerSecond = 10;

% Configure the animation object to set the seconds of animation data per
% second time scaling (TimeScaling) property.
h.TimeScaling = 5;

% The combination of FramesPerSecond and TimeScaling properties determines
% the time step of the simulation. These settings result in a time step of
% approximately 0.5 s.
% This code sets the .wrl file to use in the virtual reality animation.
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

% Copy the .wrl file to a temporary directory and set the world file name
% to the copied .wrl file.
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

% Load the animation world described in the 'VRWorldFilename' field of the
% animation object.
h.initialize();

% Set simulation timeseries data. takeoffData.mat contains logged
% simulated data. takeoffData is set up as a 'StructureWithTime', which is
% one of the default data formats.
load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

% Use the example custom function vranimCustomTransform to correctly line
% up the position and rotation data with the surrounding objects in the
% virtual world. This code sets the coordinate transformation function for
% the virtual reality animation.
h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

% Set up recording properties.
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI';
h.VideoFilename = 'astMotion_JPEG';

% Set up simulation time from TFinal to TStart.
h.TSTart = 1;
h.TFinal = 5;

% Set up to record between two and four seconds of the four second
% simulation.
h.VideoRecord='scheduled';
h.VideoTSTart = 2;
h.VideoTFinal = 4;

% Play the animation.
h.play();

% Verify that a file named astMotion_JPEG_VR.avi was created in the
% current folder. When you rerun the recording, notice that the play time
% is faster than when you record for the length of the simulation time.
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% Disable recording to preserve the file.
h.VideoRecord = 'off';

Introduced in R2007b
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aircraftEnvironment
Create aircraft environment

Syntax
environment = aircraftEnvironment(aircraft,atmosphere,height)

environment = aircraftEnvironment(atmosphere,height)
environment = aircraftEnvironment( ___ ,Name,Value)

Description
environment = aircraftEnvironment(aircraft,atmosphere,height) creates an aircraft
environment object, environment, specified by the atmospheric model, atmosphere, that is above
sea level, height. The function uses the aircraft unit system.

environment = aircraftEnvironment(atmosphere,height) creates an aircraft environment
object, environment, specified by the atmospheric model, atmosphere, that is above sea level,
height.

environment = aircraftEnvironment( ___ ,Name,Value) creates an aircraft environment,
environment. Specify one or more Name,Value arguments after any of the input argument
combinations in the previous syntaxes.

Examples

Create Aircraft Environment Object Using Fixed-Wing Aircraft

Create an aircraft environment object using a fixed-wing aircraft and English units at 20,000 feet.

aircraft = fixedWingAircraft("myplane","UnitSystem","English (ft/s)");
environment = aircraftEnvironment(aircraft,"ISA",20000)

environment = 

  Environment with properties:

    WindVelocity: [0 0 0]
         Density: 0.0013
     Temperature: 248.5260
        Pressure: 972.4941
    SpeedOfSound: 1.0369e+03
         Gravity: 32.1850
      Properties: [1×1 Aero.Aircraft.Properties]

Create Aircraft Environment Object with ISA Model

Create an aircraft environment object using the ISA model.
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environment = aircraftEnvironment("ISA",1000)

environment = 

  Environment with properties:

    WindVelocity: [0 0 0]
         Density: 1.1116
     Temperature: 281.6500
        Pressure: 8.9875e+04
    SpeedOfSound: 336.4341
         Gravity: 9.8100
      Properties: [1×1 Aero.Aircraft.Properties]

Create Aircraft Environment Object with COESA Model

Create an aircraft environment object using the COESA model at 0, 100, and 1,000 meters.

environment = aircraftEnvironment("COESA",[0,100,1000])

environment = 

  1×3 Environment array with properties:

    WindVelocity
    Density
    Temperature
    Pressure
    SpeedOfSound
    Gravity
    Properties

Create Aircraft Environment Object with ISA Model using English Units

Create an aircraft environment object using English units at 500 feet.
environment = aircraftEnvironment("ISA",500,"UnitSystem","English (ft/s)")

environment = 

  Environment with properties:

    WindVelocity: [0 0 0]
         Density: 0.0023
     Temperature: 287.1594
        Pressure: 2.0783e+03
    SpeedOfSound: 1.1145e+03
         Gravity: 32.1850
      Properties: [1×1 Aero.Aircraft.Properties]

Input Arguments
aircraft — fixed-wing aircraft
scalar (default)
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Fixed-wing aircraft, specified as a scalar string.
Data Types: string

atmosphere — Atmospheric model
"ISA" | "COESA"

Atmospheric model to calculate the aircraft environment, specified as "ISA" or "COESA".
Data Types: string

height — height above sea level
numeric matrix

Height above sea level, specified as a numeric matrix.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "UnitSystem","English (ft/s)"

UnitSystem — Unit system
'Metric' (default) | "English (kts)"

Unit system, specified as:

Unit Unit System
Meters per second (m/s) "Metric"
Feet per second (ft/s) "English (kts)"
Knots (kts) "English (ft/s)"

Example: "AngleSystem","English (kts)"
Data Types: string

AngleSystem — Angle system
"Radians" (default) | "Degrees"

Angle system, specified as "Radians" or "Degrees".
Example: "AngleSystem","Degrees"
Data Types: string

TemperatureSystem — Temperature system
"Kelvin" (default) | "Celsius" | "Rankine" | "Fahrenheit"

Temperature system, specified as "Kelvin", "Celsius", "Rankine", or "Fahrenheit".
Example: "TemperatureSystem","Rankine"
Data Types: string
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Output Arguments
environment — Aero.Aircraft.Environment objects
matrix

Aero.Aircraft.Environment objects, returned as a matrix the same size as height.

See Also
aircraftProperties | fixedWingAircraft | fixedWingCoefficient | fixedWingState |
fixedWingSurface | fixedWingThrust | atmoscira | atmoscoesa | atmosisa

Introduced in R2021b
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aircraftProperties
Create properties defining and managing aircraft

Syntax
properties = aircraftProperties( )
properties = aircraftProperties(name)
properties = aircraftProperties(name,description,type)
prooperties = aircraftProperties(name,description,type,version)

Description
properties = aircraftProperties( ) returns an Aero.Aircraft.Properties object with
default values for all properties.

properties = aircraftProperties(name) returns an Aero.Aircraft.Properties object
with the specified name.

properties = aircraftProperties(name,description) returns an Aero.Aircraft.Properties
object with the specified name and description.

properties = aircraftProperties(name,description,type) returns an
Aero.Aircraft.Properties object with the specified name, description, and type.

prooperties = aircraftProperties(name,description,type,version) returns an
Aero.Aircraft.Properties object with the specified name, description, type, and version.

Examples

Create Aircraft Properties Object

Create an aircraft properties object.

props = aircraftProperties()

props = 

  Properties with properties:

           Name: ""
    Description: ""
           Type: ""
        Version: ""

Create Aircraft Properties Object with Name

Create an aircraft properties object and specify the name.
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props = aircraftProperties("MyPlane")

props = 

  Properties with properties:

           Name: "MyPlane"
    Description: ""
           Type: ""
        Version: ""

Create Aircraft Properties Object with Name, Description, Type, and Version

Create an aircraft properties object and specify the name, description, type, and version.

props = aircraftProperties("MyPlane","This is a plane","plane","1.0")

props = 

  Properties with properties:

           Name: "MyPlane"
    Description: "This is a plane"
           Type: "plane"
        Version: "1.0"

Input Arguments
name — Object name
" " (default) | scalar

Object name, specified as a scalar string or character vector.
Data Types: char | string

description — Object description
" " (default) | scalar

Object description, specified as a scalar string or character vector.
Data Types: char | string

type — Object type
" " (default) | scalar

Object type, specified as a scalar string or character vector.
Data Types: char | string

version — Object version
" " (default) | scalar

Object version, specified as a scalar string or character vector.
Data Types: char | string
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Output Arguments
properties — Aero.Aircraft.Properties object
Aero.Aircraft.Properties

Aero.Aircraft.Properties object.

See Also
aircraftEnvironment | fixedWingAircraft | fixedWingCoefficient | fixedWingState |
fixedWingSurface | fixedWingThrust

Introduced in R2021b
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airspeed
Airspeed from velocity

Syntax
airspeed = airspeed(velocities)

Description
airspeed = airspeed(velocities) computes airspeeds, airspeed, from an m-by-3 array of
Cartesian velocity vectors, velocities.

Examples

Determine Airspeed for One Velocity Array

Determine the airspeed for one velocity vector:

as = airspeed([84.3905  33.7562  10.1269])

as =

   91.4538

Determine Airspeed for Multiple Velocity Arrays

Determine the airspeed for multiple velocity vectors:

as = airspeed([50 20 6; 5 0.5 2])

as =

   54.1849
    5.4083

Input Arguments
velocities — Cartesian velocity vectors
m-by-3 array | vector

Cartesian velocity vectors, specified as an m-by-3 array.
Data Types: double

Output Arguments
airspeed — Airspeed
scalar | vector
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Airspeed, returned as a scalar or array of m airspeeds.

See Also
alphabeta | correctairspeed | dpressure | machnumber

Introduced in R2006b
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AirspeedIndicator Properties
Control airspeed indicator appearance and behavior

Description
Airspeed indicators are components that represent an airspeed indicator. Properties control the
appearance and behavior of an airspeed indicator. Use dot notation to refer to a particular object and
property:

f = uifigure;
airspeed = uiaeroairspeed(f);
airspeed.Airspeed = 100;

By default, minor ticks represent 10-knot increments and major ticks represent 40-knot increments.
The parameters Minimum and Maximum determine the minimum and maximum values on the
gauge. The number and distribution of ticks is fixed, which means that the first and last tick display
the minimum and maximum values. The ticks in between distribute evenly between the minimum and
maximum values. For major ticks, the distribution of ticks is (Maximum-Minimum)/9. For minor
ticks, the distribution of ticks is (Maximum-Minimum)/36.

The airspeed indicator has scale color bars that allow for overlapping for the first bar, displayed at a
different radius. This different radius lets the block represent maximum speed with flap extended
(VFE) and stall speed with flap extended (VSO) accurately for aircraft airspeed and stall speed.

Properties
Airspeed Indicator

Airspeed — Airspeed
0 (default) | finite, real, and scalar numeric

Airspeed value, specified as a finite, real, and scalar numeric, in knots. The airspeed value determines
the airspeed of the aircraft.

• If the value is less than the minimum Limits property value, then the needle points to a location
immediately before the beginning of the scale.

• If the value is more than the maximum Limits property value, then the needle points to a
location immediately after the end of the scale.

Example: 100

Limits — Minimum and maximum airspeed indicator scale values
[40 400] (default) | two-element finite and real numeric array

Minimum and maximum gauge scale values, specified as a two-element numeric array. The first value
in the array must be less than the second value, in knots.

If you change Limits such that the Value property is less than the new lower limit, or more than the
new upper limit, then the gauge needle points to a location off the scale.
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For example, suppose Limits is [0 100] and the Value property is 20. If the Limits changes to
[50 100], then the needle points to a location off the scale, slightly less than 50.

ScaleColors — Scale colors
[ ] (default) | 1-by-n string array | 1-by-n cell array | n-by-3 array of RGB triplets | hexadecimal color
code | ...

Scale colors, specified as one of the following arrays:

• A 1-by-n string array of color options, such as ["blue" "green" "red"].
• An n-by-3 array of RGB triplets, such as [0 0 1;1 1 0].
• A 1-by-n cell array containing RGB triplets, hexadecimal color codes, or named color options. For

example, {'#EDB120','#7E2F8E','#77AC30'}.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
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RGB Triplet Hexadecimal Color Code Appearance
[0.6350 0.0780 0.1840] '#A2142F'

Each color of the ScaleColors array corresponds to a colored section of the gauge. Set the
ScaleColorLimits property to map the colors to specific sections of the gauge.

If you do not set the ScaleColorLimits property, MATLAB distributes the colors equally over the
range of the gauge.

ScaleColorLimits — Scale color limits
[ ] (default) | n-by-2 array

Scale color limits, specified as an n-by-2 array of numeric values. For every row in the array, the first
element must be less than the second element. The first ScaleColorLimits value can overlap (see
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110).

When applying colors to the gauge, MATLAB applies the colors starting with the first color in the
ScaleColors array. Therefore, if two rows in ScaleColorLimits array overlap, then the color
applied later takes precedence.

The gauge does not display any portion of the ScaleColorLimits that falls outside of the Limits
property.

If the ScaleColors and ScaleColorLimits property values are different sizes, then the gauge
shows only the colors that have matching limits. For example, if the ScaleColors array has three
colors, but the ScaleColorLimits has only two rows, then the gauge displays the first two color/
limit pairs only.

Value — Airspeed
0 (default) | finite, real, and scalar numeric

Airspeed value, specified as a finite, real, and scalar numeric. The airspeed value determines the
airspeed of the aircraft.

• If the value is less than the minimum Limits property value, then the needle points to a location
immediately before the beginning of the scale.

• If the value is more than the maximum Limits property value, then the needle points to a
location immediately after the end of the scale.

Example: 100

Interactivity

Visible — Visibility of airspeed indicator
'on' (default) | on/off logical value

Visibility of the airspeed indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the airspeed
indicator is displayed on the screen. If the Visible property is set to 'off', then the entire airspeed
indicator is hidden, but you can still specify and access its properties.
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ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.

Enable — Operational state of airspeed indicator
'on' (default) | on/off logical value

Operational state of airspeed indicator, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the appearance of the indicator indicates that the indicator
is operational.

• If you set this property to 'off', then the appearance of the indicator appears dimmed,
indicating that the indicator is not operational.

Position

Position — Location and size of airspeed indicator
[100 100 120 120] (default) | [left bottom width height]

Location and size of the airspeed indicator relative to the parent container, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the airspeed
indicator

bottom Distance from the inner bottom edge of the parent container to the
outer bottom edge of an imaginary box surrounding the airspeed
indicator

width Distance between the right and left outer edges of the airspeed
indicator

height Distance between the top and bottom outer edges of the airspeed
indicator

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of airspeed indicator
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the airspeed indicator, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.
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OuterPosition — Outer location and size of airspeed indicator
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the airspeed indicator returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an airspeed indicator in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
gauge = uiaeroairspeed(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the airspeed indicator span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this airspeed indicator spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.
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If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

 AirspeedIndicator Properties

4-123



• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.
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MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Parent/Child

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

Identifiers

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

Type — Type of graphics object
'uiaeroairspeed'

This property is read-only.

Type of graphics object, returned as 'uiaeroairspeed'.
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UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

See Also
uiaeroairspeed

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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alphabeta
Incidence and sideslip angles

Syntax
[incidence sideslip] = alphabeta(velocities)

Description
[incidence sideslip] = alphabeta(velocities) computes m incidence and sideslip angles,
incidence and sideslip , between the velocity vector and the body. velocities is an m-by-3
array of velocities in body axes. incidence and sideslip are in radians.

Examples
Determine the incidence and sideslip angles for velocity for one array:

[alpha, beta] = alphabeta([84.3905  33.7562  10.1269])

alpha =

    0.1194

beta =

    0.3780

Determine the incidence and sideslip angles for velocity for two arrays:

[alpha, beta] = alphabeta([50 20 6; 5 0.5 2])

alpha =

    0.1194
    0.3805

beta =

    0.3780
    0.0926

See Also
airspeed | machnumber

Introduced in R2006b
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Altimeter Properties
Control altimeter appearance and behavior

Description
Altimeters are components that represent an altimeter. Properties control the appearance and
behavior of an altimeter. Use dot notation to refer to a particular object and property:

f = uifigure;
altimeter = uiaeroaltimeter(f);
altimeter.Altitude = 100;

The altimeter displays the altitude above sea level in feet, also known as the pressure altitude. It
displays the altitude value with needles on a gauge and a numeric indicator.

• The gauge has 10 major ticks. Within each major tick are five minor ticks. This gauge has three
needles. Using the needles, the altimeter can display accurately only altitudes between 0 and
100,000 feet.

• For the longest needle, an increment of a small tick represents 20 feet and a major tick
represents 100 feet.

• For the second longest needle, a minor tick represents 200 feet and a major tick represents
1,000 feet.

• For the shortest needle a minor tick represents 2,000 feet and a major tick represents 10,000
feet.

• For the numeric display, the gauge shows values as numeric characters between 0 and 9,999 feet.
When the numeric display value reaches 10,000 feet, the gauge displays the value as the
remaining values below 10,000 feet. For example, 12,345 feet displays as 2,345 feet. When a value
is less than 0 (below sea level), the gauge displays 0. The needles show the appropriate value
except for when the value is below sea level or over 100000 feet. Below sea level, the needles set
to 0, over 100,000, the needles stay set at 100,000.

Properties
Altimeter

Altitude — Altitude of aircraft
0 (default) | finite, real, and scalar numeric

Altitude of the aircraft, specified as any finite and scalar numeric, in feet.
Example: 60
Dependencies

Specifying this value changes the value of Value.
Data Types: double

Value — Location of aircraft heading
0 (default) | finite, real, and scalar numeric
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Location of the aircraft altitude, specified as a finite and scalar numeric, in feet.

• Changing the value changes the direction of the heading in 5-degree increments.

Example: 60

Dependencies

Specifying this value changes the value of the Altitude value.
Data Types: double

Interactivity

Visible — Visibility of altimeter
'on' (default) | on/off logical value

Visibility of the altimeter, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false).
A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the altimeter is
displayed on the screen. If the Visible property is set to 'off', then the entire altimeter is hidden,
but you can still specify and access its properties.

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.

Enable — Operational state of altimeter
'on' (default) | on/off logical value

Operational state of altimeter, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the appearance of the altimeter indicates that the altimeter
is operational.

• If you set this property to 'off', then the appearance of the altimeter appears dimmed,
indicating that the altimeter is not operational.

Position

Position — Location and size of altimeter
[100 100 120 120] (default) | [left bottom width height]

Location and size of the altimeter relative to the parent container, specified as the vector, [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the altimeter
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Element Description
bottom Distance from the inner bottom edge of the parent container to the

outer bottom edge of an imaginary box surrounding the altimeter
width Distance between the right and left outer edges of the altimeter
height Distance between the top and bottom outer edges of the altimeter

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of altimeter
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the altimeter, specified as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

OuterPosition — Outer location and size of altimeter
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the altimeter returned as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an altimeter in the third row and second column of its parent grid.

g = uigridlayout([4 3]);
gauge = uiaeroaltimeter(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the altimeter span multiple rows or columns, specify the Row or Column property as a two-
element vector. For example, this altimeter spans columns 2 through 3:

gauge.Layout.Column = [2 3];
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Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
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of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.
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The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Parent/Child

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.
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Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

Identifiers

Type — Type of graphics object
'uiaeroaltimeter'

This property is read-only.

Type of graphics object, returned as 'uiaeroaltimeter'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

See Also
uiaeroaltimeter

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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altitudeEnvelopeContour
Draw altitude envelope contour plot

Syntax
altitudeEnvelopeContour(loadfactor)
altitudeEnvelopeContour(airspeed,altitude,loadfactor)

altitudeEnvelopeContour( ___ ,levels)
altitudeEnvelopeContour( ___ ,LineSpec)
altitudeEnvelopeContour( ___ ,Name,Value)
altitudeEnvelopeContour(ax, ___ )

[c,h,bline] = altitudeEnvelopeContour( ___ )

Description
Draw Contour Plots with Load Factors and Meshes

altitudeEnvelopeContour(loadfactor) draws a contour plot of the loadfactor matrix in the
x-y plane. This function is based on the MATLAB contour function. The x-coordinates of the vertices
correspond to the column indices of loadfactor and the y-coordinates correspond to the row
indices of loadfactor. The contour automatically chooses the contour levels.

altitudeEnvelopeContour(airspeed,altitude,loadfactor) draws a contour plot of the
loadfactor matrix using vertices from the mesh that airspeed and altitude define.

Draw Contour Plots with Customizations

altitudeEnvelopeContour( ___ ,levels) plots an altitude envelope contour specified by the
desired levels levels.

altitudeEnvelopeContour( ___ ,LineSpec) plots an altitude envelope contour specified by the
desired line spec LineSpec.

altitudeEnvelopeContour( ___ ,Name,Value) plots an altitude envelope contour specified by
one or more Name,Value arguments.

altitudeEnvelopeContour(ax, ___ ) draws an altitude contour plot onto the axes ax.

Return Matrix, Contour Object, and Boundary Line Object

[c,h,bline] = altitudeEnvelopeContour( ___ ) returns contour matrix c, a contour object h,
and a vector of boundaryline objects b. To label the plot, use the c and bs arguments as inputs to
the clabel function when using the LabelSpacing property.

Tip For more information on the contour matrix, see the ContourMatrix property for contour
objects.
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Examples

Plot Altitude Envelope Contour

Plot an altitude envelope contour with default levels and boundaries.

[speed,alt,loadfactor] = peaks();
altitudeEnvelopeContour(speed,alt,loadfactor)

Plot Altitude Envelope Contour with Levels

Plot an altitude envelope contour with 20 levels and default boundaries.

[speed,alt,loadfactor] = peaks();
altitudeEnvelopeContour(speed,alt,loadfactor,20)
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Plot Altitude Envelope Contour with Constant Boundary Lines

Plot an altitude envelope contour with constant boundary lines, and turn off boundary line
intersection clipping.

[speed,alt,loadfactor] = peaks();
altitudeEnvelopeContour(speed,alt,loadfactor,...
"MinimumSpeed",0,"MaximumAltitude",2,"ResolveBoundary","off")
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Plot Altitude Envelope Contour with Custom Boundary Data

Plot an altitude envelope contour with custom boundary data. Return line objects and boundary line
objects in c, h, and b.
x = linspace(-15,15);
y = linspace(-15,15);
[X,Y] = meshgrid(x,y);
Z = sin(X)+cos(Y);
t = linspace(2*pi,0);
boundaryX = 16*sin(t).^3;
boundaryY = 13*cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t);
[c,h,b]=altitudeEnvelopeContour(X,Y,Z,...
"BoundaryXData",boundaryX,"BoundaryYData",boundaryY);
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Input Arguments
loadfactor — Load factor for each airspeed and altitude
numeric matrix

“Load Factor” on page 4-143 for each airspeed and altitude, specified as a numeric matrix typically in
g's.
Data Types: double

airspeed — Aircraft airspeed
column indices of loadfactor (default) | numeric vector | numeric matrix

Aircraft airspeed for each corresponding index in loadfactor, specified as a numeric vector or
matrix.
Data Types: double

altitude — Aircraft altitude
column indices of loadfactor (default) | numeric vector | numeric matrix

Aircraft altitude for each corresponding index in loadfactor, specified as a numeric vector or
matrix.
Data Types: double

levels — Levels for which to develop contour
automatically chosen by contour function (default) | scalar | vector

Levels for which to develop contour lines, specified as a scalar or vector.

• If levels is a scalar, levels specifies the number of contour lines, and the contour levels are
chosen automatically by contour.
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• If levels is a vector, levels specifies the number and levels of contour lines to plot.

Tip To draw the contours at one height (k), specify levels as a two-element row vector [k k].

Example: [2 3]
Data Types: double

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

Marker Description Resulting Marker
'o' Circle

'+' Plus sign

'*' Asterisk

'.' Point

'x' Cross

'_' Horizontal line

'|' Vertical line

's' Square

'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle
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Marker Description Resulting Marker
'>' Right-pointing triangle

'<' Left-pointing triangle

'p' Pentagram

'h' Hexagram

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

ax — Valid axes
scalar handle

Valid axes, specified as a scalar handle. By default, this function plots to the current axes, obtainable
with the gca function.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note The properties listed here are only a subset. For a full list, see Contour Properties.

Example: "MinimumSpeed",0

MinimumAltitude — Minimum altitude boundary
no minimum altitude boundary (default) | numeric scalar | n-by-2 matrix

Minimum altitude boundary, specified as a numeric scalar or n-by-2 matrix.

• If MinimumAltitude is a scalar, MinimumAltitude specifies a horizontal line that intersects
with the X limits of the axes or with the intersection of MinimumSpeed and MaximumSpeed.

• If MinimumAltitude is an n-by-2 matrix, each row is an airspeed and altitude point of the
boundary.

The function marks loadfactor values below MinimumAltitude as NaN.
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Data Types: double

MaximumAltitude — Maximum altitude boundary
no maximum altitude boundary (default) | numeric scalar | n-by-2 matrix

Maximum altitude boundary, specified as a numeric scalar or n-by-2 matrix.

• If MaximumAltitude is a scalar, MaximumAltitude specifies a horizontal line that intersects
with the X limits of the axes or with the intersection of MinimumSpeed and MaximumSpeed.

• If MaximumAltitude is an n-by-2 matrix, each row is an airspeed and altitude point of the
boundary.

The function marks loadfactor values above MaximumAltitude as NaN.
Data Types: double

MinimumSpeed — Minimum speed boundary
no minimum speed boundary (default) | numeric scalar | n-by-2 matrix

Minimum speed boundary, specified as a numeric scalar or n-by-2 matrix.

• If MinimumSpeed is a scalar, MinimumSpeed specifies a vertical line that intersects with the Y
limits of the axes or with the intersection of MinimumAltitude and MaximumAltitude.

• If MinimumSpeed is an n-by-2 matrix, each row is an airspeed and altitude point of the
boundary.

The function marks loadfactor values behind MinimumSpeed as NaN.
Data Types: double

MaximumSpeed — Maximum speed boundary
no maximum speed boundary (default) | numeric scalar | n-by-2 matrix

Maximum speed boundary, specified as a numeric scalar or n-by-2 matrix.

• If MaximumSpeed is a scalar, MaximumSpeed specifies a vertical line that intersects with the Y
limits of the axes or with the intersection of MinimumAltitude and MaximumAltitude.

• If MaximumSpeed is an n-by-2 matrix, each row is an airspeed and altitude point of the
boundary.

The function marks as NaN loadfactor values in front of MaximumSpeed.
Data Types: double

BoundaryXData — Boundary line X data
no boundary line X data (default) | numeric vector

Boundary line X data, specified as a numeric vector.
Data Types: double

BoundaryYData — Boundary line Y data
no boundary line Y data (default) | numeric vector

Boundary line Y data, specified as a numeric vector.
Data Types: double
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ClipContour — Contour data display
'on' (default) | 'off'

Contour data display, specified as:

• 'on' — Remove the contour data outside the specified boundary lines.
• 'off' — Show all contour data and specified boundary lines.

Data Types: double | logical | string

ResolveBoundary — Boundary line intersection and enclosure
'on' (default) | 'off'

Boundary line intersection and enclosure, specified as:

• 'on' — Resolve boundary line segments to form a closed boundary around the line intersection
points. Boundary data points outside the resolved boundary are removed. This method produces a
well-formed boundary, but does not allow infinite limits or unconnected boundary lines.

• 'off' — Do not resolve boundary line segments. This method leaves the boundary line data
unmodified to allow infinite limits and unconnected boundary lines.

Tip This method might produce a malformed boundary that affects the ClipContour behavior.

Data Types: double | logical | string

Output Arguments
c — Contour
numeric matrix

Contour, returned as a numeric matrix.

h — Contour graphics object
scalar

Contour graphics object, returned as a scalar.

bline — One or more boundary line objects
scalar | vector

One or more boundary line objects, returned as a scalar or a vector. These are unique identifiers,
which you can use to query and modify properties of a specific chart line. For a list of properties, see
Line Properties.

More About
Load Factor

Typically calculated as lift/weight where:

• lift — Lift of the aircraft.
• weight — Weight of the aircraft.
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See Also
boundaryline | clabel | contour | contourc | shortPeriodCategoryAPlot |
shortPeriodCategoryBPlot | shortPeriodCategoryCPlot | Contour Properties

Introduced in R2021b
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angle2dcm
Convert rotation angles to direction cosine matrix

Syntax
dcm = angle2dcm(rotationAng1,rotationAng2,rotationAng3)
dcm = angle2dcm( ___ ,rotationSequence)

Description
dcm = angle2dcm(rotationAng1,rotationAng2,rotationAng3) calculates the direction
cosine matrix given three sets of rotation angles specifying yaw, pitch, and roll. The rotation used in
this function is a passive transformation between two coordinate systems.

dcm = angle2dcm( ___ ,rotationSequence) calculates the direction cosine matrix given three
sets of rotation angles.

Examples

Direction Cosine Matrix from Angles

Calculate direction cosine matrix from rotation angles.

yaw = 0.7854;  
pitch = 0.1; 
roll = 0;
dcm = angle2dcm( yaw, pitch, roll )

dcm = 3×3

    0.7036    0.7036   -0.0998
   -0.7071    0.7071         0
    0.0706    0.0706    0.9950

Direction Cosine Matrix from Rotation Angle and Sequence

Calculate direction cosine matrix from rotation angles and rotation sequence.

yaw = [0.7854 0.5];  
pitch = [0.1 0.3];  
roll = [0 0.1];
dcm = angle2dcm( pitch, roll, yaw, 'YXZ' )

dcm = 
dcm(:,:,1) =

    0.7036    0.7071   -0.0706
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   -0.7036    0.7071    0.0706
    0.0998         0    0.9950

dcm(:,:,2) =

    0.8525    0.4770   -0.2136
   -0.4321    0.8732    0.2254
    0.2940   -0.0998    0.9506

Input Arguments
rotationAng1 — First rotation angles
m-by-1 array

First rotation angles, specified as an m-by-1 array, in rads.
Data Types: double | single

rotationAng2 — Second rotation angles
m-by-1 array

Second rotation angles, specified as an m-by-1 array, in rads.
Data Types: double | single

rotationAng3 — Third rotation angles
m-by-1 array

Third rotation angles, specified as an m-by-1 array, in rads.
Data Types: double | single

rotationSequence — Rotation sequence
'ZYX' (default) | 'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XZY' | 'XYX' | 'XZX'

Rotation sequence, specified as a scalar.
Data Types: char | string

Output Arguments
dcm — Direction cosine matrices
3-by-3-by-m matrix

Direction cosine matrices, specified as a 3-by-3-by-m matrix, where m is the number of direction
cosine matrices.

See Also
angle2quat | dcm2angle | dcm2quat | quat2dcm | quat2angle

Introduced in R2006b
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angle2quat
Convert rotation angles to quaternion

Syntax
quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3)
quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3,
rotationSequence)

Description
quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3) calculates the
quaternion for three rotation angles. Aerospace Toolbox uses quaternions that are defined using the
scalar-first convention. The rotation used in this function is a passive transformation between two
coordinate systems.

quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3,
rotationSequence) calculates the quaternion using a rotation sequence.

Examples

Determine Quaternion from Rotation Angles

Determine the quaternion from rotation angles:

yaw = 0.7854; 
pitch = 0.1; 
roll = 0;
q = angle2quat(yaw, pitch, roll)

q =
    0.9227   -0.0191    0.0462    0.3822

Determine Quaternion from Rotation Angles and Sequence

Determine the quaternion from rotation angles using the YXZ rotation sequence:

yaw = [0.7854 0.5]; 
pitch = [0.1 0.3]; 
roll = [0 0.1];
q = angle2quat(pitch, roll, yaw, 'YXZ')
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q =
    0.9227    0.0191    0.0462    0.3822
    0.9587    0.0848    0.1324    0.2371

Input Arguments
rotationAng1 — First rotation angles
m-by-1 array

First rotation angles, specified as an m-by-1 array, in radians.
Data Types: double

rotationAng2 — Second rotation angles
m-by-1 array

Second rotation angles, specified as an m-by-1 array, in radians.
Data Types: double

rotationAng3 — Third rotation angles
m-by-1 array

Third rotation angles, specified as an m-by-1 array, in radians.
Data Types: double

rotationSequence — Rotation sequence
'ZYX' (default) | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XZY' | 'XYX' |
'XZX'

Rotation sequence, specified as:

• 'ZYX'
• 'ZYZ'
• 'ZXY'
• 'ZXZ'
• 'YXZ'
• 'YXY'
• 'YZX'
• 'YZY'
• 'XYZ'
• 'XZY'
• 'XYX'
• 'XZX'

where rotationAng1 is z-axis rotation, rotationAng2 is y-axis rotation, and rotationAng3 is x-
axis rotation.
Data Types: char | string
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Output Arguments
quaternion — Converted quaternion
m-by-4 matrix

Converted quaternion, returned as an m-by-4 matrix containing m quaternions. quaternion has its
scalar number as the first column.

See Also
angle2dcm | dcm2angle | dcm2quat | quat2angle | quat2dcm

Introduced in R2007b

 angle2quat

4-149



angle2rod
Convert rotation angles to Euler-Rodrigues vector

Syntax
rod=angle2rod(R1,R2,R3)
rod=angle2rod(R1,R2,R3,S)

Description
rod=angle2rod(R1,R2,R3) function converts the rotation described by the three rotation angles,
R1, R2, and R3, into an M-by-3 Euler-Rodrigues matrix, rod. The rotation used in this function is a
passive transformation between two coordinate systems.

rod=angle2rod(R1,R2,R3,S) function converts the rotation described by the three rotation angles
and a rotation sequence, S, into an M-by-3 Euler-Rodrigues array, rod, that contains the M Rodrigues
vector.

Examples

Determine the Rodrigues Vector from One Rotation Angle

Determine the Rodrigues vector from rotation angles.

yaw = 0.7854;
pitch = 0.1;
roll = 0;
r = angle2rod(yaw,pitch,roll)

r =

   -0.0207    0.0500    0.4142

Determine Rodrigues Vectors from Multiple Rotation Angles

Determine the Rodrigues vectors from multiple rotation angles.

yaw = [0.7854 0.5];
pitch = [0.1 0.3];
roll = [0 0.1];
r = angle2rod(pitch,roll,yaw,'YXZ')

r =
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    0.0207    0.0500    0.4142
    0.0885    0.1381    0.2473

Input Arguments
R1 — First rotation angle
M-by-1 array

First rotation angle, in radians, from which to determine Euler-Rodrigues vector. Values must be real.
Data Types: double | single

R2 — Second rotation angle
M-by-1 array

Second rotation angle, in radians, from which to determine Euler-Rodrigues vector. Values must be
real.
Data Types: double | single

R3 — Third rotation angle
M-by-1 array

Third rotation angle, in radians, from which to determine Euler-Rodrigues vector. Values must be
real.
Data Types: double | single

S — Rotation sequence
ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Rotation sequence. For the default rotation sequence, ZYX, the rotation angle order is:

• R1 — z-axis rotation
• R2 — y-axis rotation
• R3 — x-axis rotation

Data Types: char | string

Output Arguments
rod — Euler-Rodrigues vector
3-element vector

Euler-Rodrigues vector determined from rotation angles.

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:
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bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

See Also
dcm2rod | quat2rod | rod2quat | rod2angle | rod2dcm

Introduced in R2017a
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ArtificialHorizon Properties
Control artificial horizon appearance and behavior

Description
Artificial horizons are components that represent an artificial horizon. Properties control the
appearance and behavior of an artificial horizon. Use dot notation to refer to a particular object and
property:

f = uifigure;
artificialhorizon = uiaerohorizon(f);
artificialhorizon.Value = [100 20];

The artificial horizon represents aircraft attitude relative to horizon and displays roll and pitch in
degrees:

• Values for roll cannot exceed +/– 90 degrees.
• Values for pitch cannot exceed +/– 30 degrees.

If the values exceed the maximum values, the gauge maximum and minimum values do not change.

Changes in roll value affect the gauge semicircles and the ticks located on the black arc turn
accordingly. Changes in pitch value affect the scales and the distribution of the semicircles.

Properties
Artificial Horizon

Pitch — Pitch
0 (default) | finite, real, and scalar numeric

Pitch value, specified as any finite and scalar numeric. The pitch value determines the movement of
the aircraft around the transverse axis, in degrees.
Example: 10

Dependencies

Specifying this value changes the second element of the Value vector. Conversely, changing the
second element of the Value vector changes the Pitch value.
Data Types: double

Roll — Roll
0 (default) | finite, real, and scalar numeric

Roll value, specified as any finite and scalar numeric. The roll value determines the rotation of the
aircraft around the longitudinal axis, in degrees.
Example: 10
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Dependencies

Specifying this value changes the first element of the Value vector. Conversely, changing the first
element of the Value vector changes the Roll value.
Data Types: double

Value — Roll and pitch
[0 0] (default) | two-element vector of finite, real, and scalar numerics

Roll and pitch values, specified as a vector ([Roll Pitch]).

• The roll value determines the rotation of the aircraft around the longitudinal axis.
• The pitch value determines the movement of the aircraft around the transverse axis.

Example: [100 -200]
Dependencies

• Specifying the Roll value changes the first element of the Value vector. Conversely, changing the
first element of the Value vector changes the Roll value.

• Specifying the Pitch value changes the second element of the Value vector. Conversely,
changing the second element of the Value vector changes the Pitch value.

Data Types: double

Interactivity

Visible — Visibility of artificial horizon
'on' (default) | on/off logical value

Visibility of the artificial horizon, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the artificial
horizon, is displayed on the screen. If the Visible property is set to 'off', then the entire artificial
horizon is hidden, but you can still specify and access its properties.

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.

Enable — Operational state of artificial horizon
'on' (default) | on/off logical value

Operational state of artificial horizon, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the appearance of the artificial horizon indicates that the
artificial horizon is operational.

• If you set this property to 'off', then the appearance of the artificial horizon appears dimmed,
indicating that the artificial horizon is not operational.
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Position

Position — Location and size of artificial horizon
[100 100 120 120] (default) | [left bottom width height]

Location and size of the artificial horizon relative to the parent container, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the artificial
horizon

bottom Distance from the inner bottom edge of the parent container to the
outer bottom edge of an imaginary box surrounding the artificial
horizon

width Distance between the right and left outer edges of the artificial
horizon

height Distance between the top and bottom outer edges of the artificial
horizon

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of artificial horizon
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the artificial horizon, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.

OuterPosition — Outer location and size of artificial horizon
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the artificial horizon returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.
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For example, this code places an artificial horizon in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
gauge = uiaerohorizon(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the artificial horizon span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this artificial horizon spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.
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This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.
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This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

Parent/Child

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.
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HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

Identifiers

Type — Type of graphics object
'uiaerohorizon'

This property is read-only.

Type of graphics object, returned as 'uiaerohorizon'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

See Also
uiaerohorizon

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110
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Introduced in R2018b
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atmoscoesa
Use 1976 COESA model

Syntax
[T, a, P, Rho] = atmoscoesa(height, action)

Description
Committee on Extension to the Standard Atmosphere has the acronym COESA. [T, a, P, Rho] =
atmoscoesa(height, action) implements the mathematical representation of the 1976 COESA
United States standard lower atmospheric values. These values are absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

Below the geopotential altitude of 0 m (0 feet) and above the geopotential altitude of 84,852 m
(approximately 278,386 feet), the function extrapolates values. It extrapolates temperature values
linearly and pressure values logarithmically.

Input Arguments
height

Scalar, vector, or matrix of geopotential heights, in meters.

action

Action for out-of-range input. Specify one:
'Error'
'Warning' (default)
'None'

Output Arguments
T

Scalar, vector, or matrix of temperatures, the same size as the input height argument, in kelvin.

a

Scalar, vector, or matrix of speeds of sound, the same size as the input height argument, in meters
per second. The function calculates speed of sound using a perfect gas relationship.

P

Scalar, vector, or matrix of pressures, the same size as the input height argument, in pascal.

Rho

Scalar, vector, or matrix of densities, the same size as the input height argument, in kilograms per
meter cubed. The function calculates density using a perfect gas relationship.
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Examples
Calculate the COESA model at 1000 m with warnings for out-of-range inputs:

[T, a, P, rho] = atmoscoesa(1000)

T =

  281.6500

a =

  336.4341

P =

  8.9875e+004

rho =

    1.1116

Calculate the COESA model at 1000, 11,000, and 20,000 m with errors for out-of-range inputs:

[T, a, P, rho] = atmoscoesa([1000 11000 20000], 'Error')

T =

  281.6500  216.6500  216.6500

a =

  336.4341  295.0696  295.0696

P =

  1.0e+004 *

    8.9875    2.2632    0.5475

rho =

    1.1116    0.3639    0.0880

Compatibility Considerations
atmoscoesa function changed input and returned value formats
Behavior changed in R2021b

The atmoscoesa function now:

• Accepts scalar, vector, or matrix values.
• Outputs scalar, vector, or matrix values.

As a result, the output values from this function might change from previous releases.
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References
U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

See Also
atmoscira | atmosisa | atmoslapse | atmosnonstd | atmospalt

Introduced in R2006b
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atmoscira
Use COSPAR International Reference Atmosphere 1986 model

Syntax
[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord)
[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord,mtype)
[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord,mtype,
month)
[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord,month)
[T,pressureOrAltitude,zonalWind] = atmoscira( ___ ,action)

Description
[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord) implements
the mathematical representation of the Committee on Space Research (COSPAR) International
Reference Atmosphere (CIRA) 1986 model. The CIRA 1986 model provides a mean climatology using
a latitude latitude and representation of coordinate type ctype. The mean climatology consists of
temperature T, zonal wind zonalWind, and pressure or geopotential height pressureOrAltitude.
It encompasses nearly pole-to-pole coverage (80 degrees S to 80 degrees N) for 0 km to 120 km. This
provision also encompasses the troposphere, middle atmosphere, and lower thermosphere. Use this
mathematical representation as a function of pressure or geopotential height.

This function uses a corrected version of the CIRA data files provided by J. Barnett in July 1990 in
ASCII format.

[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord,mtype) uses a
mean value type to implement these values.

[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord,mtype,
month) uses a monthly mean value type to implement these values.

[T,pressureOrAltitude,zonalWind] = atmoscira(latitude,ctype,coord,month)
implements

[T,pressureOrAltitude,zonalWind] = atmoscira( ___ ,action) uses action to determine
action reporting.

Examples

Calculate Temperature, Geopotential Height, and Zonal Wind Using CIRA 1986 Model

Using the CIRA 1986 model at 45 degrees latitude and 101,300 pascal for January with out-of-range
actions generating warnings, calculate the mean monthly values. Calculate values for temperature
(T), geopotential height (alt), and zonal wind (zwind).

[T,alt,zwind] = atmoscira(45,'Pressure',101300)

T =
  280.6000
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alt =
   -18
zwind =
    3.3000

Calculate Temperature, Pressure, and Zonal Wind

Using the CIRA 1986 model at 45 degrees latitude and 20,000 m for October, calculate the mean
monthly values. Calculate values for temperature (T), pressure (pres), and zonal wind (zwind).

c

[T,pres,zwind] = atmoscira(45,'GPHeight',20000,'Monthly',10)

T =
  215.8500
pres =
   5.5227e+03
zwind =
    9.5000

Calculate Temperature, Geopotential Height, and Zonal Wind Using CIRA 1986 Model at 45
and -30 Degrees

For September, use the CIRA 1986 model at 45 degrees latitude and –30 degrees latitude. Also use
the model at 2000 pascal and 101,300 pascal. Calculate mean monthly values for temperature (T),
geopotential height (alt), and zonal wind (zwind).

[T,alt,zwind] = atmoscira([45 -30],'Pressure',[2000 101300],9)

T =
  223.5395  290.9000
alt =
   1.0e+04 *
    2.6692    0.0058
zwind =
    0.6300   -1.1000

Calculate Temperature, Geopotential Height, and Zonal Wind Using CIRA 1986 Model at 45
and 2000 Pascal

Using the CIRA 1986 model at 45 degrees latitude and 2000 pascal, calculate annual values.
Calculate values for temperature (T), geopotential height (alt), and zonal wind (zwind).

[T,alt,zwind] = atmoscira(45,'Pressure',2000,'Annual')

T =
  221.9596    5.0998    6.5300    1.9499    1.3000    1.0499    1.3000
alt =
   1.0e+04 *
    2.6465    0.0417    0.0007    0.0087    0.0001    0.0015    0.0002
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zwind =
    4.6099   14.7496    0.6000    1.6499    4.6000    0.5300    1.4000

Calculate Temperature, Pressure, and Zonal Wind Using CIRA 1986 Model at 45 and -30
Degrees and 20000 Meters

Use the CIRA 1986 model at 45 and –30 degrees latitude and 20,000 m for October with out-of-range
actions generating errors. Calculate values for temperature (T), pressure (pres), and zonal wind
(zwind).

[T,pres,zwind] = atmoscira([45 -30],'GPHeight',20000,10,'Error')

T =
  215.8500  213.9000
pres =
   1.0e+03 *
    5.5227    5.6550
zwind =
    9.5000    4.3000

Input Arguments
latitude — Geodetic latitudes
array

Geodetic latitudes, specified as an array, in degrees, where north latitude is positive and south
latitude is negative.
Data Types: double

ctype — Representation of coordinate type
'Pressure' | 'GPHeight'

Representation of coordinate type, specified as of these values.

Coordinate Type Description
'Pressure' Pressure in pascal
'GPHeight' Geopotential height in meters

Dependencies

• When ctype is set to 'Pressure', pressureOrAltitude returns the altitude.
• When ctype is set to 'GPHeight', pressureOrAltitude returns the geopotential height.

Data Types: char | string

coord — Pressures or geopotential heights
array

Pressures or geopotential heights, specified as an array depending on the value of ctype:

4 Functions

4-166



Coordinate Type Description
'Pressure' Pressure in pascal
'GPHeight' Geopotential height in meters

Dependencies

• When ctype is set to 'Pressure', the function interprets coord as an array of pressures.
• When ctype is set to 'GPHeight', the function interprets coord as an array of geopotential

heights.

Data Types: double

mtype — Mean value type
'Monthly' (default) | 'Annual'

Mean value type of data type string, specified as one of these values.

Mean Value Type Description
'Monthly' (default) Monthly values.
'Annual' Annual values. Valid when ctype has a value of 'Pressure'.

Dependencies

'Annual' is available only when ctype is set to 'Pressure'.
Data Types: char | string

month — Month
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

Month in which model takes mean values, specified as one of these values.

Value Month
1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September
10 October
11 November
12 December

Data Types: double
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action — Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range, specified as one of these values.

Value Description
'None' No action.
'Warning' Warning in the MATLAB Command Window and model simulation

continues.
'Error' MATLAB returns an exception and model simulation stops.

Data Types: char | string

Output Arguments
T — Temperatures
array

Temperatures, returned as an array depending on the value of mtype.

mtype Value Description
'Monthly' Array of m temperatures, in kelvin
'Annual' Array of m-by-7 values:

• Annual mean temperature in kelvin
• Annual temperature cycle amplitude in kelvin
• Annual temperature cycle phase in month of maximum
• Semiannual temperature cycle amplitude in kelvin
• Semiannual temperature cycle phase in month of

maximum
• Terannual temperature cycle amplitude in kelvin
• Terannual temperature cycle phase in month of maximum

Dependencies

'Annual' is available only when ctype is set to 'Pressure'.

pressureOrAltitude — Geopotential heights or pressures
array

Geopotential heights or pressures, returned as an array, depending on the value of ctype.

If mtype is 'Annual', pressureOrAltitude is an array of m-by-7 values for geopotential heights.
The function defines this array only for the northern hemisphere (latitude is greater than 0).

• Annual mean geopotential heights in meters
• Annual geopotential heights cycle amplitude in meters
• Annual geopotential heights cycle phase in month of maximum
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• Semiannual geopotential heights cycle amplitude in meters
• Semiannual geopotential heights cycle phase in month of maximum
• Terannual geopotential heights cycle amplitude in meters
• Terannual geopotential heights cycle phase in month of maximum

Dependencies

• When ctype is set to 'Pressure', pressureOrAltitude returns the altitude.
• When ctype is set to 'GPHeight', pressureOrAltitude returns the geopotential height.

zonalWind — Zonal winds
array

Zonal winds, returned as an array depending on the value of mtype:

mtype Value Description
'Monthly' Array in meters per second.
'Annual' Array of m-by-7 values:

• Annual mean zonal winds in meters per second
• Annual zonal winds cycle amplitude in meters per second
• Annual zonal winds cycle phase in month of maximum
• Semiannual zonal winds cycle amplitude in meters per

second
• Semiannual zonal winds cycle phase in month of

maximum
• Terannual zonal winds cycle amplitude in meters per

second
• Terannual zonal winds cycle phase in month of maximum

Limitations
• This function has the limitations of the CIRA 1986 model and limits the values for the CIRA 1986

model.
• The CIRA 1986 model limits values to the regions of 80 degrees S to 80 degrees N on Earth. It

also limits geopotential heights from 0 km to 120 km. In each monthly mean data set, the model
omits values at 80 degrees S for 101,300 pascal or 0 m. It omits these values because these levels
are within the Antarctic land mass. For zonal mean pressure in constant altitude coordinates,
pressure data is not available below 20 km. Therefore, this value is the bottom level of the CIRA
climatology.

References
[1] Fleming, E. L., S. Chandra, M. R. Shoeberl, and J. J. Barnett. Monthly Mean Global Climatology of

Temperature, Wind, Geopotential Height and Pressure for 0-120 km. NASA TM100697,
February 1988.
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See Also
External Websites
https://ccmc.gsfc.nasa.gov/modelweb/atmos/cospar1.html

Introduced in R2007b
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atmoshwm
Implement horizontal wind model

Syntax
wind = atmoshwm(latitude,longitude,altitude)

wind = atmoshwm(latitude,longitude,altitude,Name,Value)

Description
wind = atmoshwm(latitude,longitude,altitude) implements the U.S. Naval Research
Laboratory Horizontal Wind Model (HWM™) routine to calculate the meridional and zonal
components of the wind for one or more sets of geographic coordinates: latitude, longitude, and
altitude.

wind = atmoshwm(latitude,longitude,altitude,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Calculate the Total Horizontal Wind Model

Calculate the total horizontal wind model for a latitude of 45 degrees south, longitude of 85 degrees
west, and altitude of 25,000 m above mean sea level (msl). The date is the 150th day of the year, at 11
am UTC, using an Ap index of 80. The horizontal model version is 14.

w = atmoshwm(-45,-85,25000,'day',150,'seconds',39600,'apindex',80,'model','total', 'version', '14')

w =

     3.2874   25.8735

Calculate the Quiet Horizontal Wind Model

Calculate the quiet horizontal wind model for a latitude of 50 degrees north, two altitudes of 100,000
m and 150,000 m above msl, and a longitude of 20 degrees west. The date is midnight UTC of January
30. The default horizontal model version is 14.

w = atmoshwm([50;50],[-20;-20],[100000;150000],'day',[30;30])

w =
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  -42.9350  -40.3693
   29.1106    0.6253

Calculate a Disturbed Horizontal Wind Model

Calculate the disturbed horizontal wind model for an altitude of 150,000 m above msl at latitude 70
degrees north, longitude 65 degrees west. The date is midnight UTC of June 15. The default
horizontal model version is 14.

dw = atmoshwm(70,-65,150000,'day',166,'model','disturbance')

dw =
    1.7954   -1.7130

Input Arguments
latitude — Geodetic latitude
scalar | M-by-1 array

Geodetic latitudes, in degrees, specified as a scalar or M-by-1 array.
Example: -45
Data Types: double

longitude — Geodetic longitude
scalar | M-by-1 array

Geodetic longitudes, in degrees, specified as a scalar or M-by-1 array.
Example: -85
Data Types: double

altitude — Geopotential height
scalar | M-by-1 array

Geopotential heights, in meters, within the range of 0 to 500 km, specified as a scalar or M-by-1
array. Values are held outside the range 0 to 500 km.
Example: 25000
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'apindex',80,'model','total' specifies that the total horizontal wind model be
calculated for an Ap index of 80.

apindex — Ap index
M-by-1 array of zeroes (default) | scalar | M-by-1 array

Ap index for the Universal Coordinated Time (UTC) at which atmoshwm evaluates the model,
specified as an M-by-1 array of zeroes, a scalar, or an M-by-1 array. M is the number of requested
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geographic coordinates. Select the index from the NOAA National Geophysical Data Center, which
contains three-hour interval geomagnetic disturbance index values. If the Ap index value is greater
than zero, the model evaluation accounts for magnetic effects.

Specify the Ap index as a value from 0 through 400. Specify an Ap index value for only the
disturbance or total wind model type.
Data Types: double

day — Day of year
M-by-1 array of ones (default) | scalar | M-by-1 array

Day of year in UTC. Specify the day as a value from 1 through 366 (for a leap year), specified as an M-
by-1 array of zeroes, a scalar, or an M-by-1 array. Values are wrapped to within 1 to 366 days.
Data Types: double

seconds — Elapsed seconds
M-by-1 array of zeroes (default) | scalar | M-by-1 array

Elapsed seconds since midnight for the selected day, in UTC, specified as specified as an M-by-1 array
of zeroes, a scalar, or an M-by-1 array.

Specify the seconds as a value from 0 through 86,400. Values are wrapped to within 0 to 86400
seconds.
Data Types: double

model — Horizontal wind model type
'quiet' (default) | 'disturbance' | 'total'

Horizontal wind model type for which to calculate the wind components. This setting applies to all the
sets of geophysical data in M.

• 'quiet'

Calculates the horizontal wind model without the magnetic disturbances. Quiet model types do not
account for Ap index values. For this model type, do not specify an Ap index value when using this
model type.

• 'disturbance'

Calculates the effect of only magnetic disturbances in the wind. For this model type, specify Ap
index values greater than or equal to zero.

• 'total'

Calculates the combined effect of the quiet and magnetic disturbances. for this model type, specify
Ap index values greater than or equal to zero.

Data Types: char | string

action — Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range, specified as one of these values. This type applies to
all the sets of geophysical data in M.
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Value Description
'None' No action.
'Warning' Warning in the MATLAB Command Window, model simulation

continues.
'Error' MATLAB returns an exception, model simulation stops.

Data Types: char | string

version — Horizontal wind model version
'14' (default) | '07'

Implements specified horizontal wind model type.

• '14'

Horizontal Wind Model 14.
• '07'

Horizontal Wind Model 07.

Data Types: char | string

Output Arguments
wind — Meridional and zonal wind components
M-by-2 array

Meridional and zonal wind components of the horizontal wind model, returned as an M-by-2 array, in
m/s.

Compatibility Considerations
atmoshwm Function Possible Changed Returned Values
Behavior changed in R2021b

The atmoshwm function now:

• Accepts day decimal input values.
• Limits altitude input values to 500 km.

As a result, the output values from this function might change from previous releases.

See Also
atmoscoesa | atmosnrlmsise00 | atmoscira

External Websites
NOAA National Geophysical Data Center
An empirical model of the Earth's horizontal wind fields: HWM07
An update to the Horizontal Wind Model (HWM): The quiet time thermosphere
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Introduced in R2016b
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atmosisa
Use International Standard Atmosphere model

Syntax
[T, a, P, rho] = atmosisa(height)

Description
[T, a, P, rho] = atmosisa(height) implements the mathematical representation of the
International Standard Atmosphere values for ambient temperature, pressure, density, and speed of
sound for the input geopotential altitude.

This function assumes that temperature and pressure values are held constant for both:

• Below the geopotential altitude of 0 km
• Above the geopotential altitude of the tropopause (at 20 km)

Examples

Calculate International Standard Atmosphere at One Height

Calculate the International Standard Atmosphere at 1000 m.

[T, a, P, rho] = atmosisa(1000)

T = 281.6500

a = 336.4341

P = 8.9875e+04

rho = 1.1116

Calculate International Standard Atmosphere at Multiple Heights

Calculate the International Standard Atmosphere at 1000, 11,000, and 20,000 m.

[T, a, P, rho] = atmosisa([1000 11000 20000])

T = 1×3

  281.6500  216.6500  216.6500

a = 1×3

  336.4341  295.0696  295.0696
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P = 1×3
104 ×

    8.9875    2.2632    0.5475

rho = 1×3

    1.1116    0.3639    0.0880

Input Arguments
height — Geopotential heights
m-by-m array

Geopotential heights, specified as an m-by-m array.
Data Types: double

Output Arguments
T — Temperatures
m-element array

Temperatures, returned as an m-element array, in kelvin.

a — Speeds of sound
m-element array

Speeds of sound, returned as an m-element array, in meters per second. The function calculates
speed of sound using a perfect gas relationship.

P — Pressures
m-element array

Pressures, returned as an m-element array, in pascal.

rho — Densities
m-element array

Densities, returned as an m-element array, in kilograms per meter cubed. The function calculates
density using a perfect gas relationship.

References
[1] U.S. Standard Atmosphere, 1976. U.S. Government Printing Office, Washington, D.C.

See Also
atmoscira | atmoscoesa | atmoslapse | atmosnonstd | atmospalt

Introduced in R2006b
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atmoslapse
Use Lapse Rate Atmosphere model

Syntax
[T,a,P,rho] = atmoslapse(height,g,heatRatio,characteristicGasConstant,
lapseRate,heightTroposphere,heightTropopause,density0,pressure0,temperature0)
[T,a,P,rho] = atmoslapse(height,g,heatRatio,characteristicGasConstant,
lapseRate,heightTroposphere,heightTropopause,density0,pressure0,temperature0,
height0)

Description
[T,a,P,rho] = atmoslapse(height,g,heatRatio,characteristicGasConstant,
lapseRate,heightTroposphere,heightTropopause,density0,pressure0,temperature0)
implements the mathematical representation of the lapse rate atmospheric equations for ambient
temperature, pressure, density, and speed of sound for the input geopotential altitude. To customize
this atmospheric model, specify the atmospheric properties in the function input.

[T,a,P,rho] = atmoslapse(height,g,heatRatio,characteristicGasConstant,
lapseRate,heightTroposphere,heightTropopause,density0,pressure0,temperature0,
height0) indicates that the values for ambient temperature, pressure, density, and speed of sound
are for below mean sea level geopotential altitudes.

The function holds temperature and pressure values below the geopotential altitude of height0 and
above the geopotential altitude of the tropopause. The function calculates the density and speed of
sound using a perfect gas relationship.

Examples

Calculate Lapse Rate Atmosphere Using International Standard Atmosphere

Calculate the atmosphere at 1000 m with the International Standard Atmosphere input values.

[T,a,P,rho] = atmoslapse(1000,9.80665,1.4,287.0531,0.0065, ...
    11000,20000,1.225,101325,288.15)

T =

  281.6500

a =
  336.4341

P =
   8.9875e+04
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rho =
    1.1116

Input Arguments
height — Geopotential heights
m-by-n array

Geopotential heights, specified as an m-by-n array in meters.
Data Types: double

g — Acceleration
scalar

Acceleration due to gravity, specified as a scalar in meters per second squared.
Data Types: double

heatRatio — Heat ratio
scalar

Heat ratio, specified as a scalar.
Data Types: double

characteristicGasConstant — Characteristic gas constant
scalar

Characteristic gas constant, specified as a scalar in joules per kilogram-kelvin.
Data Types: double

lapseRate — Lapse rate
scalar

Lapse rate, specified as a scalar in kelvin per meter.
Data Types: double

heightTroposphere — Height of troposphere
scalar

Height of troposphere, specified as a scalar in meters.
Data Types: double

heightTropopause — Height of tropopause
scalar

Height of tropopause, specified as a scalar in meters.
Data Types: double

density0 — Density at mean sea level
scalar

Density at mean sea level (MSL), specified as a scalar in kilograms per meter cubed.
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Data Types: double

pressure0 — Static pressure
scalar

Static pressure at MSL, specified as a scalar in pascal.
Data Types: double

temperature0 — Absolute temperature
scalar

Absolute temperature at MSL, specified as a scalar in kelvin.
Data Types: double

height0 — Minimum sea level altitude
0 (default) | scalar

Minimum sea level altitude, specified as a scalar in meters.
Data Types: double

Output Arguments
T — Temperatures
m-by-1 array

Temperatures, returned as an m-by-1 array in kelvin.

a — Speeds of sound
m-by-1 array

Speeds of sound, returned as an m-by-1 array in meters per second squared. The function calculates
speed of sound using a perfect gas relationship.

P — Pressures
m-by-1 array

Pressures, returned as an m-by-1 array in pascal.

rho — densities
m-by-1 array

Densities, specified as an m-by-1 array kilograms per meter cubed. The function calculates density
using a perfect gas relationship.

References
[1] U.S. Standard Atmosphere. Washington, DC: US Government Printing Office, 1976.

See Also
atmoscira | atmoscoesa | atmosisa | atmosnonstd | atmospalt
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Introduced in R2006b

 atmoslapse

4-181



atmosnonstd
Use climatic data from MIL-STD-210 or MIL-HDBK-310

Syntax
[T,a,P,rho] = atmosnonstd(height,atmosphericType,extremeParameter,frequency,
extremeAltitude)
[T,a,P,rho] = atmosnonstd( ___ ,action)
[T,a,P,rho] = atmosnonstd( ___ ,specification)

Description
[T,a,P,rho] = atmosnonstd(height,atmosphericType,extremeParameter,frequency,
extremeAltitude) implements a portion of the climatic data of the MIL-STD-210C or MIL-
HDBK-310 worldwide air environment to 80 km geometric (or approximately 262,000 feet geometric).
This implementation provides absolute temperature, pressure, density, and speed of sound for the
input geopotential altitude.

This function holds all values below the geometric altitude of 0 m (0 feet) and above the geometric
altitude of 80,000 m (approximately 262,000 feet). For exceptions on the envelope atmosphere model,
see atmosphericType.

[T,a,P,rho] = atmosnonstd( ___ ,action) specifies the action for out-of-range input. Specify
action after all other input arguments.

[T,a,P,rho] = atmosnonstd( ___ ,specification) specifies the MIL-STD-210C or MIL-
STD-310 climatic data. Specify specification after all other input arguments.

Examples

Calculate Nonstandard Atmosphere Profile

Calculate the nonstandard atmosphere profile. Use high density occurring 1% of the time at 5 km
from MIL-HDBK-310 at 1000 m with warnings for out-of-range inputs.

[T,a,P,rho] = atmosnonstd(1000,'Profile','High density','1%',5)

T =
  248.1455

a =
  315.7900

P =
   8.9893e+04

rho =
    1.2620
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Calculate Nonstandard Atmosphere Profile Specifying Atmosphere Model

Calculate the nonstandard atmosphere envelope with high pressure. Assume that high pressure
occurs 20% of the time from MIL-STD-210C at 1000, 11,000, and 20,000 m, with errors for out-of-
range inputs.

[T,a,P,rho] = atmosnonstd([1000 11000 20000],'Envelope', ...
      'High pressure','20%','Error','210c')

T =
     0     0     0

a =
     0     0     0

P =
   1.0e+04 *

    9.1598    2.5309    0.6129

rho =
     0     0     0

Input Arguments
height — Geopotential heights
m-by-1 array

Geopotential heights, specified as an m-by-1 array.
Data Types: double

atmosphericType — Atmospheric data type
'Profile' | 'Envelope'

Atmospheric data, specified as one of these values.

Atmospheric Data
Type

Description

'Profile' Use for simulation of vehicles vertically traversing the atmosphere, or when
you need the total influence of the atmosphere. Use this type for realistic
atmospheric profiles associated with extremes at specified altitudes.
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Atmospheric Data
Type

Description

'Envelope' Use for vehicles traversing the atmosphere horizontally, without much change
in altitude. Use this type for extreme atmospheric values at each altitude.

Due to lack of data in MIL-STD-210 or MIL-HDBK-310 for these conditions,
this atmospheric model has these exceptions:

• When extreme value is the only value provided as an output, the function
interpolates pressure logarithmically. These exceptions apply to all cases of
high and low pressure, high and low temperature, and high and low
density. These exceptions exclude the extreme values and 1% frequency of
occurrence.

• When values are held below the geometric altitude of 1 km (approximately
3281 feet).

• When values are above the geometric altitude of 30,000 m (approximately
98,425 feet).

Data Types: string

extremeParameter — Atmospheric parameter for extreme value
'High temperature' | 'Low temperature' | 'High density' | 'Low density' | 'High
pressure' | 'Low pressure'

Atmospheric parameter for extreme value, specified as:

• 'High temperature'
• 'Low temperature'
• 'High density'
• 'Low density'
• 'High pressure'
• 'Low pressure'

Dependencies

'High pressure' and 'Low pressure' are available only if atmosphericType is set to
'Envelope'.
Data Types: double

frequency — Percent of time extreme values can occur
'Extreme values' | '1%' | '5%' | '10% | '20%'

Percent of time that extreme values can occur, specified as:

• 'Extreme values'
• '1%'
• '5%'
• '10%
• '20%'
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Dependencies

• 'Extreme values', '5%', and '20%' are available only if atmosphericType is set to
'Envelope'.

• When atmosphericType is set to 'Envelope' and frequency is set to '5%', '10%', or '20%',
atmosnonstd outputs valid output only for temperature T, density rho, and pressure P. All other
parameter outputs are zero.

Data Types: double

extremeAltitude — Geometric altitude
'5' | '10' | '20' | '30' | '40'

Geometric altitude in kilometers, specified as one of these values.

Altitude in
Kilometers

Altitude in Feet

'5' 16404 ft
'10' 32808 ft
'20' 65617 ft
'30' 98425 ft
'40' 131234 ft

Data Types: double

action — Action
'Warning' (default) | 'Error' | 'None'

Action for out-of-range input, specified as:

• 'Error' — Displays warning and indicates that the input is out of range.
• 'Warning' — Displays error and indicates that the input is out of range.
• 'None' — Does not display warning or error.

Data Types: char | string

specification — Atmosphere model
'310' (default) | '210c'

Atmosphere model, specified as one of these values.

Specification Description
'310' MIL-HDBK-310
'210c' MIL-STD-210C

Data Types: double

Output Arguments
T — Temperatures
m-by-1 array
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Temperatures, returned as an m-by-1 array in kelvin. This function interpolates temperature values
linearly.

a — Speeds of sound
m-by-1 array

Speeds of sound, returned as an m-by-1 array in meters per second. This function calculates speed of
sound using a perfect gas relationship.

P — Pressures
m-by-1 array

Pressures, returned as an m-by-1 array in pascal. This function calculates pressure using a perfect
gas relationship.

rho — Densities
m-by-1 array

Densities, returned as an m-by-1 array in kilograms per meter cubed. This function interpolates
density values logarithmically.

Limitations
• MIL-STD-210 and MIL-HDBK-310 exclude from consideration climatic data for the region south of

60 degrees S latitude.
• This function uses the metric version of data from the MIL-STD-210 and MIL-HDBK-310
specifications, resulting in some inconsistency between the metric and English data. Locations
where these inconsistencies occur are within the envelope data for low density, low temperature,
high temperature, low pressure, and high pressure. The most noticeable differences occur in these
values:

• For low-density envelope data with 5% frequency, the density values in metric units are
inconsistent at 4 km and 18 km. In addition, the density values in English units are inconsistent
at 14 km.

• For low-density envelope data with 10% frequency, the density values in metric units are
inconsistent at 18 km. In addition, the density values in English units are inconsistent at 14
km.

• For low-density envelope data with 20% frequency, the density values in English units are
inconsistent at 14 km.

• For high-pressure envelope data with 10% frequency, the pressure values at 8 km are
inconsistent.

References
[1] Global Climatic Data for Developing Military Products (MIL-STD-210C). Washington, DC:

Department of Defense January 9, 1987.

[2] Global Climatic Data for Developing Military Products (MIL-HDBK-310). Washington, DC:
Department of Defense, June 23, 1997.
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See Also
atmoscira | atmoscoesa | atmosisa | atmoslapse | atmospalt

Introduced in R2006b
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atmosnrlmsise00
Implement mathematical representation of 2001 United States Naval Research Laboratory Mass
Spectrometer and Incoherent Scatter Radar Exosphere

Syntax
[T rho] = atmosnrlmsise00(altitude,latitude,longitude,year,dayOfYear,
UTseconds)

[T rho] = atmosnrlmsise00( ___ ,localApparentSolarTime)
[T rho] = atmosnrlmsise00( ___ ,f107Average,f107Daily,magneticIndex)
[T rho] = atmosnrlmsise00( ___ ,flags)
[T rho] = atmosnrlmsise00( ___ ,otype)
[T rho] = atmosnrlmsise00( ___ ,action)

Description
Syntax Using Default Arguments

[T rho] = atmosnrlmsise00(altitude,latitude,longitude,year,dayOfYear,
UTseconds) implements the mathematical representation of the 2001 United States Naval Research
Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00) of the
MSIS® class model. NRLMSISE-00 calculates the neutral atmosphere empirical model from the
surface to lower exosphere (0 m to 1,000,000 m). Optionally, it performs this calculation including
contributions from anomalous oxygen that can affect satellite drag above 500,000 m.

Syntaxes Using Specified Arguments

[T rho] = atmosnrlmsise00( ___ ,localApparentSolarTime) specifies an array of m local
apparent solar time (hours). Specify localApparentSolarTime after all other input arguments in
previous syntaxes.

[T rho] = atmosnrlmsise00( ___ ,f107Average,f107Daily,magneticIndex) specifies
arrays of m 81-day average of F10.7 flux (centered on dayOfYear), m-by-1 daily F10.7 flux for
previous day, and m-by-7 array of magnetic index information. Specify f107Average, f107Daily,
and magneticIndex after all other input arguments in previous syntaxes.

[T rho] = atmosnrlmsise00( ___ ,flags) specifies an array of 23 flags to enable or disable
particular variations for the outputs. Specify flags after all other input arguments in previous
syntaxes.

[T rho] = atmosnrlmsise00( ___ ,otype) specifies a character vector or string for total mass
density output. Specify otype after all other input arguments in previous syntaxes.

[T rho] = atmosnrlmsise00( ___ ,action) specifies an out-of-range input action. Specify
action after all other input arguments in previous syntaxes.

Examples
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Calculate Temperatures and Densities Using the NRLMSISE-00 Model, Scalars, and Default
Flux, Magnetic Index Data, and Local Solar Time

Calculate the temperatures and densities, not including anomalous oxygen, using the NRLMSISE-00
model at 10,000 m, 45 degrees latitude, and -50 degrees longitude. This calculation uses the date
January 4, 2007 at 0 UT. The example uses default values for flux, magnetic index data, and local
solar time, with out-of-range actions generating warnings.

[T,rho] = atmosnrlmsise00(10000,45,-50,2007,4,0)

T =

   1.0e+03 *
    1.0273    0.2212

rho =
   1.0e+24 *
    0.0000         0    6.6824    1.7927    0.0799    0.0000         0         0         0

Calculate Temperatures and Densities Using the NRLMSISE-00 Model, Arrays, and Default
Flux, Magnetic Index Data, and Local Solar Time

Calculate the temperatures, densities not including anomalous oxygen using the NRLMSISE-00
model. Use the model at 10,000 m, 45 degrees latitude, –50 degrees longitude and 25,000 m, 47
degrees latitude, –55 degrees longitude.

This calculation uses the date January 4, 2007 at 0 UT. The example uses default values for flux,
magnetic index data, and local solar time with out-of-range actions generating warnings:

[T,rho] = atmosnrlmsise00([10000;25000],[45;47], ...
[-50;-55],[2007;2007],[4;4],[0;0])

T =
   1.0e+03 *

    1.0273    0.2212
    1.0273    0.2116

rho =
   1.0e+24 *

    0.0000         0    6.6824    1.7927    0.0799    0.0000         0         0         0
    0.0000         0    0.6347    0.1703    0.0076    0.0000         0         0         0

Calculate Temperatures and Densities Using the NRLMSISE-00 Model and Default Flux,
Magnetic Index Data, and Local Solar Time

Calculate the temperatures, densities including anomalous oxygen using the NRLMSISE-00 model at
10,000 m, 45 degrees latitude, and –50 degrees longitude. This calculation uses the date January 4,
2007 at 0 UT seconds. The example default values for flux, magnetic index data, and local solar time,
with out-of-range actions generating errors.

[T,rho] = atmosnrlmsise00(10000,45,-50,2007, ...
4,0,'Oxygen','Error')

T =
   1.0e+03 *

    1.0273    0.2212

rho =
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   1.0e+24 *

    0.0000         0    6.6824    1.7927    0.0799    0.0000         0         0         0

Calculate Temperatures and Densities Using the NRLMSISE-00 Model and Specified Flux,
Magnetic Index Data, and Default Local Solar Time

Calculate the temperatures, densities including anomalous oxygen using the NRLMSISE-00 model at
100,000 m, 45 degrees latitude, and –50 degrees longitude. This calculation uses the date January 4,
2007 at 0 UT seconds. It uses defined values for flux, and magnetic index data, and default local solar
time. The example specifies that the out-of-range action is to generate no message:

aph = [17.375 15 20 15 27 (32+22+15+22+9+18+12+15)/8 (39+27+9+32+39+9+7+12)/8];
f107 = 87.7;
nov_6days  = [78.6 78.2 82.4 85.5 85.0 84.1];
dec_31daymean = 84.5;
jan_31daymean = 83.5;
feb_13days = [89.9 90.3 87.3 83.7 83.0 81.9 82.0 78.4 76.7 75.9 74.7 73.6 72.7];
f107a = (sum(nov_6days) + sum(feb_13days) + (dec_31daymean + jan_31daymean)*31)/81;
flags = ones(1,23);
flags(9) = -1;
[T,rho] = atmosnrlmsise00(100000,45,-50,2007,4,0,f107a,f107, ...  
aph,flags,'Oxygen','None')

T =
   1.0e+03 *

    1.0273    0.1917

rho =
   1.0e+18 *

    0.0001    0.4241    7.8432    1.9721    0.0808    0.0000    0.0000    0.0000    0.0000

Input Arguments
altitude — Altitudes
m-by-1 array

Altitudes, specified as an m-by-1 array in meters.
Data Types: double

latitude — Geodetic latitudes
m-by-1 array

Geodetic latitudes, specified as an m-by-1 array in degrees.
Data Types: double

longitude — Geodetic longitudes
m-by-1 array

Geodetic longitudes, specified as an m-by-1 array in degrees.

Tip The NRLMSISE-00 model uses UTseconds, localApparentSolarTime, and longitude
independently. These arguments are not of equal importance for every situation. For the most
physically realistic calculation, choose these three variables to be consistent by default:

 localApparentSolarTime = UTseconds/3600 + longitude/15
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If available, you can include variations from this equation for localApparentSolarTime, but they
are of minor importance.

Data Types: double

year — Year
m-by-1 array

Year, specified as an m-by-1 array. This function ignores the value of year.
Data Types: double

dayOfYear — Day or year
m-by-1 array

Day or year, specified as an m-by-1 array.
Data Types: string

UTseconds — Universal time
m-by-1 array

Universal time (UT), specified as an m-by-1 array in seconds.

Tip The NRLMSISE-00 model uses UTseconds, localApparentSolarTime, and longitude
independently. These arguments are not of equal importance for every situation. For the most
physically realistic calculation, choose these three variables to be consistent by default:

 localApparentSolarTime = UTseconds/3600 + longitude/15

If available, you can include variations from this equation for localApparentSolarTime, but they
are of minor importance.

Data Types: double

localApparentSolarTime — Local apparent solar times
m-by-1 array

Local apparent solar times, specified as an m-by-1 array in hours.

Tip The NRLMSISE-00 model uses UTseconds, localApparentSolarTime, and longitude
independently. These arguments are not of equal importance for every situation. For the most
physically realistic calculation, choose these three variables to be consistent by default:

 localApparentSolarTime = UTseconds/3600 + longitude/15

If available, you can include variations from this equation for localApparentSolarTime, but they
are of minor importance.

Data Types: double

f107Average — 81 day average of F10.7 flux
m-by-1 array
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81 day average of F10.7 flux, centered on day of year (dayOfYear), specified as an m-by-1 array. The
effects of f107Average are not large or established below 80,000 m. Therefore, the default value is
150.

These f107Average values correspond to the 10.7 cm radio flux at the actual distance of the Earth
from the Sun. The f107Average values do not correspond to the radio flux at 1 AU. The following
site provides both classes of values: https://www.ngdc.noaa.gov/stp/space-weather/solar-
data/solar-features/solar-radio/noontime-flux/penticton/

For limitations, see “Limitations” on page 4-194.

Dependencies

If you specify f107Average, you must also specify f107Daily and magneticIndex.
Data Types: string

f107Daily — Daily F10.7 flux for previous day
m-by-1 array

Daily F10.7 flux for previous day, specified as an m-by-1 array. The effects of f107Daily are not large
or established below 80,000 m; therefore, the default value is 150.

These f107Daily values correspond to the 10.7 cm radio flux at the actual distance of the Earth
from the Sun. The f107Daily values do not correspond to the radio flux at 1 AU. The following site
provides both classes of values: https://www.ngdc.noaa.gov/stp/space-weather/solar-
data/solar-features/solar-radio/noontime-flux/penticton/

For limitations, see “Limitations” on page 4-194.

Dependencies

If you specify f107Daily, you must also specify f107Average and magneticIndex.
Data Types: string

magneticIndex — Magnetic index information
m-by-7 array

Magnetic index information, specified as an m-by-7 array. This information consists of:

• Daily magnetic index (AP)
• 3-hour AP for current time
• 3-hour AP for 3 hours before current time
• 3-hour AP for 6 hours before current time
• 3-hour AP for 9 hours before current time
• Average of eight 3-hour AP indices from 12 to 33 hours before current time
• Average of eight 3-hour AP indices from 36 to 57 hours before current time

The effects of daily magnetic index are not large or established below 80,000 m. As a result, the
function sets the default value to 4. For limitations, see “Limitations” on page 4-194.

Dependencies

If you specify magneticIndex, you must also specify f107Average and f107Daily.
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Data Types: double

flags — Output variations
m-by-1 array

Output variations, specified as a m-by-1 array. If the flags array length, m, is 23 and you have not
specified all available inputs, this function assumes that flags is set.

The flags enable or disable particular variations for the outputs.

Field Description
Flags(1) F10.7 effect on mean
Flags(2) Independent of time
Flags(3) Symmetrical annual
Flags(4) Symmetrical semiannual
Flags(5) Asymmetrical annual
Flags(6) Asymmetrical semiannual
Flags(7) Diurnal
Flags(8) Semidiurnal
Flags(9) Daily AP. If you set this field to -1, the function uses the entire matrix of magnetic

index information (APH) instead of APH(:,1).
Flags(10) All UT seconds, longitudinal effects
Flags(11) Longitudinal
Flags(12) UT seconds and mixed UT seconds, longitudinal
Flags(13) Mixed AP, UT seconds, longitudinal
Flags(14) Terdiurnal
Flags(15) Departures from diffusive equilibrium
Flags(16) All exospheric temperature variations
Flags(17) All variations from 120,000 meter temperature (TLB)
Flags(18) All lower thermosphere (TN1) temperature variations
Flags(19) All 120,000 meter gradient (S) variations
Flags(20) All upper stratosphere (TN2) temperature variations
Flags(21) All variations from 120,000 meter values (ZLB)
Flags(22) All lower mesosphere temperature (TN3) variations
Flags(23) Turbopause scale height variations

Data Types: string

otype — Total mass density output
'Oxygen' | 'NoOxygen'

Total mass density output, specified as one of these values.

'Oxygen' Total mass density outputs include anomalous oxygen number density.
'NoOxygen' Total mass density outputs do not include anomalous oxygen number density.
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Data Types: string

action — Action
'Warning' (default) | 'Error' | 'None'

Action for out-of-range input, specified as:

• 'Error' — Displays warning and indicates that the input is out of range.
• 'Warning' — Displays error and indicates that the input is out of range.
• 'None' — Does not display warning or error.

Data Types: char | string

Output Arguments
T — Temperatures
N-by-2 array

Temperatures, returned as an N-by-2 array in kelvin. The first column of the array is exospheric
temperatures. The second column of the array is temperatures at altitude.

rho — Densities
N-by-9 array

Densities (kg/m3 or 1/m3) in selected density units, returned as an N-by-9 array in selected density
units. The column order is:

• Density of He, in 1/m3

• Density of O, in 1/m3

• Density of N2, in 1/m3

• Density of O2, in 1/m3

• Density of Ar, in 1/m3

• Total mass density, in kg/m3

• Density of H, in 1/m3

• Density of N, in 1/m3

• Anomalous oxygen number density, in 1/m3

density(6), total mass density, is the sum of the mass densities of He, O, N2, O2, Ar, H, and N.
Optionally, density(6) can include the mass density of anomalous oxygen making density(6), the
effective total mass density for drag.

Limitations
• This function has the limitations of the NRLMSISE-00 model. For more information, see the

NRLMSISE-00 model documentation.
• If array length, m, is 23 and all available inputs are not specified, the function assumes that

flags is set.
• f107Average and f107Daily values that generate the model correspond to the 10.7 cm radio
flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. This site
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provides both classes of values: https://www.ngdc.noaa.gov/stp/space-weather/solar-
data/solar-features/solar-radio/noontime-flux/penticton/.

See Also
atmoscira

External Websites
https://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio/noontime-flux/
penticton/

Introduced in R2007b
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atmospalt
Calculate pressure altitude based on ambient pressure

Syntax
pressureAltitude = atmospalt(pressure,action)

Description
pressureAltitude = atmospalt(pressure,action) computes the pressure altitude based on
ambient pressure. Pressure altitude is the altitude with specified ambient pressure in the 1976
Committee on Extension to the Standard Atmosphere (COESA) United States standard. Pressure
altitude is the same as the mean sea level (MSL) altitude.

This function extrapolates altitude values logarithmically below the pressure of 0.3961 Pa
(approximately 0.00006 psi) and above the pressure of 101,325 Pa (approximately 14.7 psi).

This function assumes that air is dry and an ideal gas.

Examples

Calculate Pressure Altitude at Static Pressure

Calculate the pressure altitude at a static pressure of 101,325 Pa with warnings for out-of-range
inputs.

h = atmospalt(101325)

h =
     0

Calculate Pressure Altitude at Array of Static Pressures

Calculate the pressure altitude at static pressures of 101,325 Pa and 26,436 Pa with errors for out-of-
range inputs.

h = atmospalt([101325 26436],'Error')

h =
   1.0e+04 *

         0    1.0000

Input Arguments
pressure — Ambient pressures
m-by-1 array
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Ambient pressures, specified as an m-by-1 array in pascals.
Data Types: double

action — Action
'Warning' (default) | 'Error' | 'None'

Action for out-of-range input, specified as:

• 'Error' — Displays warning and indicates that the input is out of range.
• 'Warning' — Displays error and indicates that the input is out of range.
• 'None' — Does not display warning or error.

Data Types: char | string

Output Arguments
pressureAltitude — Pressure altitudes or MSL altitudes
m-by-1 array

Pressure altitudes or MSL altitudes, returned as an m-by-1 array in meters.

References
[1] U.S. Standard Atmosphere. Washington, DC: U.S. Government Printing Office, 1976.

See Also
atmoscira | atmoscoesa | atmosisa | atmoslapse

Introduced in R2006b
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Body (Aero.Body)
Construct body object for use with animation object

Syntax
h = Aero.Body

Description
h = Aero.Body constructs a body for an animation object. The animation object is returned in h. To
use the Aero.Body object, you typically:

1 Create the animation body.
2 Configure or customize the body object.
3 Load the body.
4 Generate patches for the body (requires an axes from a figure).
5 Set the source for the time series data.
6 Move or update the body.

The animation object has the following properties:

By default, an Aero.Body object natively uses aerospace body coordinates for the body geometry
and the time series data. Convert time series data from other coordinate systems on the fly by
registering a different CoordTransformFcn function.

See Aero.Body for further details.

See Also
Aero.Body

Introduced in R2007a
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boundaryline
Draw boundary line plot

Syntax
boundaryline(x,y)
boundaryline(x,y,LineSpec)

boundaryline(___,Name,Value)
boundaryline(ax, ___)

bline = boundaryline( ___ )

Description
Use Default Boundary and Line Specification

boundaryline(x,y) plots a boundary line specified by the x data x and the y data y. The boundary
line contains hatch marks that extend from a fixed spacing and length along the boundary line.

boundaryline(x,y,LineSpec) plots a boundary line specified by the line specification linespec.

Specify Name,Value Arguments and Axis

boundaryline(___,Name,Value) plots a boundary line specified by one or more Name,Value
pairs. Adjust the look of the boundary line with the 'Hatches', 'HatchLength',
'HatchTangency', 'HatchAngle', 'HatchSpacing', and 'FlipBoundary' properties. Specify
name-value pair arguments after all other input arguments.

boundaryline(ax, ___) plots a boundary line on the specified axes ax instead of the current axes,
such as that from the gca function.

Return Boundary Line Object

bline = boundaryline( ___ ) returns a boundary line object using any of the input argument
combinations in the previous syntaxes. Specify arguments as previously listed.

Examples

Plot Boundary Line Sine Wave

Plot the boundary line of a sine wave.

x = linspace(0,2*pi);
y = sin(x);
boundaryline(x,y)

b = 

  BoundaryLine with properties:

 boundaryline
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              Color: [0 0 0]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
    MarkerFaceColor: 'none'
         MarkerSize: 6
       HatchSpacing: 0.1000
        HatchLength: 0.0300
         HatchAngle: 225
            Hatches: '/'
      HatchTangency: on
       FlipBoundary: off
              XData: [1×100 double]
              YData: [1×100 double]

  Show all properties

Plot Boundary Line with Third-Spaced Hatches

Plot a boundary line with third-spaced hatches. Return the boundary line object in b.

b = boundaryline([0,1],[0,1],'Hatches','//')

b = 

  BoundaryLine with properties:

              Color: [0 0 0]
          LineStyle: '-'
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          LineWidth: 0.5000
             Marker: 'none'
    MarkerFaceColor: 'none'
         MarkerSize: 6
       HatchSpacing: 0.1000
        HatchLength: 0.0300
         HatchAngle: 225
            Hatches: '//'
      HatchTangency: on
       FlipBoundary: off
              XData: [0 1]
              YData: [0 1]

  Show all properties

Plot Circle Boundary Line with Flipped Boundary

Plot a circle boundary line and flip the boundary after creation. Return the boundary line object in b.

t = linspace(0, 2*pi);
      x = cos(t);
      y = sin(t);
      b = boundaryline(x,y)
      b.FlipBoundary = true

b = 

  BoundaryLine with properties:
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              Color: [0 0 0]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
    MarkerFaceColor: 'none'
         MarkerSize: 6
       HatchSpacing: 0.1000
        HatchLength: 0.0300
         HatchAngle: 225
            Hatches: '/'
      HatchTangency: on
       FlipBoundary: off
              XData: [1×100 double]
              YData: [1×100 double]

  Show all properties = 

  BoundaryLine with properties:

              Color: [0 0 0]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
    MarkerFaceColor: 'none'
         MarkerSize: 6
       HatchSpacing: 0.1000
        HatchLength: 0.0300
         HatchAngle: 225
            Hatches: '/'
      HatchTangency: on
       FlipBoundary: on
              XData: [1×100 double]
              YData: [1×100 double]

  Show all properties
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Plot Dashed and Dotted Square Boundary Line in Red

Plot a red, dotted and dashed, square boundary line on a specified axis. a is the current axis.

a = gca;
boundaryline(a,[0,1,1,0,0],[0,0,1,1,0],'r-.')
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Input Arguments
x — x coordinate data
numeric vector

x coordinate data, specified as a numeric vector. The function uses this data to plot the x coordinates
of the boundary line.
Data Types: double

y — y coordinate data
numeric vector

y coordinate data, specified as a numeric vector. The function uses this data to plot the y coordinates
of the boundary line.
Data Types: double

ax — Valid axes
scalar handle
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Valid axes, specified as a scalar handle. By default, this function plots to the current axes, obtainable
with the gca function.
Data Types: double

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

Marker Description Resulting Marker
'o' Circle

'+' Plus sign

'*' Asterisk

'.' Point

'x' Cross

'_' Horizontal line

'|' Vertical line

's' Square

'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle
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Marker Description Resulting Marker
'p' Pentagram

'h' Hexagram

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note These properties are only a subset. For a full list, see Line Properties.

Example: 'Hatches','//'

Hatches — Hatch style
'/' (default) | '\' | '|'

Hatch style, specified as '/', '\', or '|'. The length of the string determines the hatch spacing. The
more hatches specified, the closer the spacing. For example:

• For half-spaced forward slants, use 'Hatches','//'.
• For a single-spaced perpendicular slant, use 'Hatches','|'.
• For third-spaced backward slants, use 'Hatches','\\\'.

Data Types: char | string

FlipBoundary — Flip boundary hatch angle
'off' (default) | 'on'

Flip boundary hatch angle by 180 degrees, specified as 'off' or 'on'.

• 'off' — Do not flip the hatch angle.
• 'on' — Flip the hatch angle by 180 degrees.

Data Types: char | string
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HatchTangency — Hatch angle tangency
'on' (default) | 'off'

Hatch angle tangency, specified as 'on' or 'off'.

• 'on' — Hatch angle is relative to the tangent of the line segment. The function determines the
tangency by evaluating the line integral traversing from the start to the end of the x and y data.

• 'off' — Hatch angle is relative to 0.

Data Types: char | string

HatchLength — Length of hatch segments
numeric scalar

Length of hatch segments, specified as a numeric scalar.
Data Types: double

HatchAngle — Angle of hatch segments
numeric scalar

Angle of hatch segments, specified as a numeric scalar. The function automatically calculates the
hatch angle if you specify a style for 'Hatches'.
Data Types: char | string

HatchSpacing — Spacing between hatch segments
numeric scalar

Spacing between hatch segments, specified as a numeric scalar.
Data Types: char | string

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has
markers, then the line width also affects the marker edges.
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The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

Output Arguments
bline — boundary line object
Aero.graphics.primitive.BoundaryLine object

Boundary line object, returned as an Aero.graphics.primitive.BoundaryLine object.

See Also
altitudeEnvelopeContour | line | shortPeriodCategoryAPlot |
shortPeriodCategoryBPlot | shortPeriodCategoryCPlot | plot | contour | gca

Introduced in R2021b
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Camera (Aero.Camera)
Construct camera object for use with animation object

Syntax
h = Aero.Camera

Description
h = Aero.Camera constructs a camera object h for use with an animation object. The camera object
uses the registered coordinate transform. By default, this is an aerospace body coordinate system.
Axes of custom coordinate systems must be orthogonal.

The animation object has the following properties:

By default, an Aero.Body object natively uses aerospace body coordinates for the body geometry
and the time series data. Convert time series data from other coordinate systems on the fly by
registering a different CoordTransformFcn function.

See Aero.Camera for further details.

See Also
Aero.Camera

Introduced in R2007a
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camheading
Package: matlabshared.satellitescenario

Set or get heading angle of camera for satellite scenario satellite scenario viewer

Syntax
camheading(viewer,heading)
outHeading = camheading(viewer, ___ )

Description
camheading(viewer,heading) sets the heading angle of the camera for the specified satellite
scenario viewer. Setting the heading angle shifts the camera left or right about its z - axis.

outHeading = camheading(viewer, ___ ) returns the heading angle of the camera. If the second
input is heading, then the function sets the output equal to the input pitch.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.2

heading — Heading angle of camera
360 (default) | scalar in the range [–360, 360]

Heading angle of the camera, specified as a scalar value in the range [–360, 360] degrees.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

2. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheight |
camheading

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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camheight
Package: matlabshared.satellitescenario

Set or get height of camera for satellite scenario viewer

Syntax
camheight(viewer,height)
heightOut = camheight(viewer, ___ )

Description
camheight(viewer,height) sets the ellipsoidal height of the camera for the specified satellite
scenario viewer.

heightOut = camheight(viewer, ___ ) returns the ellipsoidal height of the camera. If the
second input is height, then the function sets the output equal to the input height.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.3

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates” on page 2-63.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
camheight function sets the height to a value one meter above the surface.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics
“Satellite Scenario Key Concepts” on page 2-63

3. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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Introduced in R2021a
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campitch
Package: matlabshared.satellitescenario

Set or get pitch angle of camera for satellite scenario viewer

Syntax
campitch(viewer,pitch)
outPitch = campitch(viewer, ___ )

Description
campitch(viewer,pitch) sets the pitch angle of the camera for the specified satellite scenario
viewer. Setting the pitch angle tilts the camera up or down as shown in this figure..

outPitch = campitch(viewer, ___ ) returns the pitch angle of the camera. If the second input is
pitch, then the function sets the output equal to the input pitch.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.4

pitch — Pitch angle of camera
scalar the in the range [–90, 90]

Pitch angle of the camera, specified as a scalar the in the range [–90, 90] degrees. By default, the
pitch angle is –90 degrees, which means that camera points directly toward the surface of the globe.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

4. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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campos
Package: matlabshared.satellitescenario

Set or get position of camera for satellite scenario viewer

Syntax
campos(viewer,lat,lon)
campos(viewer,lat,lon,height)
campos(viewer)
[latOut,lonOut,heightOut] = campos( ___ )

Description
campos(viewer,lat,lon) sets the latitude and longitude of the camera for the specified satellite
scenario viewer.

campos(viewer,lat,lon,height) sets the latitude, longitude, and ellipsoidal height of the
camera. If you want to set only the height of the camera, use the camheight function instead.

campos(viewer) displays the latitude, longitude, and ellipsoidal height of the camera as a three-
element vector.

[latOut,lonOut,heightOut] = campos( ___ ) sets the position and then returns the latitude,
longitude, and height of the camera. Specify any input argument combinations from previous
syntaxes.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.5

lat — Geodetic latitude of camera
0 (default) | scalar in the range [-90, 90].

Geodetic latitude of the camera, specified as a scalar in the range [–90, 90] degrees.

lon — Geodetic longitude of camera
0 (default) | scalar in the range [-360, 360].

Geodetic longitude of the camera, specified as a scalar in the range [–360, 360].

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

5. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
campos function sets the height to a value one meter above the surface.

Output Arguments
latOut — Geodetic latitude of camera
numeric scalar

Geodetic latitude of the camera, returned as a numeric scalar in degrees.

lonOut — Geodetic longitude of camera
numeric scalar

Geodetic longitude of the camera, returned as a numeric scalar in degrees.

heightOut — Ellipsoidal height of camera
numeric scalar

Ellipsoidal height of the camera, returned as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates” on page 2-63.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | hideAll | camtarget | camheight | camheading

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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camroll
Package: matlabshared.satellitescenario

Set or get roll angle of camera for satellite scenario viewer

Syntax
camroll(viewer,roll)
outRoll = camroll(viewer, ___ )

Description
camroll(viewer,roll) sets the roll angle of the camera for the satellite scenario viewer. Setting
the roll angle rotates the camera around its x-axis.

outRoll = camroll(viewer, ___ ) returns the roll angle of the camera. If the second input is
roll, then the function sets the output equal to the input roll.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.6

roll — Roll angle of camera
scalar in the range [–360, 360]

Roll angle of the camera, specified as a scalar in the range [–360, 360] degrees.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

6. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campitch | campos | hideAll | camtarget | camheight | camheading

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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camtarget
Package: matlabshared.satellitescenario

Set camera target for satellite scenario viewer

Syntax
camtarget(viewer,target)

Description
camtarget(viewer,target) focuses the camera on the input satellite or ground station. The
camera follows the object and can be unlocked by calling camtarget on another satellite or ground
station or by double-clicking anywhere in the map.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.7

target — Target of camera
Satellite object | GroundStation object

Target of the camera, specified as a scalar Satellite or GroundStation object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camheight | camheading

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a

7. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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ClearTimer (Aero.FlightGearAnimation)
Clear and delete timer for animation of FlightGear flight simulator

Syntax
ClearTimer(h)
h.ClearTimer

Description
ClearTimer(h) and h.ClearTimer clear and delete the MATLAB timer for the animation of the
FlightGear flight simulator.

Examples
Clear and delete the MATLAB timer for animation of the FlightGear animation object, h:

h = Aero.FlightGearAnimation
h.SetTimer
h.ClearTimer
h.SetTimer('FGTimer')

See Also
SetTimer

Introduced in R2008b
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ClimbIndicator Properties
Control climb indicator appearance and behavior

Description
Climb indicators are components that represent a climb indicator. Properties control the appearance
and behavior of a climb indicator. Use dot notation to refer to a particular object and property.

f = uifigure;
climbindicator = uiaeroclimb(f);
climbindicator.ClimbRate = 100;

The climb rate indicator displays measurements for an aircraft climb rate in ft/min.

The needle covers the top semicircle, if the velocity is positive, and the lower semicircle, if the climb
rate is negative. The range of the indicator is from –Maximum feet per minute to Maximum feet per
minute. Major ticks indicate Maximum/4. Minor ticks indicate Maximum/8 and Maximum/80.

Properties
Climb Indicator

ClimbRate — Climb rate of aircraft
0 (default) | finite, real, and scalar numeric

Climb rate of the aircraft, specified as a finite, real, and scalar numeric, in ft/min.
Example: 60

Dependencies

Specifying this value changes the value of Value.
Data Types: double

MaximumRate — Maximum gauge scale values
0 (default) | finite, real, positive, and scalar numeric

Maximum gauge scale values, specified as a finite, real, positive, and scalar numeric, representing
the +/- maximum climb rate, in ft/min.
Example: 100
Data Types: double

Value — Climb rate of aircraft
0 (default) | finite, real, and scalar numeric

Climb rate of the aircraft, specified as a finite, real, and scalar numeric, in ft/min.
Example: 60
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Dependencies

Specifying this value changes the value of ClimbRate.
Data Types: double

Interactivity

Visible — Visibility of climb indicator
'on' (default) | on/off logical value

Visibility of the climb indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the climb indicator
is displayed on the screen. If the Visible property is set to 'off', then the entire climb indicator is
hidden, but you can still specify and access its properties.

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.

Enable — Operational state of climb indicator
'on' (default) | on/off logical value

Operational state of climb indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the appearance of the climb indicator indicates that the
climb indicator is operational.

• If you set this property to 'off', then the appearance of the climb indicator appears dimmed,
indicating that the climb indicator is not operational.

Position

Position — Location and size of climb indicator
[100 100 120 120] (default) | [left bottom width height]

Location and size of the climb indicator relative to the parent container, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the climb
indicator

bottom Distance from the inner bottom edge of the parent container to the
outer bottom edge of an imaginary box surrounding the climb
indicator
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Element Description
width Distance between the right and left outer edges of the climb

indicator
height Distance between the top and bottom outer edges of the climb

indicator

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of climb indicator
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the climb indicator, specified as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

OuterPosition — Outer location and size of climb indicator
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the climb indicator returned as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an climb rate indicator in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
gauge = uiaeroclimb(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the climb rate indicator span multiple rows or columns, specify the Row or Column property
as a two-element vector. For example, this climb rate indicator spans columns 2 through 3:

gauge.Layout.Column = [2 3];
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Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
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of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.
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The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Parent/Child

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.
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Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

Identifiers

Type — Type of graphics object
'uiaeroclimb'

This property is read-only.

Type of graphics object, returned as 'uiaerohorizon'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

See Also
uiaeroclimb

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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conicalSensor
Package: matlabshared.satellitescenario

Add conical sensor to satellite scenario

Syntax
conicalSensor(parent)
conicalSensor(parent,Name,Value)
S = conicalSensor( ___ )

Description
conicalSensor(parent) adds a default ConicalSensor object to parent which can be a
satellite, groundStation or gimbal.

conicalSensor(parent,Name,Value) specifies options using one or more name-value arguments.
For example, 'MaxViewAngle',90 specifies a field of view angle of 90 degrees.

S = conicalSensor( ___ ) returns a handle to the added conical sensor. Specify any input
argument combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60;                                      % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 21-Jun-2021 08:55:00
          StopTime: 26-Jun-2021 08:55:00
        SampleTime: 60
           Viewers: [0x0 matlabshared.satellitescenario.Viewer]
        Satellites: [1x0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;                                                                    % meters
eccentricity = 0;
inclination = 50;                                                                           % degrees
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rightAscensionOfAscendingNode = 0;                                                          % degrees
argumentOfPeriapsis = 0;                                                                    % degrees
trueAnomaly = 50;                                                                           % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
    argumentOfPeriapsis,trueAnomaly)

sat = 
  Satellite with properties:

               Name:  Satellite 1
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  sgp4
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
    "Latitude",42.3001,"Longitude",-71.3504)               % degrees

gs = 
  GroundStation with properties:

                 Name:  Location To Photograph
                   ID:  2
             Latitude:  42.3 degrees
            Longitude:  -71.35 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [0 1 1]
           MarkerSize:  10
            ShowLabel:  true
       LabelFontColor:  [0 1 1]
        LabelFontSize:  15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g = 
  Gimbal with properties:
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                Name:  Gimbal 3
                  ID:  3
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
      ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
        Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
           Receivers:  [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor = 
  ConicalSensor with properties:

                Name:  Conical sensor 4
                  ID:  4
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
        MaxViewAngle:  60 degrees
            Accesses:  [1x0 matlabshared.satellitescenario.Access]
         FieldOfView:  [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac = 
  Access with properties:

    Sequence:  [4 2]
    LineWidth:  1
    LineColor:  [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);
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Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
          Source                   Target             IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    __________________    ________________________    ______________    ____________________    ____________________    ________    __________    ________

    "Conical sensor 4"    "Location To Photograph"           1          21-Jun-2021 10:38:00    21-Jun-2021 10:55:00      1020           1            2   
    "Conical sensor 4"    "Location To Photograph"           2          21-Jun-2021 12:36:00    21-Jun-2021 12:58:00      1320           2            3   
    "Conical sensor 4"    "Location To Photograph"           3          21-Jun-2021 14:37:00    21-Jun-2021 15:01:00      1440           3            4   
    "Conical sensor 4"    "Location To Photograph"           4          21-Jun-2021 16:41:00    21-Jun-2021 17:04:00      1380           5            5   
    "Conical sensor 4"    "Location To Photograph"           5          21-Jun-2021 18:44:00    21-Jun-2021 19:07:00      1380           6            6   
    "Conical sensor 4"    "Location To Photograph"           6          21-Jun-2021 20:46:00    21-Jun-2021 21:08:00      1320           7            7   
    "Conical sensor 4"    "Location To Photograph"           7          21-Jun-2021 22:50:00    21-Jun-2021 23:04:00       840           8            8   
    "Conical sensor 4"    "Location To Photograph"           8          22-Jun-2021 09:51:00    22-Jun-2021 10:02:00       660          13           13   
    "Conical sensor 4"    "Location To Photograph"           9          22-Jun-2021 11:46:00    22-Jun-2021 12:07:00      1260          14           15   
    "Conical sensor 4"    "Location To Photograph"          10          22-Jun-2021 13:46:00    22-Jun-2021 14:10:00      1440          15           16   
    "Conical sensor 4"    "Location To Photograph"          11          22-Jun-2021 15:50:00    22-Jun-2021 16:13:00      1380          16           17   
    "Conical sensor 4"    "Location To Photograph"          12          22-Jun-2021 17:53:00    22-Jun-2021 18:16:00      1380          18           18   
    "Conical sensor 4"    "Location To Photograph"          13          22-Jun-2021 19:55:00    22-Jun-2021 20:18:00      1380          19           19   
    "Conical sensor 4"    "Location To Photograph"          14          22-Jun-2021 21:58:00    22-Jun-2021 22:16:00      1080          20           20   
    "Conical sensor 4"    "Location To Photograph"          15          23-Jun-2021 10:56:00    23-Jun-2021 11:16:00      1200          26           27   
    "Conical sensor 4"    "Location To Photograph"          16          23-Jun-2021 12:56:00    23-Jun-2021 13:19:00      1380          27           28   
      ⋮

Calculate the maximum revisit time in hours.
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startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes)                             % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

Input Arguments
parent — Element of scenario to which conicalSensor is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the conicalSensor is added, specified as a Satellite,
GroundStation, or Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the conical
sensor to 20, 35, and 10 degrees, respectively.
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Name — conicalSensor name
"conicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling conicalSensor. After you call conicalSensor, this property
is read-only.

conicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one conicalSensor is added, specify Name as a string scalar or a character vector.
• If multiple conicalSensors are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the conicalSensor added by the conicalSensor object
function. If another conicalSensor of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180]

Field of view angle, specified as a scalar in the range [0, 180]. Units are in degrees.

Output Arguments
S — Conical sensor
ConicalSensor object

Conical sensor attached to parent, returned as a ConicalSensor object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer
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Functions
show | play | hide | groundStation | access | gimbal | satellite

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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ConicalSensor
Conical sensor object belonging to satellite scenario

Description
ConicalSensor defines a conical sensor object belonging to a satellite scenario.

Creation
You can create the ConicalSensor object using the conicalSensor object function of the
Satellite or GroundStation objects.

Properties
Name — ConicalSensor name
"ConicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

ConicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one ConicalSensor is added, specify Name as a string scalar or a character vector.
• If multiple ConicalSensors are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the ConicalSensor added by the ConicalSensor object
function. If another ConicalSensor of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — ConicalSensor ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

ConicalSensor ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.
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MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180]

Field of view angle, specified as a scalar in the range [0, 180]. Units are in degrees.

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

Access analysis objects, specified as a row vector of Access objects.

FieldOfView — Field of view objects
row vector of FieldOfView objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

Field of view objects, specified as a scalar of FieldOfView objects.

Object Functions
access Add access analysis objects to satellite scenario
fieldOfView Visualize field of view of conical sensor

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60;                                      % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 21-Jun-2021 08:55:00
          StopTime: 26-Jun-2021 08:55:00
        SampleTime: 60
           Viewers: [0x0 matlabshared.satellitescenario.Viewer]
        Satellites: [1x0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;                                                                    % meters
eccentricity = 0;
inclination = 50;                                                                           % degrees
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rightAscensionOfAscendingNode = 0;                                                          % degrees
argumentOfPeriapsis = 0;                                                                    % degrees
trueAnomaly = 50;                                                                           % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
    argumentOfPeriapsis,trueAnomaly)

sat = 
  Satellite with properties:

               Name:  Satellite 1
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  sgp4
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
    "Latitude",42.3001,"Longitude",-71.3504)               % degrees

gs = 
  GroundStation with properties:

                 Name:  Location To Photograph
                   ID:  2
             Latitude:  42.3 degrees
            Longitude:  -71.35 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [0 1 1]
           MarkerSize:  10
            ShowLabel:  true
       LabelFontColor:  [0 1 1]
        LabelFontSize:  15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g = 
  Gimbal with properties:
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                Name:  Gimbal 3
                  ID:  3
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
      ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
        Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
           Receivers:  [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor = 
  ConicalSensor with properties:

                Name:  Conical sensor 4
                  ID:  4
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
        MaxViewAngle:  60 degrees
            Accesses:  [1x0 matlabshared.satellitescenario.Access]
         FieldOfView:  [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac = 
  Access with properties:

    Sequence:  [4 2]
    LineWidth:  1
    LineColor:  [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

 ConicalSensor

4-239



Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
          Source                   Target             IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    __________________    ________________________    ______________    ____________________    ____________________    ________    __________    ________

    "Conical sensor 4"    "Location To Photograph"           1          21-Jun-2021 10:38:00    21-Jun-2021 10:55:00      1020           1            2   
    "Conical sensor 4"    "Location To Photograph"           2          21-Jun-2021 12:36:00    21-Jun-2021 12:58:00      1320           2            3   
    "Conical sensor 4"    "Location To Photograph"           3          21-Jun-2021 14:37:00    21-Jun-2021 15:01:00      1440           3            4   
    "Conical sensor 4"    "Location To Photograph"           4          21-Jun-2021 16:41:00    21-Jun-2021 17:04:00      1380           5            5   
    "Conical sensor 4"    "Location To Photograph"           5          21-Jun-2021 18:44:00    21-Jun-2021 19:07:00      1380           6            6   
    "Conical sensor 4"    "Location To Photograph"           6          21-Jun-2021 20:46:00    21-Jun-2021 21:08:00      1320           7            7   
    "Conical sensor 4"    "Location To Photograph"           7          21-Jun-2021 22:50:00    21-Jun-2021 23:04:00       840           8            8   
    "Conical sensor 4"    "Location To Photograph"           8          22-Jun-2021 09:51:00    22-Jun-2021 10:02:00       660          13           13   
    "Conical sensor 4"    "Location To Photograph"           9          22-Jun-2021 11:46:00    22-Jun-2021 12:07:00      1260          14           15   
    "Conical sensor 4"    "Location To Photograph"          10          22-Jun-2021 13:46:00    22-Jun-2021 14:10:00      1440          15           16   
    "Conical sensor 4"    "Location To Photograph"          11          22-Jun-2021 15:50:00    22-Jun-2021 16:13:00      1380          16           17   
    "Conical sensor 4"    "Location To Photograph"          12          22-Jun-2021 17:53:00    22-Jun-2021 18:16:00      1380          18           18   
    "Conical sensor 4"    "Location To Photograph"          13          22-Jun-2021 19:55:00    22-Jun-2021 20:18:00      1380          19           19   
    "Conical sensor 4"    "Location To Photograph"          14          22-Jun-2021 21:58:00    22-Jun-2021 22:16:00      1080          20           20   
    "Conical sensor 4"    "Location To Photograph"          15          23-Jun-2021 10:56:00    23-Jun-2021 11:16:00      1200          26           27   
    "Conical sensor 4"    "Location To Photograph"          16          23-Jun-2021 12:56:00    23-Jun-2021 13:19:00      1380          27           28   
      ⋮

Calculate the maximum revisit time in hours.
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startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes)                             % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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convacc
Convert from acceleration units to desired acceleration units

Syntax
convertedValues = convacc(valuesToConvert, inputAccelUnits, outputAccelUnits)

Description
convertedValues = convacc(valuesToConvert, inputAccelUnits, outputAccelUnits)
computes the conversion factor from specified input acceleration units to specified output
acceleration units. It then applies the conversion factor to the input to produce the output in the
desired units.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values that the function is to convert. All values must have the
same unit conversions from inputAccelUnits to outputAccelUnits.

inputAccelUnits

Specified input acceleration units. Supported units are:

'ft/s^2' Feet per second squared
'm/s^2' Meters per second squared
'km/s^2' Kilometers per second squared
'in/s^2' Inches per second squared
'km/h-s' Kilometers per hour per second
'mph/s' Miles per hour per second
'G's' G-force (G's) acceleration

outputAccelUnits

Specified output acceleration units. Supported units are:

'ft/s^2' Feet per second squared
'm/s^2' Meters per second squared
'km/s^2' Kilometers per second squared
'in/s^2' Inches per second squared
'km/h-s' Kilometers per hour per second
'mph/s' Miles per hour per second
'G''s' g-units
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Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.

Examples
Convert three accelerations from feet per second squared to meters per second squared:

a = convacc([3 10 20],'ft/s^2','m/s^2')

a =

    0.9144    3.0480    6.0960

See Also
convang | convangacc | convangvel | convdensity | convforce | convlength | convmass |
convpres | convtemp | convvel

Introduced in R2006b
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convang
Convert from angle units to desired angle units

Syntax
convertedValues = convang(valuesToConvert, inputAngleUnits, outputAngleUnits)

Description
convertedValues = convang(valuesToConvert, inputAngleUnits, outputAngleUnits)
computes the conversion factor from specified input angle units to specified output angle units. It
then applies the conversion factor to the input to produce the output in the desired units.
inputAngleUnits and outputAngleUnits are character vectors or strings.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values the function is to convert. All values must have the same
unit conversions from inputAngleUnits to outputAngleUnits.

inputAngleUnits

Specified input angle units. Supported units are:

'deg' Degrees
'rad' Radians
'rev' Revolutions

outputAngleUnits

Specified output angle units. Supported units are:

'deg' Degrees
'rad' Radians
'rev' Revolutions

Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.

Examples
Convert three angles from degrees to radians:
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a = convang([3 10 20],'deg','rad')

a =

    0.0524    0.1745    0.3491

See Also
convacc | convangacc | convangvel | convdensity | convforce | convlength | convmass |
convpres | convtemp | convvel

Introduced in R2006b
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convangacc
Convert from angular acceleration units to desired angular acceleration units

Syntax
convertedValues = convangacc(valuesToConvert, inputAngularUnits,
outputAngularUnits)

Description
convertedValues = convangacc(valuesToConvert, inputAngularUnits,
outputAngularUnits) computes the conversion factor from specified input angular acceleration
units to specified output angular acceleration units. It then applies the conversion factor to the input
to produce the output in the desired units.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values that the function is to convert. All values must have the
same unit conversions from inputAngularUnits to outputAngularUnits.

inputAngularUnits

Specified input angular acceleration units. Supported units are:

'deg/s^2' Degrees per second squared
'rad/s^2' Radians per second squared
'rpm/s' Revolutions per minute per second

outputAngularUnits

Specified output angular acceleration units. Supported units are:

'deg/s^2' Degrees per second squared
'rad/s^2' Radians per second squared
'rpm/s' Revolutions per minute per second

Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.

Examples
Convert three angular accelerations from degrees per second squared to radians per second squared:
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a = convangacc([0.3 0.1 0.5],'deg/s^2','rad/s^2')

a =

    0.0052    0.0017    0.0087

See Also
convacc | convang | convangvel | convdensity | convforce | convlength | convmass |
convpres | convtemp | convvel

Introduced in R2006b
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convangvel
Convert from angular velocity units to desired angular velocity units

Syntax
convertedValues = convangvel(valuesToConvert, inputAngularVelocityUnits,
outputAngularVelocityUnits)

Description
convertedValues = convangvel(valuesToConvert, inputAngularVelocityUnits,
outputAngularVelocityUnits) computes the conversion factor from specified input angular
velocity units to specified output angular velocity units. It then applies the conversion factor to the
input to produce the output in the desired units.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values that the function is to convert. All values must have the
same unit conversions from inputAngularVelocityUnits to outputAngularVelocityUnits.

inputAngularVelocityUnits

Specified input angular velocity units. Supported units are:

'deg/s' Degrees per second
'rad/s' Radians per second
'rpm' Revolutions per minute

outputAngularVelocityUnits

Specified output angular velocity units. Supported units are:

'deg/s' Degrees per second
'rad/s' Radians per second
'rpm' Revolutions per minute

Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.

Examples
Convert three angular velocities from degrees per second to radians per second:
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a = convangvel([0.3 0.1 0.5],'deg/s','rad/s')

a =

    0.0052    0.0017    0.0087

See Also
convacc | convang | convangacc | convdensity | convforce | convlength | convmass |
convpres | convtemp | convvel

Introduced in R2006b
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convdensity
Convert from density units to desired density units

Syntax
convertedValues = convdensity(valuesToConvert, inputDensityUnits,
outputDensityUnits)

Description
convertedValues = convdensity(valuesToConvert, inputDensityUnits,
outputDensityUnits) computes the conversion factor from specified input density units to
specified output density units. It then applies the conversion factor to the input to produce the output
in the desired units.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values that the function is to convert. All values must have the
same unit conversions from inputDensityUnits to outputDensityUnits.

inputDensityUnits

Specified input density units. Supported units are:

'lbm/ft^3' Pound mass per feet cubed
'kg/m^3' Kilograms per meters cubed
'slug/ft^3' Slugs per feet cubed
'lbm/in^3' Pound mass per inch cubed

outputDensityUnits

Specified output density units. Supported units are:

'lbm/ft^3' Pound mass per feet cubed
'kg/m^3' Kilograms per meters cubed
'slug/ft^3' Slugs per feet cubed
'lbm/in^3' Pound mass per inch cubed

Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.
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Examples
Convert three densities from pound mass per feet cubed to kilograms per meters cubed:

a = convdensity([0.3 0.1 0.5],'lbm/ft^3','kg/m^3')

a =

    4.8055    1.6018    8.0092

See Also
convacc | convang | convangacc | convangvel | convforce | convlength | convmass |
convpres | convtemp | convvel

Introduced in R2006b
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convforce
Convert from force units to desired force units

Syntax
convertedValues = convforce(valuesToConvert, inputForceUnits,
outputForceUnits)

Description
convertedValues = convforce(valuesToConvert, inputForceUnits,
outputForceUnits) computes the conversion factor from specified input force units to specified
output force units. It then applies the conversion factor to the input to produce the output in the
desired units.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values that the function is to convert. All values must have the
same unit conversions from inputForceUnits to outputForceUnits.

inputForceUnits

Specified input force units. Supported units are:

'lbf' Pound force
'N' Newton

outputForceUnits

Specified output force units. Supported units are:

'lbf' Pound force
'N' Newton

Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.

Examples
Convert three forces from pound force to newtons:

a = convforce([120 1 5],'lbf','N')
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a =

  533.7866    4.4482   22.2411

See Also
convacc | convang | convangacc | convangvel | convdensity | convlength | convmass |
convpres | convtemp | convvel

Introduced in R2006b
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convlength
Convert from length units to desired length units

Syntax
convertedValues = convlength(valuesToConvert,inputLengthUnits,
outputLengthUnits)

Description
convertedValues = convlength(valuesToConvert,inputLengthUnits,
outputLengthUnits) converts valuesToConvert from original units to desired units using
computed conversion factor.

Examples

Convert Lengths

Convert three lengths from feet to meters.

a = convlength([3 10 20],'ft','m')

a = 1×3

    0.9144    3.0480    6.0960

Input Arguments
valuesToConvert — Input lengths to convert
floating-point array of m-by-n values

Input lengths to convert, specified as a floating-point array of m-by-n values, in original units. All
values must have the same units.
Data Types: double

inputLengthUnits — Original unit
'ft' | 'm' | 'km' | 'in' | 'naut mi'

Original unit of input lengths, specified as:

'ft' Feet
'm' Meters
'km' Kilometers
'in' Inches
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'mi' Miles
'naut mi' Nautical miles

Data Types: char | string

outputLengthUnits — Units to convert to
'ft' | 'm' | 'km' | 'in' | 'naut mi'

New unit to convert to, specified as:

'ft' Feet
'm' Meters
'km' Kilometers
'in' Inches
'mi' Miles
'naut mi' Nautical miles

Data Types: char | string

Output Arguments
convertedValues — Converted lengths
floating-point array of size m-by-n values

Converted lengths, returned in new units.

See Also
convacc | convang | convangacc | convangvel | convdensity | convforce | convmass |
convpres | convtemp | convvel

Introduced in R2006b
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convmass
Convert from mass units to desired mass units

Syntax
convertedValues = convmass(valuesToConvert, inputMassUnits, outputMassUnits)

Description
convertedValues = convmass(valuesToConvert, inputMassUnits, outputMassUnits)
computes the conversion factor from specified input mass units to specified output mass units. It then
applies the conversion factor to the input to produce the output in the desired units.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values that the function is to convert. All values must have the
same unit conversions from inputMassUnits to outputMassUnits.

inputMassUnits

Specified input mass units. Supported units are:

'lbm' Pound mass
'kg' Kilograms
'slug' Slugs

outputMassUnits

Specified output mass units. Supported units are:

'lbm' Pound mass
'kg' Kilograms
'slug' Slugs

Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.

Examples
Convert three masses from pound mass to kilograms:

a = convmass([3 1 5],'lbm','kg')

4 Functions

4-256



a =

    1.3608    0.4536    2.2680

See Also
convacc | convang | convangacc | convangvel | convdensity | convforce | convlength |
convpres | convtemp | convvel

Introduced in R2006b
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convpres
Convert from pressure units to desired pressure units

Syntax
convertedValues= convpres(valuesToConvert, inputPressureUnits,
outputPressureUnits)

Description
convertedValues= convpres(valuesToConvert, inputPressureUnits,
outputPressureUnits) computes the conversion factor from specified input pressure units to
specified output pressure units. It then applies the conversion factor to the input to produce the
output in the desired units.

Input Arguments
valuesToConvert

Floating-point array of size m-by-n values that the function is to convert. All values must have the
same unit conversions from inputPressureUnits to outputPressureUnits.

inputPressureUnits

Specified input pressure units. Supported units are:

'psi' Pound force per square inch
'Pa' Pascal
'psf' Pound force per square foot
'atm' Atmosphere

outputPressureUnits

Specified output pressure units. Supported units are:

'psi' Pound force per square inch
'Pa' Pascal
'psf' Pound force per square foot
'atm' Atmosphere

Output Arguments
convertedValues

Floating-point array of size m-by-n values that the function has converted.
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Examples
Convert two pressures from pound force per square inch to atmospheres:

a = convpres([14.696  35],'psi','atm')

a =

    1.0000    2.3816

See Also
convacc | convang | convangacc | convangvel | convdensity | convforce | convlength |
convmass | convtemp | convvel

Introduced in R2006b

 convpres

4-259



convtemp
Convert to desired temperature units

Syntax
convertedValues = convtemp(valuesToConvert,inputTemperatureUnits,
outputTemperatureUnits)

Description
convertedValues = convtemp(valuesToConvert,inputTemperatureUnits,
outputTemperatureUnits) computes the conversion factor from specified input temperature units
(inputTemperatureUnits) to specified output temperature units (outputTemperatureUnits).
The function then applies the conversion factor to the valuesToConvert.

Examples

Convert Temperatures

Convert temperatures

Convert three temperatures from degrees Celsius to degrees Fahrenheit.

a = convtemp([0 100 15],'C','F')

a = 1×3

   32.0000  212.0000   59.0000

Input Arguments
valuesToConvert — Temperatures to convert
m-by-n floating-point array

Temperatures to convert, specified as an m-by-n floating-point array. All values must have the same
units to be converted.
Data Types: double | single

inputTemperatureUnits — Unit of temperature to convert
'K' | 'F' | 'C' | 'R'

Unit of temperature to convert:

'K' Kelvin
'F' Degree Fahrenheit
'C' Degree Celsius
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'R' Degree Rankine

Data Types: char | string

outputTemperatureUnits — Unit of temperature to convert to
'K' | 'F' | 'C' | 'R'

Unit of temperature to convert to:

'K' Kelvin
'F' Degree Fahrenheit
'C' Degree Celsius
'R' Degree Rankine

Data Types: char | string

Output Arguments
convertedValues — Converted temperature
m-by-n floating-point array

Converted temperature, output as a floating-point array.

See Also
convacc | convang | convangacc | convangvel | convdensity | convforce | convlength |
convmass | convpres | convvel

Topics
“Floating-Point Numbers”

Introduced in R2006b
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convvel
Convert from current velocity units to desired velocity units

Syntax
convertedValues = convvel(valuesToConvert,inputVelocityUnits,
outputVelocityUnits)

Description
convertedValues = convvel(valuesToConvert,inputVelocityUnits,
outputVelocityUnits) converts all velocity values from input velocity units to output velocity
units. All values have the same unit conversions from inputVelocityUnits to
outputVelocityUnits.

Examples

Convert Three Velocities

Convert three velocities from feet per minute to meters per second.

a = convvel([30 100 250],'ft/min','m/s')

a =

    0.1524    0.5080    1.2700

Input Arguments
valuesToConvert — Velocity values to convert
floating-point array of size m-by-n

Velocity values to convert, specified as floating-point array of size m-by-n.
Data Types: double

inputVelocityUnits — Input velocity units
'ft/s' | 'm/s' | 'km/s' | 'in/s' | 'km/h' | 'mph' | 'kts' | 'ft/min'

Input velocity units, specified as one of these values.

'ft/s' Feet per second
'm/s' Meters per second
'km/s' Kilometers per second
'in/s' Inches per second
'km/h' Kilometers per hour
'mph' Miles per hour
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'kts' Knots
'ft/min' Feet per minute

Data Types: string

outputVelocityUnits — Output velocity units
'ft/s' | 'm/s' | 'km/s' | 'in/s' | 'km/h' | 'mph' | 'kts' | 'ft/min'

Output velocities, specified as one of these values.

'ft/s' Feet per second
'm/s' Meters per second
'km/s' Kilometers per second
'in/s' Inches per second
'km/h' Kilometers per hour
'mph' Miles per hour
'kts' Knots
'ft/min' Feet per minute

Data Types: string

Output Arguments
convertedValues — Output velocities
scalar | array

Output velocities, returned as an array or scalar in specified units.

See Also
convacc | convang | convangacc | convangvel | convdensity | convforce | convlength |
convmass | convpres | convtemp

Introduced in R2006b
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correctairspeed
Convert from one of other two airspeeds to equivalent airspeed (EAS), calibrated airspeed (CAS), or
true airspeed (TAS)

Syntax
outputAirpseed = correctairspeed(inputAirspeed, speedOfSound, pressure0,
inputAirspeedType, outputAirspeedType)
outputAirpseed = correctairspeed(inputAirspeed, speedOfSound, pressure0,
inputAirspeedType, outputAirspeedType, method)

Description
outputAirpseed = correctairspeed(inputAirspeed, speedOfSound, pressure0,
inputAirspeedType, outputAirspeedType) computes the conversion factor from specified
input airspeed to specified output airspeed using speed of sound and static pressure. The function
applies the conversion factor to the input airspeed to produce the output in the desired airspeed.

outputAirpseed = correctairspeed(inputAirspeed, speedOfSound, pressure0,
inputAirspeedType, outputAirspeedType, method) uses the specified method to compute
the conversion factor.

Input Arguments
inputAirspeed

Floating-point array of size m-by-1 of airspeeds in meters per second. All values must have the same
airspeed conversions from inputAirspeedType to outputAirspeedType.

speedOfSound

Floating-point array of size m-by-1 of speeds of sound, in meters per second.

pressure0

Floating-point array of size m-by-1 of static air pressures, in pascal.

inputAirspeedType

Input airspeed, specified as a string. Supported airspeeds are:

'TAS' True airspeed
'CAS' Calibrated airspeed
'EAS' Equivalent airspeed

outputAirspeedType

Output airspeed, specified as a string. Supported airspeeds are:
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'TAS' True airspeed
'CAS' Calibrated airspeed
'EAS' Equivalent airspeed

method

Specify a method, as a string, for computing the conversion factor.

'TableLookup' (Default) Generate output airspeed by looking up or estimating table
values based on inputs inputAirspeed, speedOfSound, and
pressure0.

The 'TableLookup' method is not recommended for either of these
instances:

• speedOfSound less than 200 m/s or greater than 350 m/s.
• pressure0 less than 1000 Pa or greater than 106,500 Pa.

Using the 'TableLookup' method in these instances causes
inaccuracies.

'Equation' Compute output airspeed directly using input values
inputAirspeed, speedOfSound, and pressure0.

Calculations involving supersonic airspeeds (greater than Mach 1)
require an iterative computation. If the function does not conclude
within 30 iterations, it displays an error message.

The correctairspeed function automatically uses the 'Equation' method for any of these
instances:

• Conversion with inputAirspeedType set to 'TAS' and outputAirspeedType set to 'EAS'.
• Conversion with inputAirspeedType set to 'EAS' and outputAirspeedType set to 'TAS'.
• Conversion with inputAirspeed is greater than five times the speed of sound at sea level

(approximately 1700 m/s).

Output Arguments
outputAirpseed

Floating-point array of size m-by-1 of airspeeds in meters per second.

Examples
Convert three airspeeds from true airspeed ('TAS') to equivalent airspeed ('EAS') at 1,000 ms using
the 'TableLookup' method:
ain = [25.7222; 10.2889; 3.0867];
as = correctairspeed(ain,336.4,89874.6,'TAS','CAS','TableLookup')
as =

   24.5077
    9.8024
    2.9407
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Convert airspeeds from calibrated airspeed ('CAS') to equivalent airspeed ('EAS') at 1,000 m and 0
m using the 'Equation' method:

ain = [25.7222; 10.2889; 3.0867];
sos = [336.4; 340.3; 340.3];
P0 = [ 89874.6; 101325; 101325];
as = correctairspeed(ain,sos,P0,'CAS','EAS','Equation')
as =

   25.7199
   10.2889
    3.0867

Convert airspeed from true airspeed ('TAS') to equivalent airspeed ('EAS') at 15,000 meters. Use
the atmoscoesa function to first calculate the speed of sound (sos) and static air pressure (P0):

ain = 376.25;
[~, sos, P0, ~] = atmoscoesa(15000);
as = correctairspeed( ain, sos, P0, 'EAS', 'TAS')
as =

  946.2572

Limitations
This function assumes that air flow is compressible dry air with constant specific heat ratio (gamma).

References
Lowry, J.T., Performance of Light Aircraft, AIAA Education Series, Washington, D.C., 1999

Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, August1986

Gracey, William, Measurement of Aircraft Speed and Altitude, NASA Reference Publication 1046,
1980.

See Also
airspeed | atmoscoesa | atmosisa | atmoslapse | atmosnonstd

Introduced in R2006b
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createBody
Class: Aero.Animation
Package: Aero

Create body and its associated patches in animation

Syntax
idx = createBody(h,bodyDataSrc)
idx = h.createBody(bodyDataSrc)
idx = createBody(h,bodyDataSrc,geometrysource)
idx = h.createBody(bodyDataSrc,geometrysource)

Description
idx = createBody(h,bodyDataSrc) and idx = h.createBody(bodyDataSrc) create a new
body using the bodyDataSrc, makes its patches, and adds it to the animation object h. This
command assumes a default geometry source type set to Auto.

idx = createBody(h,bodyDataSrc,geometrysource) and idx =
h.createBody(bodyDataSrc,geometrysource) create a new body using the bodyDataSrc file,
makes its patches, and adds it to the animation object h. geometrysource is the geometry source
type for the body.

Input Arguments
bodyDataSrc Source of data for body.
geometrysource Geometry source type for body:

• Auto — Recognizes .mat extensions as MAT-files, .ac extensions as Ac3d
files, and structures containing fields of name, faces, vertices, and
cdata as MATLAB variables. Default.

• Variable — Recognizes structures containing fields of name, faces,
vertices, and cdata as MATLAB variables.

• MatFile — Recognizes .mat extensions as MAT-files.
• Ac3d — Recognizes .ac extensions as Ac3d files.
• Custom — Recognizes custom extensions.

Output Arguments
idx Index of the body to be created.

Examples
Create a body for the animation object, h. Use the Ac3d format data source pa24-250_orange.ac,
for the body.
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h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
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Aero.FixedWing.criteriaTable
Class: Aero.FixedWing
Package: Aero

Construct criteria table for fixed-wing static stability analysis

Syntax
criteriatable = Aero.FixedWing.criteriaTable()

Description
criteriatable = Aero.FixedWing.criteriaTable() constructs a criteria table for fixed-wing
static stability analysis.

Output Arguments
criteriatable — Criteria table
6-by-N table

Criteria table, returned as a 6-by-N table where N is number of variables. By default, this table
appears as follows:

 U V W Alpha Beta P Q R
FX "<" '' '' '' '' '' '' ''
FY '' '<' '' '' '' '' '' ''
FZ '' '' '<' '' '' '' '' ''
L '' '' '' '' '' '<' '<' ''
M '>' '' '' '<' '' '' '<' ''
N '' '' '' '' '>' '' '' '<'

Examples

Calculate Static Stability of Cessna C182

Calculate the static stability of a Cessna C182.

[C182, CruiseState] = astC182();
stability = staticStability(C182, CruiseState)

stability =

  6×8 table

             U           V           W         Alpha        Beta         P           Q           R    
          ________    ________    ________    ________    ________    ________    ________    ________

    FX    "Stable"    ""          ""          ""          ""          ""          ""          ""      
    FY    ""          "Stable"    ""          ""          ""          ""          ""          ""      
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    FZ    ""          ""          "Stable"    ""          ""          ""          ""          ""      
    L     ""          ""          ""          ""          "Stable"    "Stable"    ""          ""      
    M     "Stable"    ""          ""          "Stable"    ""          ""          "Stable"    ""      
    N     ""          ""          ""          ""          "Stable"    ""          ""          "Stable"

See Also
Aero.FixedWing | staticStability

Introduced in R2021a
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datcomimport
Bring DATCOM file into MATLAB environment

Syntax
aero = datcomimport(file)
aero = datcomimport(file,usenan)
aero = datcomimport(file,usenan,verbose)
aero = datcomimport(file,usenan,verbose,filetype)

Description
aero = datcomimport(file) imports aerodynamic data from file into aero. Before reading the
United States Air Force Digital DATCOM file, datcomimport initializes values to 99999 when there
is not a full set of data for the DATCOM case.

aero = datcomimport(file,usenan) replaces data points with NaN or zero where no DATCOM
methods exist or where the method is not applicable.

aero = datcomimport(file,usenan,verbose) displays the status of the DATCOM file being
read in the MATLAB Command Window.

aero = datcomimport(file,usenan,verbose,filetype) imports a DATCOM of a particular
USAF Digital DATCOM file type.

Examples

Read 1976 Version of Digital DATCOM File

Read the 1976 version Digital DATCOM output file astdatcom.out.

aero = datcomimport('astdatcom.out')

aero =

  1×1 cell array

    {1×1 struct}

Read USAF Digital DATCOM Output File Replacing Data Points with Zeroes

Read the 1976 Digital DATCOM output file astdatcom.out using zeros to replace data points where
no DATCOM methods exist. Use usenanvar variable to set usenan argument to false.

usenanvar = false;
aero = datcomimport('astdatcom.out',usenanvar)

aero =
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  1×1 cell array

    {1×1 struct}

Read USAF Digital DATCOM Output File Replacing Data Points with Zeroes Specifying
Verbose Settings

Read the 1976 Digital DATCOM output file astdatcom.out using zeros to replace data points where
no DATCOM methods exist and displaying status information in the MATLAB Command Window. Use
usenanvar variable to set usenan argument to false.

usenanvar = false;
aero = datcomimport('astdatcom.out',usenanvar,1)

Loading file 'astdatcom.out'.
Reading input data from file 'astdatcom.out'.
Reading output data from file 'astdatcom.out'.
aero =

  1×1 cell array

    {1×1 struct}

Read USAF Digital DATCOM Output File Replacing Data Points with Zeroes and Specifying
Verbose Settings and DATCOM File Type

Read the 1976 Digital DATCOM output file astdatcom.out using NaNs to replace data points where
no DATCOM methods exist, displaying status information in the MATLAB Command Window, and
specifying the DATCOM output file type. Use usenanvar variable to set usenan argument to true.

usenanvar = true;
aero = datcomimport('astdatcom.out',usenanvar,1,6)

Loading file 'astdatcom.out'.
Reading input data from file 'astdatcom.out'.
Reading output data from file 'astdatcom.out'.
aero =

  1×1 cell array

    {1×1 struct}

Input Arguments
file — DATCOM file
character vector | cell array of file names

Digital DATCOM output file name, specified as a character vector or cell array of file names. This file
is generated from USAF Digital DATCOM files.

The datcomimport supports only these USAF Digital DATCOM files. You can rename the output files
before importing them.
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Output File from DATCOM File Type Versions
for006.dat by all DATCOM versions 1976, 1999, 2007, 2008, 2011, and 2014
for021.dat by DATCOM 2007, DATCOM 2008,
DATCOM 2011, and DATCOM 2014

2007, 2008, 2011, and 2014

for042.csv by DATCOM 2008, DATCOM 2011, and
DATCOM 2014

2008, 2011, and 2014

Example: for006.dat

Dependencies

The datcomimport function accepts DATCOM files of the type specified by the filetype argument.
By default, the file type is 6 ( for006.dat, output by all DATCOM versions).
Data Types: char | string

usenan — Replace data points
true (default) | false

While importing the DATCOM file, replace data points with NaNs (true) or zeroes (false) where no
DATCOM methods exist or where methods are not applicable.
Data Types: char | string

verbose — Read status
2 (default) | 0 | 1

Read status of import of DATCOM file, specified as:

• 0 — No status information.
• 1 — Display a status information as a progress bar.
• 2 — Display status information in the MATLAB Command Window.

Data Types: double

filetype — DATCOM file type
6 (default) | 2142

DATCOM file type, specified as 6, 21, or 42.

Depending on the file type, the datcomimport function expects the imported DATCOM files to
contain the fields listed in the Expected Fields column.
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filetype Output File from DATCOM File Type Versions Expected Fields
6 for006.dat by all DATCOM

versions
1976, 1999, 2007, 2008,
2011, and 2014

• “Fields for 1976
Version (File Type
6)” on page 4-274

• “Fields for 1999
Version (File Type
6)” on page 4-286

• “Fields for 2007,
2008, 2011, and
2014 Versions (File
Type 6)” on page 4-
290

21 for021.dat by DATCOM 2007,
DATCOM 2008, DATCOM 2011,
and DATCOM 2014

2007, 2008, 2011, and
2014

• “Fields for 2007,
2008, 2011, and
2014 Versions (File
Type 21)” on page 4-
294

42 for042.csv by DATCOM 2008,
DATCOM 2011, and DATCOM
2014

2008, 2011, and 2014 • “Fields for 2008,
2011, and 2014
Version (File Type
42)” on page 4-299

Note If filetype is 21, the function collates the breakpoints and data from all the cases and
appends them as the last entry of aero.

Data Types: double

Output Arguments
aero — DATCOM structures
cell array of structures

DATCOM structures, returned as a cell array of structures.

Limitations
• The operational limitations of the 1976 version DATCOM apply to the data contained in AERO. For

more information on DATCOM limitations, see “References” on page 4-303, section 2.4.5.
• USAF Digital DATCOM data for wing section, horizontal tail section, vertical tail section, and

ventral fin section are not read.

More About
Fields for 1976 Version (File Type 6)

1976 version of file type 6 DATCOM files must contain these fields.
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Common Fields for the 1976 Version (File Type 6)

Field Description Default
case Character vector containing the case ID. []
mach Array of Mach numbers. []
alt Array of altitudes. []
alpha Array of angles of attack. []
nmach Number of Mach numbers. 0
nalt Number of altitudes. 0
nalpha Number of angles of attack. 0
rnnub Array of Reynolds numbers. []
hypers Logical denoting, when true, that mach

numbers above tsmach are hypersonic.
Default values are supersonic.

false

loop Scalar denoting the type of looping done to
generate the DATCOM file. When loop is 1,
mach and alt are varied together. When loop
is 2, mach varies while alt is fixed. Altitude is
then updated and Mach numbers are cycled
through again. When loop is 3, mach is fixed
while alt varies. mach is then updated and
altitudes are cycled through again.

1

sref Scalar denoting the reference area for the
case.

[]

cbar Scalar denoting the longitudinal reference
length.

[]

blref Scalar denoting the lateral reference length. []
dim Character vector denoting the specified system

of units for the case.
'ft'

deriv Character vector denoting the specified angle
units for the case.

'deg'

stmach Scalar value setting the upper limit of subsonic
Mach numbers.

0.6

tsmach Scalar value setting the lower limit of
supersonic Mach numbers.

1.4

save Logical denoting whether the input values for
this case are used in the next case.

false

stype Scalar denoting the type of asymmetric flap for
the case.

[]

trim Logical denoting the reading of trim data for
the case. When trim runs are read, this value is
set to true.

false
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Field Description Default
damp Logical denoting the reading of dynamic

derivative data for the case. When dynamic
derivative runs are read, this value is set to
true.

false

build Scalar denoting the reading of build data for
the case. When build runs are read, this value
is set to 10.

1

part Logical denoting the reading of partial data for
the case. When partial runs are written for
each Mach number, this value is set to true.

false

highsym Logical denoting the reading of symmetric flap
high-lift data for the case. When symmetric
flap runs are read, this value is set to true.

false

highasy Logical denoting the reading of asymmetric
flap high-lift data for the case. When
asymmetric flap runs are read, this value is set
to true.

false

highcon Logical denoting the reading of control/trim
tab high-lift data for the case. When control/
trim tab runs are read, this value is set to
true.

false

tjet Logical denoting the reading of transverse-jet
control data for the case. When transverse-jet
control runs are read, this value is set to true.

false

hypeff Logical denoting the reading of hypersonic flap
effectiveness data for the case. When
hypersonic flap effectiveness runs are read,
this value is set to true.

false

lb Logical denoting the reading of low aspect
ratio wing or lifting body data for the case.
When low aspect ratio wing or lifting body
runs are read, this value is set to true.

false

pwr Logical denoting the reading of power effects
data for the case. When power effects runs are
read, this value is set to true.

false

grnd Logical denoting the reading of ground effects
data for the case. When ground effects runs
are read, this value is set to true.

false

wsspn Scalar denoting the semi-span theoretical
panel for wing. This value is used to determine
if the configuration contains a canard.

1

hsspn Scalar denoting the semi-span theoretical
panel for horizontal tail. This value is used to
determine if the configuration contains a
canard.

1
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Field Description Default
ndelta Number of control surface deflections: delta,

deltal, or deltar.
0

delta Array of control-surface streamwise deflection
angles.

[]

deltal Array of left lifting surface streamwise control
deflection angles, which are defined positive
for trailing-edge down.

[]

deltar Array of right lifting surface streamwise
control deflection angles, which are defined
positive for trailing-edge down.

[]

ngh Scalar denoting the number of ground
altitudes.

0

grndht Array of ground heights. []
config Structure of logicals denoting whether the

case contains horizontal tails.
false, as follows.

config.downwash = false;
config.body = false;
config.wing = false;
config.htail = false;
config.vtail = false;
config.vfin = false;

version Version of DATCOM file. 1976
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Static Longitude and Lateral Stability Fields Available for the 1976 Version (File Type 6)

Field Matrix of... Function of...
cd Drag coefficients, which are defined positive

for an aft-acting load.
alpha, mach, alt, build, grndht, delta

cl Lift coefficients, which are defined positive for
an up-acting load.

alpha, mach, alt, build, grndht, delta

cm Pitching-moment coefficients, which are
defined positive for a nose-up rotation.

alpha, mach, alt, build, grndht, delta

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, alt, build, grndht, delta

ca Axial-force coefficients, which are defined
positive for a normal force in the +X direction.

alpha, mach, alt, build, grndht, delta

xcp Distances between moment reference center
and the center of pressure divided by the
longitudinal reference length. Distances are
defined positive for a location forward of the
center of gravity.

alpha, mach, alt, build, grndht, delta

cla Derivatives of lift coefficients relative to
alpha.

alpha, mach, alt, build, grndht, delta

cma Derivatives of pitching-moment coefficients
relative to alpha.

alpha, mach, alt, build, grndht, delta

cyb Derivatives of side-force coefficients relative to
sideslip angle.

alpha, mach, alt, build, grndht, delta

cnb Derivatives of yawing-moment coefficients
relative to sideslip angle.

alpha, mach, alt, build, grndht, delta

clb Derivatives of rolling-moment coefficients
relative to sideslip angle.

alpha, mach, alt, build, grndht, delta

qqinf Ratios of dynamic pressure at the horizontal
tail to the freestream value.

alpha, mach, alt, build, grndht, delta

eps Downwash angle at horizontal tail in degrees. alpha, mach, alt, build, grndht, delta
depsdalp Downwash angle relative to angle of attack. alpha, mach, alt, build, grndht, delta
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Dynamic Derivative Fields for the 1976 Version (File Type 6)

Field Matrix of... Function of...
clq Lift force derivatives due to pitch rate. alpha, mach, alt, build
cmq Pitching-moment derivatives due to pitch rate. alpha, mach, alt, build
clad Lift-force derivatives due to rate of angle of attack. alpha, mach, alt, build
cmad Pitching-moment derivatives due to rate of angle of

attack.
alpha, mach, alt, build

clp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build
cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build
cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build
cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, build
clr Rolling-moment derivatives due to yaw rate. alpha, mach, alt, build

High-Lift and Control Fields for Symmetric Flaps for the 1976 Version (File Type 6)

Field Matrix of... Function of...
dcl_sym Incremental lift coefficients due to deflection of control

surface, valid in the linear-lift angle of attack range.
delta, mach, alt

dcm_sym Incremental pitching-moment coefficients due to
deflection of control surface, valid in the linear-lift
angle of attack range.

delta, mach, alt

dclmax_sym Incremental maximum lift coefficients. delta, mach, alt
dcdmin_sym Incremental minimum drag coefficients due to control

or flap deflection.
delta, mach, alt

clad_sym Lift-curve slope of the deflected, translated surface. delta, mach, alt
cha_sym Control-surface hinge-moment derivatives due to angle

of attack. These derivatives, when defined positive,
tend to rotate the flap trailing edge down.

delta, mach, alt

chd_sym Control-surface hinge-moment derivatives due to
control deflection. When defined positive, these
derivatives tend to rotate the flap trailing edge down.

delta, mach, alt

dcdi_sym Incremental induced drag coefficients due to flap
detection.

alpha, delta, mach, alt
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High-Lift and Control Fields Available for Asymmetric Flaps for the 1976 Version (File Type 6)

Field Matrix of... Function of...
xsc Streamwise distances from wing leading

edge to spoiler tip.
delta, mach, alt

hsc Projected height of spoiler measured from
normal to airfoil meanline.

delta, mach, alt

ddc Projected height of deflector for spoiler-slot-
deflector control.

delta, mach, alt

dsc Projected height of spoiler control. delta, mach, alt
clroll Incremental rolling-moment coefficients due

to asymmetrical deflection of control
surface. The coefficients are defined positive
when right wing is down.

delta, mach, and alt, or alpha, delta,
mach, and alt for differential horizontal
stabilizer

cn_asy Incremental yawing-moment coefficients due
to asymmetrical deflection of control
surface. The coefficients are defined positive
when nose is right.

delta, mach, and alt, or alpha, delta,
mach, and alt for plain flaps

High-Lift and Control Fields Available for Control/Trim Tabs for the 1976 Version (File Type 6)

Field Matrix of... Function of...
fc_con Stick forces or stick force coefficients. alpha, delta, mach, alt
fhmcoeff_free Flap-hinge moment coefficients tab free. alpha, delta, mach, alt
fhmcoeff_lock Flap-hinge moment coefficients tab locked. alpha, delta, mach, alt
fhmcoeff_gear Flap-hinge moment coefficients due to gearing. alpha, delta, mach, alt
ttab_def Trim-tab deflections for zero stick force. alpha, delta, mach, alt
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High-Lift and Control Fields Available for Trim for the 1976 Version (File Type 6)

Field Matrix of... Function of...
cl_utrim Untrimmed lift coefficients, which are defined

positive for an up-acting load.
alpha, mach, alt

cd_utrim Untrimmed drag coefficients, which are defined
positive for an aft-acting load.

alpha, mach, alt

cm_utrim Untrimmed pitching-moment coefficients, which are
defined positive for a nose-up rotation.

alpha, mach, alt

delt_trim Trimmed control-surface streamwise deflection
angles.

alpha, mach, alt

dcl_trim Trimmed incremental lift coefficients in the linear-lift
angle of attack range due to deflection of control
surface.

alpha, mach, alt

dclmax_trim Trimmed incremental maximum lift coefficients. alpha, mach, alt
dcdi_trim Trimmed incremental induced drag coefficients due

to flap deflection.
alpha, mach, alt

dcdmin_trim Trimmed incremental minimum drag coefficients due
to control or flap deflection.

alpha, mach, alt

cha_trim Trimmed control-surface hinge-moment derivatives
due to angle of attack.

alpha, mach, alt

chd_trim Trimmed control-surface hinge-moment derivatives
due to control deflection.

alpha, mach, alt

cl_tailutrim Untrimmed stabilizer lift coefficients, which are
defined positive for an up-acting load.

alpha, mach, alt

cd_tailutrim Untrimmed stabilizer drag coefficients, which are
defined positive for an aft-acting load.

alpha, mach, alt

cm_tailutrim Untrimmed stabilizer pitching-moment coefficients,
which are defined positive for a nose-up rotation.

alpha, mach, alt

hm_tailutrim Untrimmed stabilizer hinge-moment coefficients,
which are defined positive for a stabilizer rotation
with leading edge up and trailing edge down.

alpha, mach, alt

aliht_tailtrim Stabilizer incidence required to trim. alpha, mach, alt
cl_tailtrim Trimmed stabilizer lift coefficients, which are defined

positive for an up-acting load.
alpha, mach, alt

cd_tailtrim Trimmed stabilizer drag coefficients, which are
defined positive for an aft-acting load.

alpha, mach, alt

cm_tailtrim Trimmed stabilizer pitching-moment coefficients,
which are defined positive for a nose-up rotation.

alpha, mach, alt

hm_tailtrim Trimmed stabilizer hinge-moment coefficients, which
are defined positive for a stabilizer rotation with
leading edge up and trailing edge down.

alpha, mach, alt

cl_trimi Lift coefficients at trim incidence. These coefficients
are defined positive for an up-acting load.

alpha, mach, alt
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Field Matrix of... Function of...
cd_trimi Drag coefficients at trim incidence. These coefficients

are defined positive for an aft-acting load.
alpha, mach, alt

Transverse Jet Control Fields for the 1976 Version (File Type 6)

Field Description Stored with Indices of...
time Matrix of times. mach, alt, alpha
ctrlfrc Matrix of control forces. mach, alt, alpha
locmach Matrix of local Mach numbers. mach, alt, alpha
reynum Matrix of Reynolds numbers. mach, alt, alpha
locpres Matrix of local pressures. mach, alt, alpha
dynpres Matrix of dynamic pressures. mach, alt, alpha
blayer Cell array of character vectors containing the state of

the boundary layer.
mach, alt, alpha

ctrlcoeff Matrix of control force coefficients. mach, alt, alpha
corrcoeff Matrix of corrected force coefficients. mach, alt, alpha
sonicamp Matrix of sonic amplification factors. mach, alt, alpha
ampfact Matrix of amplification factors. mach, alt, alpha
vacthr Matrix of vacuum thrusts. mach, alt, alpha
minpres Matrix of minimum pressure ratios. mach, alt, alpha
minjet Matrix of minimum jet pressures. mach, alt, alpha
jetpres Matrix of jet pressures. mach, alt, alpha
massflow Matrix of mass flow rates. mach, alt, alpha
propelwt Matrix of propellant weights. mach, alt, alpha

Hypersonic Fields for the 1976 Version (File Type 6)

Field Matrix of... Stored with Indices of...
df_normal Increments in normal force per spanwise foot of control. alpha, delta, mach
df_axial Increments in axial force per spanwise foot of control. alpha, delta, mach
cm_normal Increments in pitching moment due to normal force per

spanwise foot of control.
alpha, delta, mach

cm_axial Increments in pitching moment due to axial force per
spanwise foot of control.

alpha, delta, mach

cp_normal Center of pressure locations of normal force. alpha, delta, mach
cp_axial Center of pressure locations of axial force. alpha, delta, mach
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Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)

Field Matrix of... Stored with Indices of...
wetarea_b Body wetted area. mach, alt, number of runs
xcg_b Longitudinal locations of the center of

gravity.
mach, alt, number of runs (normally 1, 2
for hypers = true)

zcg_b Vertical locations of the center of gravity. mach, alt, number of runs (normally 1, 2
for hypers = true)

basearea_b Body base area. mach, alt, number of runs (normally 1, 2
for hypers = true)

cd0_b Body zero lift drags. mach, alt, number of runs (normally 1, 2
for hypers = true)

basedrag_b Body base drags. mach, alt, number of runs (normally 1, 2
for hypers = true)

fricdrag_b Body friction drags. mach, alt, number of runs (normally 1, 2
for hypers = true)

presdrag_b Body pressure drags. mach, alt, number of runs (normally 1, 2
for hypers = true)

lemac Leading edge mean aerodynamic chords. mach, alt
sidewash sidewash mach, alt
hiv_b_w iv-b(w) alpha, mach, alt
hiv_w_h iv-w(h) alpha, mach, alt
hiv_b_h iv-b(h) alpha, mach, alt
gamma gamma*2*pi*alpha*v*r alpha, mach, alt
gamma2pialpvr gamma*(2*pi*alpha*v*r)t alpha, mach, alt
clpgammacl0 clp(gamma=cl=0) mach, alt
clpgammaclp clp(gamma)/cl (gamma=0) mach, alt
cnptheta cnp/theta mach, alt
cypgamma cyp/gamma mach, alt
cypcl cyp/cl (cl=0) mach, alt
clbgamma clb/gamma mach, alt
cmothetaw (cmo/theta)w mach, alt
cmothetah (cmo/theta)h mach, alt
espeff (epsoln)eff alpha, mach, and alt
despdalpeff d(epsoln)/d(alpha) eff alpha, mach, alt
dragdiv drag divergence mach number mach, alt
cd0mach Four Mach numbers for the zero lift drag. index, mach, alt
cd0 Four zero lift drags. index, mach, alt
clbclmfb_**** (clb/cl)mfb, where **** is either wb

(wing-body) or bht (body-horizontal tail).
mach, alt.
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Field Matrix of... Stored with Indices of...
cnam14_**** (cna)m=1.4, where **** is either wb

(wing-body) or bht (body-horizontal tail).
mach,alt

area_*_** Areas, where * is either w (wing), ht
(horizontal tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te
(total exposed), ei (exposed inboard), or
o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

taperratio_*_** Taper ratios, where * is either w (wing),
ht (horizontal tail), vt (vertical tail), or
vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te
(total exposed), ei (exposed inboard), or
o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

aspectratio_*_** Aspect ratios, where * is either w (wing),
ht (horizontal tail), vt (vertical tail), or
vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te
(total exposed), ei (exposed inboard), or
o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

qcsweep_*_** Quarter chord sweeps, where * is either
w (wing), ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is either
tt (total theoretical), ti (theoretical
inboard), te (total exposed), ei (exposed
inboard), or o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

mac_*_** Mean aerodynamic chords, where * is
either w (wing), ht (horizontal tail), vt
(vertical tail), or vf (ventral fin) and ** is
either tt (total theoretical), ti
(theoretical inboard), te (total exposed),
ei (exposed inboard), or o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

qcmac_*_** Quarter chord x(mac), where * is either
w (wing), ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is either
tt (total theoretical), ti (theoretical
inboard), te (total exposed), ei (exposed
inboard), or o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

ymac_*_** y(mac), where * is either w (wing), ht
(horizontal tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te
(total exposed), ei (exposed inboard), or
o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)
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Field Matrix of... Stored with Indices of...
cd0_*_** Zero lift drags, where * is either w

(wing), ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is either
tt (total theoretical), ti (theoretical
inboard), te (total exposed), ei (exposed
inboard), or o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

friccoeff_*_** Friction coefficients, where * is either w
(wing), ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is either
tt (total theoretical), ti (theoretical
inboard), te (total exposed), ei (exposed
inboard), or o (outboard).

mach, alt, number of runs (normally 1, 2
for hypers = true)

cla_b_*** cla-b(***), where *** is either w
(wing) or ht (stabilizer).

mach, alt, number of runs (normally 1, 2
for hypers = true)

cla_***_b cla-***(b), where *** is either w
(wing) or ht (stabilizer).

mach, alt, number of runs (normally 1, 2
for hypers = true)

k_b_*** k-b(***), where *** is either w (wing)
or ht (stabilizer).

mach, alt, number of runs (normally 1, 2
for hypers = true)

k_***_b k-***(b), where *** is either w (wing)
or ht (stabilizer).

mach, alt, number of runs (normally 1, 2
for hypers = true)

xacc_b_*** xac/c-b(***), where *** is either w
(wing) or ht (stabilizer).

mach, alt, number of runs (normally 1, 2
for hypers = true)

cdlcl2_*** cdl/cl^2, where *** is either w (wing)
or ht (stabilizer).

mach, alt

clbcl_*** clb/cl, where *** is either w (wing) or
ht (stabilizer).

mach, alt

fmach0_*** Force break Mach numbers with zero
sweep, where *** is either w (wing) or
ht (stabilizer).

mach, alt

fmach_*** Force break Mach numbers with sweep,
where *** is either w (wing) or ht
(stabilizer).

mach, alt

macha_*** mach(a), where *** is either w (wing) or
ht (stabilizer).

mach, alt

machb_*** mach(b), where *** is either w (wing) or
ht (stabilizer).

mach, alt

claa_*** cla(a), where *** is either w (wing) or
ht (stabilizer).

mach, alt

clab_*** cla(b), where *** is either w (wing) or
ht (stabilizer).

mach, alt

clbm06_*** (clb/cl)m=0.6, where *** is either w
(wing) or ht (stabilizer).

mach, alt

clbm14_*** (clb/cl)m=1.4, where *** is either w
(wing) or ht (stabilizer).

mach, alt
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Field Matrix of... Stored with Indices of...
clalpmach_*** Five Mach numbers for the lift curve

slope, where *** is either w (wing) or ht
(stabilizer).

index, mach, alt

clalp_*** Five lift-curve slope values, where *** is
either w (wing) or ht (stabilizer).

index, mach, alt

Fields for 1999 Version (File Type 6)

1999 version of file type 6 DATCOM files must contain these fields.
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Common Fields for the 1999 Version (File Type 6)

Field Description Default
case Character vector containing the case ID. []
mach Array of Mach numbers. []
alt Array of altitudes. []
alpha Array of angles of attack. []
nmach Number of Mach numbers. 0
nalt Number of altitudes. 1
nalpha Number of angles of attack. 0
rnnub Array of Reynolds numbers. []
beta Scalar containing sideslip angle. 0
phi Scalar containing aerodynamic roll angle. 0
loop Scalar denoting the type of looping performed to

generate the DATCOM file. When loop is 1, mach
and alt are varied together. The only loop option for
the 1999 version of DATCOM is loop is equal to 1.

1

sref Scalar denoting the reference area for the case. []
cbar Scalar denoting the longitudinal reference length. []
blref Scalar denoting the lateral reference length. []
dim Character vector denoting the specified system of

units for the case.
'ft'

deriv Character vector denoting the specified angle units
for the case.

'deg'

save Logical denoting whether the input values for this
case are used in the next case.

false

stype Scalar denoting the type of asymmetric flap for the
case.

[]

trim Logical denoting the reading of trim data for the
case. When trim runs are read, this value is set to
true.

false

damp Logical denoting the reading of dynamic derivative
data for the case. When dynamic derivative runs are
read, this value is set to true.

false

build Scalar denoting the reading of build data for the
case. When build runs are read, this value is set to
the number of build runs depending on the vehicle
configuration.

1

part Logical denoting the reading of partial data for the
case. When partial runs are written for each Mach
number, this value is set to true.

false
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Field Description Default
hypeff Logical denoting the reading of hypersonic data for

the case. When hypersonic data is read, this value is
set to true.

false

ngh Scalar denoting the number of ground altitudes. 0
nolat Logical denoting the calculation of the lateral-

direction derivatives is inhibited.
false

config Structure of logicals and structures detailing the
case configuration and fin deflections.

config.body = false
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];
config.fin4.delta = [];

version Version of DATCOM file. 1999
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Static Longitude and Lateral Stability Fields Available for the 1999 Version (File Type 6)

Field Matrix of... Function of...
cd Drag coefficients, which are defined positive for an aft-acting

load.
alpha, mach, alt, build

cl Lift coefficients, which are defined positive for an up-acting
load.

alpha, mach, alt, build

cm Pitching-moment coefficients, which are defined positive for a
nose-up rotation.

alpha, machalt, build

cn Normal-force coefficients, which are defined positive for a
normal force in the +Z direction.

alpha, mach, alt, build

ca Axial-force coefficients, which are defined positive for a
normal force in the +X direction.

alpha, mach, alt, build

xcp Distances between moment reference center and the center
of pressure divided by the longitudinal reference length.
These distances are defined positive for a location forward of
the center of gravity.

alpha, mach, alt, build

cna Derivatives of normal-force coefficients relative to alpha. alpha, mach, alt, build
cma Derivatives of pitching-moment coefficients relative to alpha. alpha, mach, alt, build
cyb Derivatives of side-force coefficients relative to sideslip angle. alpha, mach, alt, build
cnb Derivatives of yawing-moment coefficients relative to sideslip

angle.
alpha, mach, alt, build

clb Derivatives of rolling-moment coefficients relative to sideslip
angle.

alpha, mach, alt, build

clod Ratios of lift coefficient to drag coefficient. alpha, mach, alt, build
cy Side-force coefficients. alpha, mach, alt, build
cln Yawing-moment coefficient in body-axis. alpha, mach, alt, build
cll Rolling-moment coefficient in body-axis. alpha, mach, alt, build

 datcomimport

4-289



Dynamic Derivative Fields for the 1999 Version (File Type 6)

Field Matrix of... Function of...
cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, build
cmq Pitching-moment derivatives due to pitch rate. alpha, mach, alt, build
caq Axial-force derivatives due to pitch rate. alpha, mach, alt, build
cnad Normal-force derivatives due to rate of angle of

attack.
alpha, mach, alt, build

cmad Pitching-moment derivatives due to rate of angle
of attack.

alpha, mach, alt, build

clp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build
cyp Lateral force derivatives due to roll rate. alpha, mach, alt, build
cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build
cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, build
clr Rolling-moment derivatives due to yaw rate. alpha, mach, alt, build
cyr Side force derivatives due to yaw rate. alpha, mach, alt, build

Fields for 2007, 2008, 2011, and 2014 Versions (File Type 6)

2007, 2008, 2011, and 2014 versions of file type 6 DATCOM files must contain these fields.
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Common Fields for the 2007, 2008, 2011, and 2014 Versions (File Type 6)

Field Description Default
case Character vector containing the case ID. []
mach Array of Mach numbers. []
alt Array of altitudes. []
alpha Array of angles of attack. []
nmach Number of Mach numbers. 0
nalt Number of altitudes. 1
nalpha Number of angles of attack. 0
rnnub Array of Reynolds numbers. []
beta Scalar containing sideslip angle.

Note This value does not appear correctly for
the 2014 version. It always displays 0.

0

phi Scalar containing aerodynamic roll angle. 0
loop Scalar denoting the type of looping performed to

generate the DATCOM file. When loop is 1,
mach and alt are varied together. The only loop
option for the 2007 version of DATCOM is loop,
equal to 1.

1

sref Scalar denoting the reference area for the case. []
cbar Scalar denoting the longitudinal reference

length.
[]

blref Scalar denoting the lateral reference length. []
dim Character vector denoting the specified system

of units for the case.
'ft'

deriv Character vector denoting the specified angle
units for the case.

'deg'

save Logical denoting whether the input values for
this case are used in the next case.

false

stype Scalar denoting the type of asymmetric flap for
the case.

[]

trim Logical denoting the reading of trim data for the
case. When trim runs are read, this value is set
to true.

false

damp Logical denoting the reading of dynamic
derivative data for the case. When dynamic
derivative runs are read, this value is set to
true.

false
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Field Description Default
build Scalar denoting the reading of build data for the

case. When build runs are read, this value is set
to the number of build runs depending on the
vehicle configuration.

1

part Logical denoting the reading of partial data for
the case. When partial runs are written for each
Mach number, this value is set to true.

false

hypeff Logical denoting the reading of hypersonic data
for the case. When hypersonic data is read, this
value is set to true.

false

ngh Scalar denoting the number of ground altitudes. 0
nolat Logical denoting the calculation of the lateral-

direction derivatives is inhibited.
false

config Structure of logicals and structures detailing the
case configuration and fin deflections.

config.body = false;
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];
config.fin4.delta = [];

nolat_‐
namelist

Logical denoting the calculation of the lateral-
direction derivatives is inhibited in the DATCOM
input case.

false

version Version of DATCOM file. 2007
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Static Longitude and Lateral Stability Fields Available for the 2007, 2008, 2011, and 2014 Versions
(File Type 6)

Field Matrix of... Function of...
cd Drag coefficients, which are defined positive for an aft-acting

load.
alpha, mach, alt, build

cl Lift coefficients, which are defined positive for an up-acting
load.

alpha, mach, alt, build

cm Pitching-moment coefficients, which are defined positive for a
nose-up rotation.

alpha, machalt, build

cn Normal-force coefficients, which are defined positive for a
normal force in the +Z direction.

alpha, mach, alt, build

ca Axial-force coefficients, which are defined positive for a
normal force in the +X direction.

alpha, mach, alt, build

xcp Distances between moment reference center and the center
of pressure divided by the longitudinal reference length.
These distances are defined positive for a location forward of
the center of gravity.

alpha, mach, alt, build

cna Derivatives of normal-force coefficients relative to alpha. alpha, mach, alt, build
cma Derivatives of pitching-moment coefficients relative to alpha. alpha, mach, alt, build
cyb Derivatives of side-force coefficients relative to sideslip angle. alpha, mach, alt, build
cnb Derivatives of yawing-moment coefficients relative to sideslip

angle.
alpha, mach, alt, build

clb Derivatives of rolling-moment coefficients relative to sideslip
angle.

alpha, mach, alt, build

clod Ratios of lift coefficient to drag coefficient. alpha, mach, alt, build
cy Side-force coefficients. alpha, mach, alt, build
cln Yawing-moment coefficient in body-axis. alpha, mach, alt, build
cll Rolling-moment coefficient in body-axis. alpha, mach, alt, build
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Dynamic Derivative Fields for the 2007, 2008, 2011, and 2014 Versions (File Type 6)

Field Matrix of... Function of...
cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, build
cmq Pitching-moment derivatives due to pitch rate. alpha, mach, alt, build
caq Axial-force derivatives due to pitch rate. alpha, mach, alt, build
cnad Normal-force derivatives due to rate of angle of attack. alpha, mach, alt, build
cmad Pitching-moment derivatives due to rate of angle of

attack.
alpha, mach, alt, build

clp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build
cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build
cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build
cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, build
clr Rolling-moment derivatives due to yaw rate alpha, mach, alt, build
cyr Side-force derivatives due to yaw rate. alpha, mach, alt, build

Fields for 2007, 2008, 2011, and 2014 Versions (File Type 21)

2007, 2008, 2011, and 2014 versions of file type 21 DATCOM files must contain these fields.

4 Functions

4-294



Common Fields for the 2007, 2008, 2011, and 2014 Versions (File Type 21)

Field Description Default
mach Array of Mach numbers. []
alt Array of altitudes. []
alpha Array of angles of attack. []
nalpha Number of angles of attack. 0
beta Scalar containing sideslip angle.

Note This value does not appear
correctly for the 2014 version. It
always displays 0.

0

total_col Scalar denoting the type of looping
performed to generate the DATCOM
file. When loop is 1, mach and alt
are varied together. The only loop
option for the 2007, 2008, 2011, and
2014 versions of DATCOM is loop
equal to 1.

[]

deriv_col Logical denoting the calculation of
the lateral-direction derivatives is
inhibited.

0

config Structure of logicals and structures
detailing the case configuration and
fin deflections.

config.fin1.delta = zeros(1,8);
config.fin2.delta = zeros(1,8);
config.fin3.delta = zeros(1,8);
config.fin4.delta = zeros(1,8);

version Version of DATCOM file. 2007
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Static Longitude and Lateral Stability Fields Available for the 2007, 2008, 2011, and 2014 Versions
(File Type 21)

Field Matrix of... Function of...
cn Normal-force coefficients, which are defined positive for a

normal force in the +Z direction.
alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cm Pitching-moment coefficients, which are defined positive for a
nose-up rotation.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

ca Axial-force coefficients, which are defined positive for a
normal force in the +X direction.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cy Side-force coefficients. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cln Yawing-moment coefficient in body-axis. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cll Rolling-moment coefficient in body-axis. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta
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Dynamic Derivative Fields for the 2007, 2008, 2011, and 2014 Versions (File Type 21)

Field Matrix of... Function of...
cnad Normal-force derivatives due to rate of angle of attack. alpha, mach, alt, beta,

config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cmad Pitching-moment derivatives due to rate of angle of
attack.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cmq Pitching-moment derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

caq Axial-force derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyq Side-force due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

clnq Yawing-moment due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllq Rolling-moment due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta
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Field Matrix of... Function of...
cap Axial-force due to roll rate. alpha, mach, alt, beta,

config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

clnp Yawing-moment due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllp Rolling-moment due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

car Axial-force due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyr Side-force derivatives due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

clnr Yawing-moment due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllr Rolling-moment due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta
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Fields for 2008, 2011, and 2014 Version (File Type 42)

2008, 2011, and 2014 versions of file type 42 DATCOM files must contain these fields.
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Fields for the 2008, 2011, and 2014 Version (File Type 42)

Field Description Default
case Character vector containing the case ID. []
totalCol Scalar containing number of columns of data in

file.
[]

mach Array of Mach numbers. []
alt Array of altitudes. []
alpha Array of angles of attack. []
nmach Number of Mach numbers. 0
nalpha Number of angles of attack. 0
rnnub Array of Reynolds numbers. []
q Dynamic pressure. []
beta Scalar containing sideslip angle.

Note This value does not appear correctly for
the 2014 version. It always displays 0.

0

phi Scalar containing aerodynamic roll angle. 0
sref Scalar denoting the reference area for the

case.
[]

cbar Scalar denoting the longitudinal reference
length.

[]

blref Scalar denoting the lateral reference length. []
xcg Distance from nose to center of gravity. []
xmrp Distance from nose to center of gravity,

measured in calibers.
[]

deriv Character vector denoting the specified angle
units for the case.

'deg'

trim Logical denoting the reading of trim data for
the case. When trim runs are read, this value is
set to true.

false

damp Logical denoting the reading of dynamic
derivative data for the case. When dynamic
derivative runs are read, this value is set to
true.

false

build Scalar denoting the reading of partial data for
the case. This value is set to the number of
partial runs depending on the vehicle
configuration.

1

part Logical denoting the reading of partial data for
the case. When partial runs are written for
each Mach number, this value is set to true.

false
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Field Description Default
nolat Logical denoting the calculation of the lateral-

direction derivatives is inhibited.
true

config Structure of logicals and structures detailing
the case configuration and fin deflections.

config.body = false;
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];

version Version of DATCOM file. 2008
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Static Longitude and Lateral Stability Fields Available for the 2008, 2011, and 2014 Versions (File
Type 42)

Field Matrix of... Function of...
delta Trim deflection angles. alpha, mach
cd Drag coefficients, which are defined positive

for an aft-acting load.
alpha, mach, build

cl Lift coefficients, which are defined positive for
an up-acting load.

alpha, mach, build

cm Pitching-moment coefficients, which are
defined positive for a nose-up rotation.

alpha, mach, build

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, build

ca Axial-force coefficients, which are defined
positive for a normal force in the +X direction.

alpha, mach, build

caZeroBase Axial-force coefficient with no base drag
included.

alpha, mach, build

caFullBase Axial-force coefficient with full base drag
included.

alpha, mach, build

xcp Distance from nose to center of pressure. alpha, mach, build
cna Derivatives of normal-force coefficients

relative to alpha.
alpha, mach, build

cma Derivatives of pitching-moment coefficients
relative to alpha.

alpha, mach, build

cyb Derivatives of side-force coefficients relative to
sideslip angle.

alpha, mach, build

cnb Derivatives of yawing-moment coefficients
relative to sideslip angle.

alpha, mach, build

clb Derivatives of rolling-moment coefficients
relative to sideslip angle.

alpha, mach, build

clod Ratios of lift coefficient to drag coefficient. alpha, mach, build
cy Side-force coefficient. alpha, mach, build
cln Yawing-moment coefficient. alpha, mach, build
cll Rolling-moment coefficient. alpha, mach, build
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Dynamic Derivative Fields for the 2008, 2011, and 2014 Version (File Type 42)

Field Matrix of... Function of...
cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, build
cmq Pitching-moment derivatives due to pitch rate. alpha, mach, alt, build
caq Axial-force derivatives due to pitch rate. alpha, mach, alt, build
cnad Normal-force derivatives due to rate of angle of attack. alpha, mach, alt, build
cmad Pitching-moment derivatives due to rate of angle of

attack.
alpha, mach, alt, build

cyq Lateral-force derivatives due to pitch rate. alpha, mach, alt, build
clnq Yawing-moment derivatives due to pitch rate. alpha, mach, alt, build
cllq Rolling-moment derivatives due to pitch rate. alpha, mach, alt, build
cyr Side-force derivatives due to yaw rate. alpha, mach, alt, build
clnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, build
cllr Rolling-moment derivatives due to yaw rate. alpha, mach, alt, build
cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build
clnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build
cllp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build
cnp Normal-force derivatives due to roll rate. alpha, mach, alt, build
cmp Pitching-moment derivatives due to roll rate. alpha, mach, alt, build
cap Axial-force derivatives due to roll rate. alpha, mach, alt, build
cnr Normal-force derivatives due to yaw rate. alpha, mach, alt, build
cmr Pitching-moment derivatives due to roll rate. alpha, mach, alt, build
car Axial-force derivatives due to yaw rate. alpha, mach, alt, build

References
[1] AFFDL-TR-79-3032: The USAF Stability and Control DATCOM, Volume 1, User's Manual

[2] AFRL-VA-WP-TR-1998-3009: MISSILE DATCOM, User's Manual – 1997 FORTRAN 90 Revision

[3] AFRL-RB-WP-TR-2009-3015: MISSILE DATCOM, User's Manual – 2008 Revision

[4] AFRL-RB-WP-TR-2011-3071: MISSILE DATCOM, User's Manual – 2011 Revision

[5] AFRL-RQ-WP-TR-2014-3999: MISSILE DATCOM, Users Manual – 2014 Revision

See Also
Topics
“Importing from USAF Digital DATCOM Files” on page 5-2

Introduced in R2006b
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datcomToFixedWing
Class: Aero.FixedWing
Package: Aero

Construct fixed-wing aircraft from Digital DATCOM structure

Syntax
aircraft = datcomToFixedWing(aircraft,datcomstruct)
[aircraft,state] = datcomToFixedWing(aircraft,datcomstruct)
[aircraft,state] = datcomToFixedWing( ___ ,Name,Value)

Description
aircraft = datcomToFixedWing(aircraft,datcomstruct) returns a modified fixed-wing
aircraft, aircraft, constructed from the fields of a Digital DATCOM structure, datcomstruct. To
create a DATCOM structure, see datcomimport.

[aircraft,state] = datcomToFixedWing(aircraft,datcomstruct) returns an array of
Aero.FixedWing.State objects in addition to the modified fixed-wing aircraft..

[aircraft,state] = datcomToFixedWing( ___ ,Name,Value) returns the modified fixed-wing
aircraft using additional options specified by one or more Name,Value pair arguments. Specify the
Name,Value argument as the last input argument followed by the input argument combination in the
previous syntax.

Input Arguments
aircraft — Aero.FixedWing aircraft
scalar

Aero.FixedWing aircraft, specified as a scalar. To construct an empty aircraft, use
Aero.FixedWing(0).

datcomstruct — Digital DATCOM structure
scalar

Digital DATCOM structure, specified as a scalar. To create the digital DATCOM structure, use the
datcomimport function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'StateMode','Exhaustive'

Build — Build run dimension
scalar
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Build run dimension to use, specified as a scalar greater than or equal to 1 or less than or equal to
datcomStruct.build. The default is the value of datcomStruct.build.
Data Types: double

Atmosphere — Standard atmosphere model
'ISA' (default) | 'COESA'

Standard atmosphere model when calculating the environment properties temperature, pressure,
speed of sound, density, and aircraft speed, specified as 'ISA' or 'COESA'.
Data Types: char | string

StateMode — Source for constructing aircraft states
'Scalar' (default) | 'Exhaustive'

Source for constructing aircraft states, specified as

• 'Scalar' — datcomToFixedWing returns a scalar template state with the unit systems and
control names derived from the DATCOM file. All other state fields retain their default values.

• 'Exhaustive' — All supported fields from the DATCOM file are combined in an exhaustive state
array. This option might take several minutes to execute.

Data Types: char | string

Output Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, returned as a scalar. The method defines the aircraft coefficients of the
object as Simulink.LookupTable objects derived from the coefficient fields in the Digital DATCOM
structure datcomStruct.

state — Array of Aero.FixedWing.State objects
array

Aero.FixedWing.State objects, returned as an array. The value depends on the StateMode value.

Examples

Construct Fixed-Wing Aircraft from Digital DATCOM File

Construct a fixed-wing aircraft from an imported Digital DATCOM file.

datcomStruct = datcomimport('astdatcom.out');
aircraft = Aero.FixedWing();
aircraft.Properties.Name = "MyPlane";
aircraft = datcomToFixedWing(aircraft, datcomStruct{1})

aircraft = 

  FixedWing with properties:
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        ReferenceArea: 225.8000
        ReferenceSpan: 41.1500
      ReferenceLength: 5.7500
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: 7.4992
           UnitSystem: "English (ft/s)"
          AngleSystem: "Degrees"
    TemperatureSystem: "Rankine"
           Properties: [1×1 Aero.Aircraft.Properties]

Construct Fixed-Wing Aircraft from Digital DATCOM File with Build Number

Construct fixed-wing aircraft from Digital DATCOM file, specifying the build number.
datcomStruct = datcomimport('astdatcom.out');
aircraft = Aero.FixedWing();
aircraft.Properties.Name = "MyPlane";
aircraft = datcomToFixedWing(aircraft,datcomStruct{1},'Build',1)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 225.8000
        ReferenceSpan: 41.1500
      ReferenceLength: 5.7500
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: 7.4992
           UnitSystem: "English (ft/s)"
          AngleSystem: "Degrees"
    TemperatureSystem: "Rankine"
           Properties: [1×1 Aero.Aircraft.Properties]

Construct Fixed-Wing Aircraft from Digital DATCOM File with 'Exhaustive' StateMode

Construct a fixed-wing aircraft from an imported Digital DATCOM file and return the exhaustive state
array.
datcomStruct = datcomimport('astdatcom.out');
aircraft = Aero.FixedWing();
aircraft.Properties.Name = "MyPlane";
[aircraft,state] = datcomToFixedWing(aircraft,datcomStruct{1},'StateMode','Exhaustive')

aircraft = 

  FixedWing with properties:

        ReferenceArea: 225.8000
        ReferenceSpan: 41.1500
      ReferenceLength: 5.7500
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
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     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: 7.4992
           UnitSystem: "English (ft/s)"
          AngleSystem: "Degrees"
    TemperatureSystem: "Rankine"
           Properties: [1×1 Aero.Aircraft.Properties]

state = 

  5×2×2 State array with properties:

    Alpha
    Beta
    AlphaDot
    BetaDot
    Mass
    Inertia
    CenterOfGravity
    CenterOfPressure
    AltitudeMSL
    GroundHeight
    XN
    XE
    XD
    U
    V
    W
    Phi
    Theta
    Psi
    P
    Q
    R
    Weight
    AltitudeAGL
    Airspeed
    GroundSpeed
    MachNumber
    BodyVelocity
    GroundVelocity
    Ur
    Vr
    Wr
    FlightPathAngle
    CourseAngle
    InertialToBodyMatrix
    BodyToInertialMatrix
    BodyToWindMatrix
    WindToBodyMatrix
    DynamicPressure
    Environment
    UnitSystem
    AngleSystem
    TemperatureSystem
    ControlStates
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    OutOfRangeAction
    DiagnosticAction
    Properties

Limitations
• This method supports only Digital DATCOM, which is the 1976 version of DATCOM.
• This fields alpha, mach, alt, grndht, and delta must be strictly monotonically increasing.
• This method requires a Simulink license.

See Also
Aero.FixedWing | datcomimport | Simulink.LookupTable

Introduced in R2021a
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dcm2alphabeta
Convert direction cosine matrix to angle of attack and sideslip angle

Syntax
[alpha beta] = dcm2alphabeta(dcm)
[alpha beta] = dcm2alphabeta(dcm,action)
[alpha beta] = dcm2alphabeta( ___ ,tolerance)

Description
[alpha beta] = dcm2alphabeta(dcm) calculates the angle of attack (alpha) and sideslip angle
(beta) for the direction cosine matrix, dcm. The function transforms the coordinates from a vector in
body axes into a vector in wind axes.

[alpha beta] = dcm2alphabeta(dcm,action) performs action if the dcm is not orthogonal.

[alpha beta] = dcm2alphabeta( ___ ,tolerance) uses a tolerance level to evaluate if the
direction cosine matrix, dcm, is orthogonal. Specify tolerance after all other input arguments.

Examples

Determine Angle of Attack and Sideslip Angle from Direction Cosine Matrix

Determine the angle of attack and sideslip angle from a direction cosine matrix:

dcm = [ 0.8926    0.1736    0.4162; ...
       -0.1574    0.9848   -0.0734; ...
       -0.4226         0    0.9063]; 
[alpha, beta] = dcm2alphabeta(dcm)

alpha =

    0.4363

beta =

    0.1745

Determine Angle of Attack and Sideslip Angle from Multiple Direction Cosine Matrices

Determine the angle of attack and sideslip angle from multiple direction cosine matrices:

dcm = [ 0.8926    0.1736    0.4162; ...
       -0.1574    0.9848   -0.0734; ...
       -0.4226         0    0.9063]; 
dcm(:,:,2) = [ 0.9811    0.0872    0.1730; ...
              -0.0859    0.9962   -0.0151; ...
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              -0.1736         0    0.9848]; 
[alpha, beta] = dcm2alphabeta(dcm)

alpha =

    0.4363
    0.1745

beta =

    0.1745
    0.0873

Determine Angle of Attack and Sideslip Angle from Multiple Direction Cosine Matrices
within Tolerance

Determine the angle of attack and sideslip angle from multiple direction cosine matrices. Return a
warning if the dcm exceeds a tolerance of 0.1:

dcm = [ 0.8926    0.1736    0.4162; ...
       -0.1574    0.9848   -0.0734; ...
       -0.4226         0    0.9063]; 
dcm(:,:,2) = [ 0.9811    0.0872    0.1730; ...
              -0.0859    0.9962   -0.0151; ...
              -0.1736         0    0.9848]; 
[alpha, beta] = dcm2alphabeta(dcm,'Warning',0.1)

alpha =
    0.4363
    0.1745

beta =
    0.1745
    0.0873

Input Arguments
dcm — Direction cosine matrices
3-by-3-by-m matrix

Direction cosine matrices, specified as a 3-by-3-by-m matrix, where m is the number of direction
cosine matrices. dcm contains m orthogonal direction cosine matrices.

action — Action
'None' (default) | 'Error' | 'Warning'

Action for invalid direction cosine matrices, specified as:

• 'Warning' — Displays warning and indicates that the direction cosine matrix is invalid.
• 'Error' — Displays error and indicates that the direction cosine matrix is invalid.
• 'None' — Does not display warning or error.

Data Types: char | string

4 Functions

4-310



tolerance — Relative tolerance
eps(2) (default) | scalar

Tolerance level to evaluate if the direction cosine matrix, dcm, is orthogonal, specified as a scalar.

The function considers the direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance)

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Data Types: double

Output Arguments
alpha — Angles of attack
array

Angles of attack, returned as an array of m angles of attack, in radians.

beta — Sideslip angles
array

Sideslip angles, returned as an m array of sideslip angles, in radians.

See Also
angle2dcm | dcm2angle | dcmbody2wind

Introduced in R2006b
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dcm2angle
Create rotation angles from direction cosine matrix

Syntax
[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm)
[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence)

[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence,
lim)
[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence,
lim,action)
[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence,
lim,action,tolerance)

Description
Basic Syntax

[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm) calculates the rotation
angles, rotationAng1, rotationAng2, rotationAng3, for a direction cosine matrix, dcm. The
rotation used in this function is a passive transformation between two coordinate systems.

[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence)
calculates the rotation angles for a specified rotation sequence, rotationSequence.
Constraint, Action, and Tolerance Syntax

[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence,
lim) calculates the rotation angles for a specified angle constraint, lim. Specify lim after all other
input arguments.

[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence,
lim,action) calculates the rotation angles and performs an action if the direction cosine matrix is
not orthogonal. Specify action after all other input arguments.

[rotationAng1 rotationAng2 rotationAng3] = dcm2angle(dcm,rotationSequence,
lim,action,tolerance) calculates the rotation angles and uses a tolerance level to evaluate if
the direction cosine matrix is orthogonal. Specify tolerance after all other input arguments.

Examples

Determine Rotation Angles from Direction Cosine Matrix

Determine the rotation angles from the direction cosine matrix.

dcm = [1 0 0; 0 1 0; 0 0 1];
[yaw, pitch, roll] = dcm2angle(dcm)

yaw =
     0
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pitch =
     0

roll =
     0

Determine Rotation Angles from Multiple Direction Cosine Matrices

Determine the rotation angles from multiple direction cosine matrices.
dcm        = [ 1 0 0; 0 1 0; 0 0 1];  
dcm(:,:,2) = [ 0.85253103550038   0.47703040785184  -0.21361840626067; ...
              -0.43212157513194   0.87319830445628   0.22537893734811; ...
               0.29404383655186  -0.09983341664683   0.95056378592206];
[pitch, roll, yaw] = dcm2angle(dcm,'YXZ','Default','None',0.1)

pitch =
         0
    0.3000

roll =
         0
    0.1000

yaw =
         0
    0.5000

Determine Rotation Angles from Multiple Direction Cosine Matrices and Angle Constraint

Calculate the rotation angles from direction cosine matrix and specify the rotation order and angle
constraint.

dcm = [1 0 0; 0 1 0; 0 0 1];
[yaw, pitch, roll] = dcm2angle( dcm, 'zyx', 'robust')

yaw =
     0

pitch =
     0

roll =
     0

Determine Rotation Angles from Multiple Direction Cosine Matrices, Angle Constraint, and
Action

Calculate the rotation angles from direction cosine matrix, specifying the rotation order, angle
constraint, and action.
dcm = [1 0 0; 0 1 0; 0 0 1];
[yaw, pitch, roll] = dcm2angle( dcm, 'zyx', 'robust', 'warning')
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yaw =
     0

pitch =
     0

roll =
     0

Determine Rotation Angles from Multiple Direction Cosine Matrices, Angle Constraint,
Action, and Tolerance

Calculate the rotation angles from direction cosine matrix, specifying the rotation order, angle
constraint, action, and tolerance.

dcm = [1 0 0; 0 1 0; 0 0 1];
[yaw, pitch, roll] = dcm2angle( dcm, 'zyx', 'robust', 'warning', 0.01)

yaw =
     0

pitch =
     0

roll =
     0

Input Arguments
dcm — Direction cosine matrices
3-by-3-by-m matrix

Direction cosine matrices, specified as a 3-by-3-by-m matrix, where m is the number of direction
cosine matrices. The direction cosine matrices must be orthogonal with determinant +1.

rotationSequence — Rotation sequence
'ZYX' (default) | 'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XZY' |
'XYX' | 'XZX'

Rotation sequence, specified as:

• 'ZYX'
• 'ZYZ'
• 'ZXY'
• 'ZXZ'
• 'YXZ'
• 'YXY'
• 'YZX'
• 'YZY'
• 'XYZ'
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• 'XZY'
• 'XYX'
• 'XZX'

where rotationAng1 is the z-axis rotation, rotationAng2 is the y-axis rotation, and
rotationAng3 is the x-axis rotation.
Data Types: char | string

lim — Angle constraint
'Default' (default) | 'ZeroR3' | 'Robust'

Angle constraint, specified as:

• 'Default' — Returns the default case of R1, R2, and R3. In the event of a gimbal lock, use
'ZeroR3' or 'Robust'.

• 'ZeroR3' — In the event of gimbal lock, sets R3 to 0 and solves for R1 and R2.
• 'Robust' — Returns R1, R2, and R3 from either the 'Default' or 'ZeroR3' case that produces

a rotation matrix that most closely matches the input matrix.

For more information on angle constraints, see “Limitations” on page 4-316.

action — Action for invalid direction cosine matrix
'None' (default) | 'Error' | 'Warning'

Action for invalid direction cosine matrix, specified as:

• 'Warning' — Displays warning and indicates that the direction cosine matrix is invalid.
• 'Error' — Displays error and indicates that the direction cosine matrix is invalid.
• 'None' — Does not display warning or error.

Valid direction cosine matrices are orthogonal and proper when:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
tolerance (transpose(dcm)*dcm == 1±tolerance)

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(dcm)
== 1±tolerance).

Data Types: char | string

tolerance — Relative tolerance
eps(2) (default) | scalar

Relative tolerance level to evaluate if the direction cosine matrix, dcm, is orthogonal, specified as a
scalar.
Data Types: char | string

Output Arguments
rotationAng1 — First rotation angles
m-by-1 array

First rotation angles, returned as an m-by-1 array, in rads.
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rotationAng2 — Second rotation angles
m-by-1 array

Second rotation angles, returned as an m-by-1 array, in rads.

rotationAng3 — Third rotation angles
m-by-1 array

Third rotation angles, returned as an m-by-1 array, in rads.

Limitations
• The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'

implementations generate an rotationAng2 angle that lies between ±90 degrees, and
rotationAng1 and rotationAng3 angles that lie between ±180 degrees.

• The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate a rotationAng2 angle that lies between 0–180 degrees, and
rotationAng1 and rotationAng3 angles that lie between ±180 degrees.

• The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'
implementations generate a rotationAng2 angle that lies between ±90 degrees, and
rotationAng1 and rotationAng3 angles that lie between ±180 degrees. However, when
rotationAng2 is ±90 degrees, rotationAng3 is set to 0 degrees.

• The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate a rotationAng2 angle that lies between 0–180 degrees, and
rotationAng1 and rotationAng3 angles that lie between ±180 degrees. However, when
rotationAng2 is 0 or ±180 degrees, rotationAng3 is set to 0 degrees.

See Also
angle2dcm | dcm2quat | quat2dcm | quat2angle

Introduced in R2006b
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dcm2latlon
Convert direction cosine matrix to geodetic latitude and longitude

Syntax
[lat lon] = dcm2latlon(n)
[lat lon] = dcm2latlon(n,action)
[lat lon] = dcm2latlon(n,action,tolerance)

Description
[lat lon] = dcm2latlon(n) calculates the geodetic latitude and longitude, lat and lon, for a
given direction cosine matrix, n. n is a 3-by-3-by-m matrix containing m orthogonal direction cosine
matrices. lat is an m array of geodetic latitudes. lon is an m array of longitudes. n performs the
coordinate transformation of a vector in Earth-centered Earth-fixed (ECEF) axes into a vector in
north-east-down (NED) axes. Geodetic latitudes and longitudes are output in degrees.

[lat lon] = dcm2latlon(n,action) performs action if the direction cosine matrix is invalid
(not orthogonal).

• Warning — Displays warning and indicates that the direction cosine matrix is invalid.
• Error — Displays error and indicates that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

[lat lon] = dcm2latlon(n,action,tolerance) uses a tolerance level to evaluate if the
direction cosine matrix, n, is valid (orthogonal). tolerance is a scalar whose default is eps(2)
(4.4409e-16). The function considers the direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance)

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Examples
Determine the geodetic latitude and longitude from direction cosine matrix:

dcm = [ 0.3747    0.5997    0.7071; ...
        0.8480   -0.5299         0; ...
        0.3747    0.5997   -0.7071]; 
[lat, lon] = dcm2latlon(dcm)

lat =

   44.9995

lon =

 -122.0005
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Determine the geodetic latitude and longitude from multiple direction cosine matrices:

dcm = [ 0.3747    0.5997    0.7071; ...
        0.8480   -0.5299         0; ...
        0.3747    0.5997   -0.7071]; 
dcm(:,:,2) = [-0.0531    0.6064    0.7934; ...
               0.9962    0.0872         0; ...
              -0.0691    0.7903   -0.6088]; 
[lat, lon] = dcm2latlon(dcm)

lat =

   44.9995
   37.5028

lon =

 -122.0005
  -84.9975

Determine the geodetic latitude and longitude from multiple direction cosine matrices validated
within tolerance:

dcm = [ 0.3747    0.5997    0.7071; ...
        0.8480   -0.5299         0; ...
        0.3747    0.5997   -0.7071]; 
dcm(:,:,2) = [-0.0531    0.6064    0.7934; ...
               0.9962    0.0872         0; ...
              -0.0691    0.7903   -0.6088]; 
[lat, lon] = dcm2latlon(dcm,'Warning',0.1)

lat =
   44.9995
   37.5028
lon =
 -122.0005
  -84.9975

See Also
angle2dcm | dcm2angle | dcmecef2ned

Introduced in R2006b
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dcm2quat
Convert direction cosine matrix to quaternion

Syntax
q = dcm2quat(n)
q = dcm2quat(n,action)
q = dcm2quat(n,action,tolerance)

Description
q = dcm2quat(n) calculates the quaternion, q, for a given direction cosine matrix, n. Input n is a 3-
by-3-by-m matrix of orthogonal direction cosine matrices. The direction cosine matrix performs the
coordinate transformation of a vector in inertial axes to a vector in body axes. q returns an m-by-4
matrix containing m quaternions. q has its scalar number as the first column.

This function applies only to direction cosine matrices that are orthogonal with determinant +1.

q = dcm2quat(n,action) performs action if the direction cosine matrix is invalid (not
orthogonal).

• Warning — Displays warning and indicates that the direction cosine matrix is invalid.
• Error — Displays error and indicates that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

q = dcm2quat(n,action,tolerance) uses a tolerance level to evaluate if the direction cosine
matrix, n, is valid (orthogonal). tolerance is a scalar whose default is eps(2) (4.4409e-16). The
function considers the direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance)

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Examples
Determine the quaternion from direction cosine matrix:

dcm = [0 1 0; 1 0 0; 0 0 -1];
q = dcm2quat(dcm)
q =

         0    0.7071    0.7071         0

Determine the quaternions from multiple direction cosine matrices:

dcm        = [ 0 1 0; 1 0 0; 0 0 -1]; 
dcm(:,:,2) = [ 0.4330    0.2500   -0.8660; ...
               0.1768    0.9186    0.3536; ...
               0.8839   -0.3062    0.3536];
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q = dcm2quat(dcm)
q =

         0    0.7071    0.7071         0
    0.8224    0.2006    0.5320    0.0223

Determine the quaternion from a direction cosine matrix validated within tolerance:

dcm = [0 1 0; 1 0 0; 0 0 -1];
q = dcm2quat(dcm,'Warning',0.1)

q =

         0    0.7071    0.7071         0

See Also
angle2dcm | dcm2angle | angle2quat | quat2dcm | quat2angle

Introduced in R2006b
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dcm2rod
Convert direction cosine matrix to Euler-Rodrigues vector

Syntax
R = dcm2rod(dcm)
R = dcm2rod(dcm,action)
R = dcm2rod(dcm,action,tolerance)

Description
R = dcm2rod(dcm) function calculates the Euler-Rodrigues vector (R) from the direction cosine
matrix. This function applies only to direction cosine matrices that are orthogonal with determinant
+1.

R = dcm2rod(dcm,action) performs action if the direction cosine matrix is invalid (not
orthogonal).

R = dcm2rod(dcm,action,tolerance) uses a tolerance level to evaluate if the direction cosine
matrix, n, is valid (orthogonal).

Examples

Determine Rodrigues Vector from Direction Cosine Matrix

Determine the Rodrigues vector from the direction cosine matrix.

DCM = [0.433 0.75 0.5;-0.25 -0.433 0.866;0.866 -0.5 0.0];
r = dcm2rod(DCM)

r =

    1.3660    0.3660    1.0000

Determine Rodrigues Vector from Direction Cosine Matrix Validated within Tolerance:

Determine the Rodrigues vector from the direction cosine matrix validated within tolerance.

DCM = [0.433 0.75 0.5;-0.25 -0.433 0.866;0.866 -0.5 0.0];
r = dcm2rod(DCM,'Warning',0.1)

r =
    1.3660    0.3660    1.0000

Input Arguments
dcm — Direction cosine matrix
3-by-3-by-M matrix
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3-by-3-by-M containing M direction cosine matrices.
Data Types: double

action — Function behavior
'None' (default) | 'Error' | 'Warning'

Function behavior when direction cosine matrix is invalid (not orthogonal).

• Warning — Displays warning and indicates that the direction cosine matrix is invalid.
• Error — Displays error and indicates that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

Data Types: char | string

tolerance — Tolerance
eps(2) (4.4409e-16) (default) | scalar

Tolerance of direction cosine matrix validity, specified as a scalar. The function considers the direction
cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance)

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Data Types: double

Output Arguments
R — Rodrigues vector
M-by-3 matrix

M-by-3 matrix containing M Rodrigues vectors.
Data Types: double

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz
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are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

See Also
angle2rod | quat2rod | rod2quat | rod2angle | rod2dcm

Introduced in R2017a
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dcmbody2wind
Convert angle of attack and sideslip angle to direction cosine matrix

Syntax
n = dcmbody2wind(a, b)

Description
n = dcmbody2wind(a, b) calculates the direction cosine matrix, n, for given angle of attack and
sideslip angle, a, b. a is an m array of angles of attack. b is an m array of sideslip angles. n returns a 3-
by-3-by-m matrix containing m direction cosine matrices. n performs the coordinate transformation of
a vector in body-axes into a vector in wind-axes. Angles of attack and sideslip angles are input in
radians.

Examples
Determine the direction cosine matrix from angle of attack and sideslip angle:

alpha = 0.4363; 
beta = 0.1745;
dcm = dcmbody2wind(alpha, beta)

dcm =

    0.8926    0.1736    0.4162
   -0.1574    0.9848   -0.0734
   -0.4226         0    0.9063

Determine the direction cosine matrix from multiple angles of attack and sideslip angles:

alpha = [0.4363 0.1745]; 
beta = [0.1745 0.0873];
dcm = dcmbody2wind(alpha, beta)

dcm(:,:,1) =

    0.8926    0.1736    0.4162
   -0.1574    0.9848   -0.0734
   -0.4226         0    0.9063

dcm(:,:,2) =

    0.9811    0.0872    0.1730
   -0.0859    0.9962   -0.0151
   -0.1736         0    0.9848

See Also
angle2dcm | dcm2alphabeta | dcm2angle
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Introduced in R2006b
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dcmecef2ned
Convert geodetic latitude and longitude to direction cosine matrix

Syntax
n = dcmecef2ned(lat, lon)

Description
n = dcmecef2ned(lat, lon) calculates the direction cosine matrix, n, for a given set of geodetic
latitude and longitude, lat, lon. lat is an m array of geodetic latitudes. lon is an m array of
longitudes. Latitude and longitude values can be any value. However, latitude values of +90 and -90
may return unexpected values because of singularity at the poles. n returns a 3-by-3-by-m matrix
containing m direction cosine matrices. n performs the coordinate transformation of a vector in Earth-
centered Earth-fixed (ECEF) axes into a vector in north-east-down (NED) axes. Geodetic latitudes and
longitudes are input in degrees.

Examples
Determine the direction cosine matrix from geodetic latitude and longitude:

lat = 45; 
lon = -122;
dcm = dcmecef2ned(lat, lon)

dcm =

    0.3747    0.5997    0.7071
    0.8480   -0.5299         0
    0.3747    0.5997   -0.7071

Determine the direction cosine matrix from multiple geodetic latitudes and longitudes:

lat = [45 37.5]; 
lon = [-122 -85];
dcm = dcmecef2ned(lat, lon)

dcm(:,:,1) =

    0.3747    0.5997    0.7071
    0.8480   -0.5299         0
    0.3747    0.5997   -0.7071

dcm(:,:,2) =

   -0.0531    0.6064    0.7934
    0.9962    0.0872         0
   -0.0691    0.7903   -0.6088
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See Also
angle2dcm | dcm2angle | dcm2latlon

Introduced in R2006b
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dcmeci2ecef
Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed (ECEF) coordinates

Syntax
dcm=dcmeci2ecef(reduction,utc)

dcm=dcmeci2ecef(reduction,utc,deltaAT)
dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1)
dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion)
dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion,Name,Value)

Description
dcm=dcmeci2ecef(reduction,utc) calculates the position direction cosine matrix (ECI to ECEF)
as a 3-by-3-by-M array. The calculation is based on the specified reduction method and Universal
Coordinated Time (UTC).

dcm=dcmeci2ecef(reduction,utc,deltaAT) uses the difference between International Atomic
Time and UTC to calculate the position direction cosine matrix.

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1) uses the difference between UTC and
Universal Time (UT1).

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion) uses the polar
displacement.

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion,Name,Value) uses
additional options specified by one or more Name,Value pair arguments.

Examples

Convert using IAU-2000/2006 reduction

Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed (ECEF) coordinates for January
12, 2000 at 4 hours, 52 minutes, 12.4 seconds and January 12, 2000 at 4 hours, 52 minutes, and 13
seconds. Use the IAU-2000/2006 reduction. Specify only the reduction method and UTC.

dcm = dcmeci2ecef('IAU-2000/2006',[2000 1 12 4 52 12.4;2000 1 12 4 52 13])

dcm(:,:,1) =

   -0.9975   -0.0708   -0.0000
    0.0708   -0.9975   -0.0000
   -0.0000   -0.0000    1.0000

dcm(:,:,2) =

   -0.9975   -0.0709   -0.0000
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    0.0709   -0.9975   -0.0000
   -0.0000   -0.0000    1.0000

Convert using IAU-76/FK5 reduction

Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed (ECEF) coordinates for January
12, 2000 at 4 hours, 52 minutes, 12.4 seconds. Use the IAU-76/FK5 reduction. Specify all arguments,
including optional ones such as polar motion.
dcm = dcmeci2ecef('IAU-76/FK5',[2000 1 12 4 52 12.4],32,0.234,[-0.0682e-5 ...
0.1616e-5],'dNutation',[-0.2530e-6 -0.0188e-6])

dcm =

   -0.9975   -0.0708   -0.0000
    0.0708   -0.9975   -0.0000
   -0.0000   -0.0000    1.0000

Input Arguments
reduction — Reduction method
'IAU-76/FK5' | 'IAU-2000/2006'

Reduction method to calculate the direction cosine matrix, specified as one of the following:

• IAU-76/FK5

Reduce the calculation using the International Astronomical Union (IAU)-76/Fifth Fundamental
Catalogue (FK5) (IAU-76/FK5) reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5. You can use the 'dNutation' Name,Value pair with
this reduction.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, dcmeci2ecef calculates the transformation matrix rather than
the direction cosine matrix.

• IAU-2000/2006

Reduce the calculation using the International Astronomical Union (IAU)-2000/2005 reference
system. Choose this reduction method if the reference coordinate system for the conversion is
IAU-2000. This reduction method uses the P03 precession model to reduce the calculation. You
can use the 'dCIP' Name,Value pair with this reduction.

utc — Universal Coordinated Time
1-by-6 array | M-by-6 matrix

Universal Coordinated Time (UTC) in the order year, month, day, hour, minutes, and seconds, for
which the function calculates the direction cosine matrix, specified as one of the following.

• For the year value, enter a double value that is a whole number greater than 1, such as 2013.
• For the month value, enter a double value that is a whole number greater than 0, within the range

1 to 12.
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• For the day value, enter a double value that is a whole number greater than 0, within the range 1
to 31.

• For the hour value, enter a double value that is a whole number greater than 0, within the range 1
to 24.

• For the minute and second values, enter a double value that is a whole number greater than 0,
within the range 1 to 60.

Specify these values in one of the following formats:

• 1-by-6 array

Specify a 1-row-by-6-column array of UTC values to calculate one direction cosine or
transformation matrix.

• M-by-6 matrix

Specify an M-by-6 array of UTC values, where M is the number of direction cosine or
transformation matrices to calculate. Each row corresponds to one set of UTC values.

Example: [2000 1 12 4 52 12.4]

This is a one row-by-6 column array of UTC values.
Example: [2000 1 12 4 52 12.4;2010 6 5 7 22 0]

This is an M-by-6 array of UTC values, where M is 2.
Data Types: double

deltaAT — Difference between International Atomic Time and UTC
scalar | one-dimensional array

Difference between International Atomic Time (IAT) and UTC, in seconds, for which the function
calculates the direction cosine or transformation matrix. By default, the function assumes an M-by-1
array of zeroes.

• scalar

Specify one difference-time value to calculate one direction cosine or transformation matrix.
• one-dimensional array

Specify a one-dimensional array with M elements, where M is the number of direction cosine or
transformation matrices to calculate. Each row corresponds to one set of UTC values.

Example: 32

Specify 32 seconds as the difference between IAT and UTC.
Data Types: double

deltaUT1 — Difference between UTC and Universal Time (UT1)
scalar | one-dimensional array

Difference between UTC and Universal Time (UT1) in seconds, for which the function calculates the
direction cosine or transformation matrix. By default, the function assumes an M-by-1 array of zeroes.
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• scalar

Specify one difference-time value to calculate one direction cosine or transformation matrix.
• one-dimensional array

Specify a one-dimensional array with M elements of difference time values, where M is the
number of direction cosine or transformation matrices to be calculated. Each row corresponds to
one set of UTC values.

Example: 0.234

Specify 0.234 seconds as the difference between UTC and UT1.
Data Types: double

polarmotion — Polar displacement
1-by-2 array | M-by-2 array

Polar displacement of the Earth, in radians, from the motion of the Earth crust, along the x- and y-
axes. By default, the function assumes an M-by-2 array of zeroes.

• 1-by-2 array

Specify a 1-by-2 array of the polar displacement values to convert one direction cosine or
transformation matrix.

• M-by-2 array

Specify an M-by-2 array of polar displacement values, where M is the number of direction cosine
or transformation matrices to convert. Each row corresponds to one set of UTC values.

Example: [-0.0682e-5 0.1616e-5]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [-0.2530e-6 -0.0188e-6]

dNutation — Adjustment to longitude (dDeltaPsi) and obliquity (dDeltaEpsilon)
M-by-2 array

Adjustment to the longitude (dDeltaPsi) and obliquity (dDeltaEpsilon), in radians, as the comma-
separated pair consisting of dNutation and an M-by-2 array. Use this Name,Value pair with the
IAU-76/FK5 reduction. By default, the function assumes an M-by-2 array of zeroes.

For historical values, see the International Earth Rotation and Reference Systems Service Web site
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of adjustment values, where M is the number of direction cosine or
transformation matrices to be converted. Each row corresponds to one set of longitude and
obliquity values.
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Data Types: double

dCIP — Adjustment to the location of the Celestial Intermediate Pole (CIP)
M-by-2 array

Adjustment to the location of the Celestial Intermediate Pole (CIP), in radians, specified as the
comma-separated pair consisting of dCIP and an M-by-2 array. This location (dDeltaX, dDeltaY) is
along the x- and y- axes. Use this argument with the IAU-200/2006 reduction. By default, this function
assumes an M-by-2 array of zeroes.

For historical values, see the International Earth Rotation and Reference Systems Service Web site
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of location adjustment values, where M is the number of direction cosine or
transformation matrices to be converted. Each row corresponds to one set of dDeltaX and dDeltaY
values.

Example: [-0.2530e-6 -0.0188e-6]
Data Types: double

Output Arguments
dcm — Direction cosine or transformation matrix
3-by-3-M array

Direction cosine or transformation matrix, returned as a 3-by-3-M array.

See Also
ecef2lla | geoc2geod | geod2geoc | lla2ecef

Topics
https://www.iers.org

Introduced in R2013b
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decyear
Decimal year calculator

Syntax
dy = decyear(dateVector)
dy = decyear(dateCharacterVector,format)
dy = decyear(year,month,day)
dy = decyear([year,month,day])
dy = decyear(year,month,day,hour,minute,second)
dy = decyear([year,month,day,hour,minute,second])

Description
dy = decyear(dateVector) converts one or more date vectors, dateVector, into decimal year,
dy.

dy = decyear(dateCharacterVector,format) converts one or more date character vectors,
dateCharacterVector, to decimal year using format format.

dy = decyear(year,month,day) and dy = decyear([year,month,day]) return the decimal
year for corresponding elements of the year,month,day arrays.

dy = decyear(year,month,day,hour,minute,second) and dy = decyear([year,month,
day,hour,minute,second]) return the decimal year for corresponding elements of the
year,month,day,hour,minute,second arrays. Specify the six arguments as one-dimensional
arrays of the same length or as scalar values.

Examples

Calculate Decimal Year Using Data Character Vector and dd-mm-yyyy Format

Calculate decimal year for May 24, 2005 using data character vector and dd-mm-yyyy format:

dy = decyear('24-May-2005','dd-mmm-yyyy')

dy =
   2.0054e+03

Calculate Decimal Year Using Year, Month, and Day Inputs

Calculate the decimal year for December 19, 2006 from year, month, and day inputs:

dy = decyear(2006,12,19)

dy =
  2.0070e+003
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Calculate Decimal Year from Year, Month, Day, Hour, Minute, and Second Inputs

Calculate the decimal year for October 10, 2004, at 12:21:00 p.m. from year, month, day, hour, month,
and second inputs:

dy = decyear(2004,10,10,12,21,0)

dy =
  2.0048e+003

Input Arguments
dateVector — Full or partial date vector
m-by-6 matrix | m-by-3 matrix | positive double-precision number

Full or partial date vector, specified as an m-by-6 or m-by-3 matrix containing m full or partial date
vectors, respectively:

• Full date vector — Contains six elements specifying the year, month, day, hour, minute, and second
• Partial date vector — Contains three elements specifying the year, month, and day

Data Types: double

dateCharacterVector — Date character vector
character array | one-dimensional cell array of character vectors

Date character vector, specified as a character array, where each row corresponds to one date, or a
one-dimensional cell array of character vectors.
Data Types: char | string

format — Date format
-1 (default) | character vector | string scalar | integer

Date format, specified as a character vector, string scalar, or integer. All dates in
dateCharacterVector must have the same format and use the same date format symbols as the
datenum function.

decyear does not accept formats containing the letter Q.

If format does not contain enough information to compute a date number, then:

• Hours, minutes, and seconds default to 0.
• Days default to 1.
• Months default to January.
• Years default to the current year.

Data Types: char | string

year — Year
current year (default) | scalar | one-dimensional array

Year, specified as a scalar or one-dimensional array.

Dates with two character years are interpreted to be within 100 years of the current year.
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Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

month — Month
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | one-dimensional array

Month, specified as a scalar or one-dimensional array from 1 to 12.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

day — Day
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | one-dimensional array

Day, specified as a scalar or one-dimensional array from 1 to 31.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

hour — Date format
0 (default) | double, whole number, 0 to 24

Hour, specified as a scalar from 0 to 24.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

minute — Minute
0 (default) | double, whole number, 0 to 60

Minute, specified as a double, whole number from 0 to 60.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

second — Second
0 (default) | double, whole number, 0 to 60

Second, specified as a double, whole number from 0 to 60.
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Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

Output Arguments
dy — Decimal year
column vector

Decimal year, returned as a column vector.

• m-by-6 column vector — Contains six elements specifying the year, month, day, hour, minute, and
second

• m-by-3 column vector — Contains three elements specifying the year, month, and day

Dependencies

The output format depends on the input format:

Input Syntax dy Format
dy = decyear(dateVector) m-by-6 column vector or m-by-3 column vector of

m decimal years
dy =
decyear(dateCharacterVector,format)

Column vector of m decimal years, where m is
the number of character vectors in
dateCharacterVector

See Also
decyear | leapyear | mjuliandate | datenum | datestr

Introduced in R2006b
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delete
Class: Aero.Animation
Package: Aero

Destroy animation object

Syntax
delete(h)
h.delete

Description
delete(h) and h.delete destroy the animation object h. This function also destroys the animation
object figure, and any objects that the animation object contained (for example, bodies, camera, and
geometry).

Input Arguments
h Animation object.

Examples
Delete the animation object, h.

h=Aero.Animation;
h.delete;
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delete (Aero.FlightGearAnimation)
Destroy FlightGear animation object

Syntax
delete(h)
h.delete

Description
delete(h) and h.delete destroy the FlightGear animation object h. This function also destroys
the animation object timer, and closes the socket that the FlightGear animation object contains.

Examples
Delete the FlightGear animation object, h.

h=Aero.FlightGearAnimation;
h.delete;

See Also
initialize

Introduced in R2007a
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delete (Aero.VirtualRealityAnimation)
Destroy virtual reality animation object

Syntax
delete(h)
h.delete

Description
delete(h) and h.delete destroy the virtual reality animation object h. This function also destroys
the temporary file, if it exists, cleans up the vrfigure object, the animation object timer, and closes the
vrworld object.

Examples
Delete the virtual reality animation object, h.

h=Aero.VirtualRealityAnimation;
h.delete;

See Also
initialize

Introduced in R2007b

 delete (Aero.VirtualRealityAnimation)

4-339



deltaCIP
Calculate Celestial Intermediate Pole (CIP) location adjustment

Syntax
DCIP=deltaCIP(utc)
[DCIP,DCIPError]=deltaCIP(utc)

DCIP=deltaCIP(utc,Name,Value)
[DCIP,DCIPError]=deltaCIP(utc,Name,Value)

Description
DCIP=deltaCIP(utc) calculates the adjustment to location of the Celestial Intermediate Pole (CIP)
for a specific Universal Coordinated Time (UTC), specified as a modified Julian date. By default, this
function uses a prepopulated list of IAU 2000A Earth orientation (IERS) data. This list contains
measured and calculated (predicted) data supplied by the IERS. The IERS measures and calculates
this data for a set of predetermined dates.

[DCIP,DCIPError]=deltaCIP(utc) returns the error for the adjustment to location of the CIP.

DCIP=deltaCIP(utc,Name,Value) calculates the location of the CIP using additional options
specified by one or more Name,Value pair arguments.

[DCIP,DCIPError]=deltaCIP(utc,Name,Value) returns the error for the adjustment to location
of the CIP.

Examples

Calculate CIP Location Adjustment

Calculate the CIP adjustment for December 28, 2015. Use the mjuliandate function to calculate the
date as a modified Julian date.

mjd = mjuliandate(2015,12,28)
dCIP = deltaCIP(mjd)

mjd =
       57384
dCIP =
   1.0e-09 *
   -0.3927    0.0145

Calculate CIP Location Adjustment and Error Using IERS Data

Calculate the CIP adjustment and CIP adjustment error for December 28, 2015 and January 10, 2016
using the aeroiersdata.mat file. Use the mjuliandate function to calculate the date as a
modified Julian date.
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mjd = mjuliandate([2015 12 28;2016 1 10])
[dCIP,dCIPErr] = deltaCIP(mjd,'Source','aeroiersdata.mat')

mjd =
       57384
       57397
dCIP =

   1.0e-08 *

   -0.0393    0.0015
   -0.0087   -0.1110

dCIPErr =
   1.0e-09 *
    0.5769    0.1842
    0.2376    0.4121

Input Arguments
utc — Principal Universal Time (UT1) for UTC
M-by-1 array

Array of UTC dates, specified as an M-by-1 array, represented as modified Julian dates. Use the
mjuliandate function to convert the UTC date to a modified Julian date.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Source','aeroiersdata.mat'

Source — Custom list of Earth orientation data
aeroiersdata.mat (default) | MAT-file

Custom list of Earth orientation data, specified in a MAT-file.

action — Out-of-range action
Warning (default) | action

Out-of-range action, specified as a string.

Action to take in case of out-of-range or predicted value dates, specified as a string:

• Warning — Displays warning and indicates that the dates were out-of-range or predicted values.
• Error — Displays error and indicates that the dates were out-of-range or predicted values.
• None — Does not display warning or error.

Data Types: string
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Output Arguments
DCIP — Adjustment to location of the CIP
M-by-2 array

Adjustment ([dDeltaX,dDeltaY]) to location of the Celestial Intermediate Pole (CIP), specified as
an M-by-2 array, in radians.

DCIPError — Error for adjustment to location of the CIP
M-by-2 array

Error for adjustment to location of the CIP, specified as an M-by-2 array, in radians.

Compatibility Considerations
Updated aeroiersdata.mat file
Behavior changed in R2020b

The contents of the aeroiersdata.mat file have been updated. Correspondingly, the output of this
function will have different results when using the default value ('aeroiersdata.mat') as the
value of Source. The results reflect more accurate external data from the International Earth
Rotation and Reference Systems Service (IERS).

See Also
aeroReadIERSData | dcmeci2ecef | lla2eci | eci2lla | eci2aer | mjuliandate | deltaUT1 |
polarMotion

Topics
“Estimate Sun Analemma Using Planetary Ephemerides and ECI to AER Transformation” on page 5-
107

Introduced in R2018b
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deltaUT1
Calculate difference between Coordinated Universal Time (UTC) and Principal Universal Time (UT1)

Syntax
DUT1=deltaUT1(utc)
[DUT1,DUT1Error]=deltaUT1(utc)

DUT1=deltaUT1(utc,Name,Value)
[DUT1,DUT1Error]=deltaUT1(utc,Name,Value)

Description
DUT1=deltaUT1(utc) calculates the difference between Coordinated Universal Time (UTC) and
Principal Universal Time (UT1) for UTC, specified as a modified Julian date (MJD). By default, this
function uses a prepopulated list of International Astronomical Union (IAU) 2000A Earth orientation
(IERS) data. This list contains measured and calculated (predicted) data supplied by the IERS. The
IERS measures and calculates this data for a set of predetermined dates. For dates after those listed
in the prepopulated list, deltaUT1 calculates the data by using this equation, limiting the values to
+/- .9s:

UT1-UTC=0.5309-0.00123(MJD-57808)-(UT2-UT1) 

[DUT1,DUT1Error]=deltaUT1(utc) returns the error for the difference between Coordinated
Universal Time (UTC) and Principal Universal Time (UT1) for UTC.

DUT1=deltaUT1(utc,Name,Value) calculates the difference between UTC and UT1 using
additional options specified by one or more Name,Value pair arguments.

[DUT1,DUT1Error]=deltaUT1(utc,Name,Value) returns the error for the difference between
Coordinated Universal Time (UTC) and Principal Universal Time (UT1) for UTC.

Examples

Calculate Difference Value for December 28, 2015

Calculate the difference between UT1 and UTC values for December 28, 2015.

mjd = mjuliandate(2015,12,28)
dUT1 = deltaUT1(mjd)
 

mjd =
       57384

dUT1 =
    0.0886
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Calculate Difference Value for December 28, 2015 and January 10, 2016

Calculate the difference between UT1 and UTC values for December 28, 2015 and January 10, 2016
using the custom file, aeroiersdata20170101.mat.

mjd = mjuliandate([2015 12 28;2016 1 10])
dUT1 = deltaUT1(mjd,'Source','aeroiersdata20170101.mat')

mjd =
       57384
       57397

dUT1 =
    0.0886
    0.0648

Calculate Difference Value and Error Using IERS Data

Calculate the difference between UT1-UTC values for December 28, 2015 and January 10, 2016 using
the custom file, aeroiersdata.mat.

mjd = mjuliandate([2015 12 28;2016 1 10])
[dUT1,dUT1Err] = deltaUT1(mjd,'Source','aeroiersdata.mat')

mjd =
       57384
       57397

dUT1 =
    0.0886
    0.0648

dUT1Err =
   1.0e-05 *

    0.3900
    0.7300

Input Arguments
utc — Principal Universal Time (UT1) for UTC
M-by-1 array

Array of UTC dates, specified as an M-by-1 array, represented as modified Julian dates. Use the
mjuliandate function to convert the UTC date to a modified Julian date.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Source','aeroiersdata.mat'
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Source — Custom list of Earth orientation data
aeroiersdata.mat (default) | MAT-file

Custom list of Earth orientation data, specified in a MAT-file.

action — Out-of-range action
Warning (default) | action

Out-of-range action, specified as a string.

Action to take in case of out-of-range or predicted value dates, specified as a string:

• Warning — Displays warning and indicates that the dates were out-of-range or predicted values.
• Error — Displays error and indicates that the dates were out-of-range or predicted values.
• None — Does not display warning or error.

Data Types: string

Output Arguments
DUT1 — Difference between UT1 and UTC
M-by-1 array

Difference between UT1 and UTC, specified as an M-by-1 array.

DUT1Error — Error for difference between UT1 and UTC
M-by-1 array

Error for difference between UT1 and UTC (UT1-UTC), according to the International Astronomical
Union (IAU) 2000A resolutions, specified as an M-by-1 array, in seconds.

Compatibility Considerations
Updated aeroiersdata.mat file
Behavior changed in R2020b

The contents of the aeroiersdata.mat file have been updated. Correspondingly, the output of this
function will have different results when using the default value ('aeroiersdata.mat') as the
value of Source. The results reflect more accurate external data from the International Earth
Rotation and Reference Systems Service (IERS).

See Also
aeroReadIERSData | dcmeci2ecef | lla2eci | eci2lla | eci2aer | mjuliandate

Topics
“Estimate Sun Analemma Using Planetary Ephemerides and ECI to AER Transformation” on page 5-
107

Introduced in R2017b
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dpressure
Compute dynamic pressure using velocity and density

Syntax
dynamic_pressure = dpressure(velocity,rho)

Description
dynamic_pressure = dpressure(velocity,rho) computes dynamic pressure,
dynamic_pressure, from an m-by-3 array of Cartesian velocity vectors, velocity, and a 1-D array
of densities, rho. velocity and rho must have the same length units.

Examples

Determine Dynamic Pressure for Velocity in Feet per Second and Density in Slugs per Feet
Cubed

Determine dynamic pressure for velocity in feet per second and density in slugs per feet cubed:

q = dpressure([84.3905  33.7562  10.1269], 0.0024)

q =

   10.0365

Determine Dynamic Pressure for Velocity in Meters per Second and Density in Kilograms
per Meters Cubed

Determine dynamic pressure for velocity in meters per second and density in kilograms per meters
cubed:

q = dpressure([25.7222 10.2889 3.0867], [1.225  0.3639])

q =

  475.9252
  141.3789

Determine Dynamic Pressure for Velocity in Meters per Second and Density in Kilograms
per Meters Cubed

Determine dynamic pressure for velocity in meters per second and density in kilograms per meters
cubed:

q = dpressure([50 20 6; 5 0.5 2], [1.225  0.3639])
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q =

   1.0e+03 *

    1.7983
    0.0053

Input Arguments
velocity — Cartesian velocity vectors
m-by-3 array | vector

Cartesian velocity vectors, specified as an m-by-3 array. velocity and rho must have the same
length.
Data Types: double

rho — Density
array

Density, specified as an array of m densities. velocity and rho must have the same number of rows.
Data Types: double

Output Arguments
dynamic_pressure — Dynamic pressure
scalar | array

Dynamic pressure, returned as a scalar or array of m pressures.

See Also
airspeed | machnumber

Introduced in R2006b
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earthNutation
Implement Earth nutation

Syntax
angles = earthNutation(ephemerisTime)
angles = earthNutation(ephemerisTime,ephemerisModel)
angles = earthNutation(ephemerisTime,ephemerisModel,action)

[angles,rates] = earthNutation( ___ )

Description
Implement Earth Nutation Angles

angles = earthNutation(ephemerisTime) implements the International Astronomical Union
(IAU) 1980 nutation series for ephemerisTime, expressed in Julian days. The function returns
angles.

The function uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory provides.

This function requires that you download ephemeris data with the Add-On Explorer. For more
information, see aeroDataPackage.

angles = earthNutation(ephemerisTime,ephemerisModel) uses the ephemerisModel
coefficients to implement these values.

angles = earthNutation(ephemerisTime,ephemerisModel,action) uses action to
determine error reporting.

Implement Earth Nutation Angles and Rates

[angles,rates] = earthNutation( ___ ) implements the International Astronomical Union
(IAU) 1980 nutation series using any combination of the input arguments in the previous syntaxes.
The function returns angles and angular rates.

Examples

Implement Earth Nutation Angles

Implement Earth nutation angles for December 1, 1990. Because no ephemerides model is specified,
the default, DE405, is used. Use the juliandate function to specify the Julian date.

angles = earthNutation(juliandate(1990,12,1))

angles =
   1.0e-04 *
    0.6448    0.2083
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Implement Earth Nutation Angles and Angular Rates

Implement Earth nutation angles and angular rates for noon on January 1, 2000 using DE421.

[angles,rates] = earthNutation([2451544.5 0.5],'421')

angles =
   1.0e-04 *
   -0.6750   -0.2799

rates =
   1.0e-07 *
    0.3687   -0.9937

Input Arguments
ephemerisTime — Julian date
scalar | 2-element vector | column vector | M-by-2 matrix

Julian dates for which positions are calculated, specified as these values:

• Scalar — Specify one fixed Julian date.
• 2-element vector — Specify the Julian date in multiple parts. The first element is the Julian date

for a specific epoch that is the most recent midnight at or before the interpolation epoch. The
second element is the fractional part of a day elapsed between the first element and epoch. The
second element must be positive. The value of the first element plus the second element cannot
exceed the maximum Julian date.

• Column vector — Specify a column vector with M elements, where M is the number of fixed Julian
dates.

• M-by-2 matrix — Specify a matrix, where M is the number of Julian dates and the second column
contains the elapsed days (Julian epoch date/elapsed day pairs).

Data Types: double

ephemerisModel — Ephemerides coefficients
'405' (default) | '421' | '423' | '430'

Ephemerides coefficients, specified as one of these ephemerides defined by the Jet Propulsion
Laboratory:

• '405' — Released in 1998. This ephemerides takes into account the Julian date range
2305424.50 (December 9, 1599 ) to 2525008.50 (February 20, 2201).

This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 1.0, adopted in 1998.

• '421' — Released in 2008. This ephemerides takes into account the Julian date range 2414992.5
(December 4, 1899) to 2469808.5 (January 2, 2050).

This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 1.0, adopted in 1998.

• '423' — Released in 2010. This ephemerides takes into account the Julian date range 2378480.5
(December 16, 1799) to 2524624.5 (February 1, 2200).
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This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

• '430' — Released in 2013. This ephemerides takes into account the Julian date range 2287184.5
(December 21, 1549) to 2688976.5 (January 25, 2650).

This function implements these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

Data Types: double

action — Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range, specified as one of these values:

Value Description
'None' No action.
'Warning' Warning in the MATLAB Command Window and model simulation

continues.
'Error' MATLAB returns an exception and model simulation stops.

Data Types: char | string

Output Arguments
angles — Earth nutation angles
M-by-2 vector

Earth nutation angles, returned as an M-by-2 vector, where M is the number of Julian dates. The 2
vector contains the d(psi) and d(epsilon) angles, in radians. The input arguments include multiple
Julian dates or epochs. The vector has the same number of rows as the ephemerisTime input.

rates — Earth nutation angular rates
M-by-2 vector

Earth nutation angular rates, returned as an M-by-2 vector, where M is the number of Julian dates.
The 2 vector contains the d(psi) and d(epsilon) angular rate, in radians/day. The input arguments
include multiple Julian dates or epochs. The vector has the same number of rows as the
ephemerisTime input.

References
[1] Folkner, W. M., J. G. Williams, and D. H. Boggs. "The Planetary and Lunar Ephemeris DE 421." JPL

Interplanetary Network Progress Report 24-178, 2009.

[2] Vallado, David A. Fundamentals of Astrodynamics and Applications. McGraw-Hill, 1997.

See Also
juliandate | moonLibration | planetEphemeris
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External Websites
https://ssd.jpl.nasa.gov/?planet_eph_export

Introduced in R2013a
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ecef2eci
Position and velocity vectors in Earth-centered inertial mean-equator mean-equinox

Syntax
[r_eci] = ecef2eci(utc,r_ecef)
[r_eci,v_eci] = ecef2eci( ___ ,v_ecef)
[r_eci,v_eci,a_eci] = ecef2eci( ___ ,a_ecef)
[r_eci,v_eci,a_eci] = ecef2eci( ___ ,Name,Value)

Description
[r_eci] = ecef2eci(utc,r_ecef) calculates the position vector in the Earth-centered inertial
(ECI) coordinate system for a given position vector in the Earth-centered Earth-fixed (ECEF)
coordinate system at a specific Coordinated Universal Time (UTC). For more information on the
Earth-centered Earth-fixed coordinate system, see “Algorithms” on page 4-355.

[r_eci,v_eci] = ecef2eci( ___ ,v_ecef) calculates the position and velocity vectors for given
position and velocity vectors.

[r_eci,v_eci,a_eci] = ecef2eci( ___ ,a_ecef) calculates the position, velocity, acceleration
vectors for given position, velocity, and acceleration vectors.

[r_eci,v_eci,a_eci] = ecef2eci( ___ ,Name,Value) calculates the position, velocity, and
acceleration vectors at a higher precision using Earth orientation parameters.

Examples

Convert ECEF Position and Velocity to ECI

Convert the ECEF position and velocity to ECI at 12:00 on January 4, 2019.

r_ecef = [-5762640 -1682738 3156028];
v_ecef = [3832 -4024 4837];
utc = [2019 1 4 12 0 0];
[r_eci, v_eci] = ecef2eci(utc, r_ecef, v_ecef);

r_eci =
   1.0e+06 *
   -2.9818
    5.2070
    3.1616

v_eci =
   1.0e+03 *
   -3.3837
   -4.8870
    4.8430
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Convert ECEF Position to ECI Including Polar Motion Effects

Convert the ECEF position to ECI at 12:00 on January 4, 2019, including the effects of polar motion.

r_ecef = [-5762640 -1682738 3156028];
utc = [2019 1 4 12 0 0];
mjd = mjuliandate(utc);
pm = polarMotion(mjd, 'action', 'none')*180/pi;
r_eci = ecef2eci(utc, r_ecef, 'pm', pm);

r_eci = 
   1.0e+06 * 
   -2.9818 
   5.2070 
   3.1616

Input Arguments
utc — Universal Coordinated Time
1-by-6 array | 1-by-6 matrix

UTC in the order year, month, day, hour, minutes, and seconds, specified as 1-by-6 array of UTC
values:

Time Value Enter
Year Double value that is a whole number greater than

1, such as 2013.
Month Double value that is a whole number greater than

0, within the range 1 to 12.
Day Double value that is a whole number greater than

0, within the range 1 to 31.
Hour Double value that is a whole number greater than

0, within the range 1 to 24.
Minute and second Double value that is a whole number greater than

0, within the range 1 to 60.

Example: [2000 1 12 4 52 12.4]
Data Types: double

r_ecef — Position components
3-by-1 array

Array of ECEF position components, specified as a 3-by-1 array.
Data Types: double

v_ecef — Velocity components
3-by-1 array

ECEF velocity components, specified as a 3-by-1 array.
Data Types: double
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a_ecef — Acceleration components
3-by-1 array

ECEF acceleration components, specified as a 3-by-1 array.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'dUT1',0.234

dAT — Difference between TAI and UTC
0 (default) | scalar

Difference between International Atomic Time (TAI) and UTC, specified as a scalar, in seconds.
Example: 32
Data Types: double

dUT1 — Difference between UTC and Universal Time
0 (default) | scalar

Difference between UTC and Universal Time (UT1), specified as a scalar, in seconds.
Example: 0.234
Data Types: double

pm — Polar displacement
array of zeroes (default) | 1-by-2 array

Polar displacements due to the motion of Earth crust along the x- and y-axis, in degrees.

Tip To calculate the displacement, use the polarMotion function.

Example: pm = polarMotion(mjd, 'action', 'none')*180/pi;
Data Types: double

dCIP — Adjustment to the CIP location
1-by-2 array

Adjustment to the location of the Celestial Intermediate Pole (CIP), in degrees, specified as a comma-
separated pair consisting of dCIP and an M-by-2 array. This location (dDeltaX, dDeltaY) is along the
x- and y- axes. By default, this function assumes a 1-by-2 array of zeroes.

For historical values, see the International Earth Rotation and Reference Systems Service Web site
(https://www.iers.org) and navigate to the Earth orientation data Data/Products page.

• M-by-2 array
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Specify an M-by-2 array of location adjustment values, where M is the number of direction cosine
or transformation matrices to be converted. Each row corresponds to one set of dDeltaX and
dDeltaY values.

Example: [-0.2530e-6 -0.0188e-6]
Data Types: double

lod — Excess length of day
0 (default) | scalar

Excess length of day (difference between astronomically determined duration of day and 86400 SI
seconds), specified as a scalar, in seconds.
Example: 32
Data Types: double

Output Arguments
r_eci — Position components
3-by-1 array

ECI position components, specified as a 3-by-1 array.

v_eci — Velocity components
3-by-1 array

ECI velocity components, specified as a 3-by-1 array.

a_eci — Acceleration components
3-by-1 array

ECI acceleration components, specified as a 3-by-1 array.

Algorithms
The ecef2eci function uses these Earth-centric coordinate systems:

• Earth Centered Inertial Frame (ECI) — The inertial frame used is the International Celestial
Reference Frame (ICRF). This frame can be treated as equal to the ECI coordinate system realized
at J2000 (Jan 1 2000 12:00:00 TT). For more information, see “ECI Coordinates” on page 2-7.

• Earth-centered Earth-fixed Frame (ECEF) — The fixed-frame used is the International Terrestrial
Reference Frame (ITRF). This reference frame is realized by the IAU2000/2006 reduction from the
ICRF coordinate system. For more information, see “ECEF Coordinates” on page 2-8.

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. alg. 4. New York: McGraw-Hill,

1997.

[2] Gottlieb, R. G., "Fast Gravity, Gravity Partials, Normalized Gravity, Gravity Gradient Torque and
Magnetic Field: Derivation, Code and Data," Technical Report NASA Contractor Report
188243, NASA Lyndon B. Johnson Space Center, Houston, Texas, February 1993.

 ecef2eci

4-355



[3] Konopliv, A. S., S. W. Asmar, E. Carranza, W. L. Sjogen, D. N. Yuan., "Recent Gravity Models as a
Result of the Lunar Prospector Mission, Icarus", Vol. 150, no. 1, pp 1–18, 2001.

[4] Lemoine, F. G., D. E. Smith, D.D. Rowlands, M.T. Zuber, G. A. Neumann, and D. S. Chinn, "An
improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor", Journal
Of Geophysical Research, Vol. 106, No. E10, pp 23359-23376, October 25, 2001.

[5] Seidelmann, P.K., Archinal, B.A., A’hearn, M.F. et al. "Report of the IAU/IAG Working Group on
cartographic coordinates and rotational elements: 2006." Celestial Mech Dyn Astr 98, 155–
180 (2007).

See Also
eci2ecef | dcmeci2ecef | aeroReadIERSData | deltaCIP | polarMotion | deltaUT1 |
siderealTime | CubeSat Vehicle

Introduced in R2019a
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ecef2lla
Convert Earth-centered Earth-fixed (ECEF) coordinates to geodetic coordinates

Syntax
lla = ecef2lla(ecef)
lla = ecef2lla(ecef,model)
lla = ecef2lla(ecef,f,Re)

Description
lla = ecef2lla(ecef) converts the m-by-3 array of ECEF coordinates, ecef, to an m-by-3 array
of geodetic coordinates (latitude, longitude and altitude), lla.

lla = ecef2lla(ecef,model) converts the coordinates for a specific ellipsoid planet.

lla = ecef2lla(ecef,f,Re) converts the coordinates for a custom ellipsoid planet defined by
flattening, f, and the equatorial radius, Re.

Examples

Determine Latitude, Longitude, and Altitude at One ECEF Coordinate

Determine latitude, longitude, and altitude at an ECEF coordinate:

lla = ecef2lla([4510731 4510731 0])

lla =

         0   45.0000  999.9564

Determine Latitude, Longitude, and Altitude at Multiple ECEF Coordinates

Determine latitude, longitude, and altitude at multiple ECEF coordinates with the WGS84 ellipsoid
model:

lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], 'WGS84')

lla =

         0   45.0000  999.9564
   45.1358   90.0000  999.8659

Determine Latitude, Longitude, and Altitude at Multiple ECEF Coordinates with Custom
Ellipsoid Model

Determine latitude, longitude, and altitude at multiple coordinates with the custom ellipsoid model:
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f = 1/196.877360;
Re = 3397000;
lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], f, Re)

lla =

   1.0e+06 *

         0    0.0000    2.9821
    0.0000    0.0001    2.9801

Input Arguments
ecef — ECEF coordinates
m-by-3 array | vector

ECEF coordinates, specified as an m-by-3 array.
Data Types: double

model — Ellipsoid planet model
'WGS84' (default)

Ellipsoid planet model, specified as 'WGS84'.
Data Types: double

f — Flattening
scalar

Flattening at each pole, specified as a scalar.
Data Types: double

Re — Equatorial radius
scalar

Equatorial radius, specified as a scalar in meters.
Data Types: double

Output Arguments
lla — Geodetic coordinates
m-by-3 array

Geodetic coordinates (latitude, longitude, and altitude), returned as an m-by-3 array in [degrees
degrees meters].

See Also
geoc2geod | geod2geoc | lla2ecef

Introduced in R2006b
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eci2aer
Convert Earth-centered inertial (ECI) coordinates to azimuth, elevation, slant range (AER)
coordinates

Syntax
aer = eci2aer(position,utc,lla0)

aer = eci2aer(position,utc,lla0,reduction)
aer = eci2aer(position,utc,lla0,reduction,deltaAT)
aer = eci2aer(position,utc,lla0,reduction,deltaAT,deltaUT1)
aer = eci2aer(position,utc,lla0,reduction,deltaAT,deltaUT1,polarmotion)
aer = eci2aer(position,utc,lla0,reduction,deltaAT,deltaUT1,polarmotion,
Name,Value)

Description
aer = eci2aer(position,utc,lla0) converts Earth-centered inertial coordinates, specified by
position, to azimuth, elevation, and slant range (AER) coordinates, based on the geodetic position
(latitude, longitude, and altitude). The conversion is based on the Universal Coordinated Time (UTC)
you specify.

• Azimuth (A) — Angle measured clockwise from true north. It ranges from 0 to 360 degrees.
• Elevation (E) — Angle between a plane perpendicular to the ellipsoid and the line that goes from

the local reference to the object position. It ranges from –90 to 90 degrees.
• Slant range (R) — Straight line distance between the local reference and the object, meters.

aer = eci2aer(position,utc,lla0,reduction) converts Earth-centered inertial coordinates,
specified by position, to azimuth, elevation, and slant range coordinates. The conversion is based
on the specified reduction method and the Universal Coordinated Time you specify.

aer = eci2aer(position,utc,lla0,reduction,deltaAT) uses the difference between
International Atomic Time and UTC that you specify as deltaAT to calculate the AER coordinates.

aer = eci2aer(position,utc,lla0,reduction,deltaAT,deltaUT1) uses the difference
between UTC and Universal Time (UT1), which you specify as deltaUT1, in the calculation.

aer = eci2aer(position,utc,lla0,reduction,deltaAT,deltaUT1,polarmotion) uses
the polar displacement, polarmotion, in the calculation.

aer = eci2aer(position,utc,lla0,reduction,deltaAT,deltaUT1,polarmotion,
Name,Value) uses additional options specified by one or more Name,Value pair arguments.

Examples
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Convert Position to AER Coordinates Using UTC

Convert the position to AER coordinates from ECI coordinates 1e08*[-3.8454 -0.5099 -0.3255] meters
for the date 1969/7/20 21:17:40 UTC at 28.4 degrees north, 80.5 degrees west and 2.7 meters
altitude.

aer = eci2aer(1e08*[-3.8454,-0.5099,-0.3255],...
[1969,7,20,21,17,40], [28.4,-80.5,2.7])

aer =

   1.0e+08 *

    0.0000    0.0000    3.8401

Convert Position to AER Coordinates Using UTC and Reduction Method IAU-76/FK5

Convert the position to AER coordinates from ECI coordinates 1e08*[-3.8454 -0.5099 -0.3255] meters
for the date 1969/7/20 21:17:40 UTC at 28.4 degrees north, 80.5 degrees west and 2.7 meters
altitude. For an ellipsoid with a flattening of 1/290 and an equatorial radius of 60000 meters, use the
IAU-76/FK5 reduction, polar motion [-0.0682e-5 0.1616e-5] radians, and nutation angles [-0.2530e-6
-0.0188e-6].

aer = eci2aer(1e08*[-3.8454,-0.5099,-0.3255],...
[1969,7,20,21,17,40],[28.4,-80.5,2.7],...
'IAU-76/FK5',32,0.234,[-0.0682e-5 0.1616e-5],...
'dNutation',[-0.2530e-6 -0.0188e-6],...
'flattening',1/290,'RE',60000)

aer =

   1.0e+08 *

    0.0000    0.0000    3.8922

Input Arguments
position — ECI coordinates
M-by-3 array

ECI coordinates in meters, specified as an M-by-3 array.

utc — Universal Coordinated Time
1-by-6 array of whole numbers | M-by-6 matrix of whole numbers

Universal Coordinated Time (UTC), in the order year, month, day, hour, minutes, and seconds, for
which the function calculates the conversion, specified as one of the following:

• For the year value, enter a double value that is a whole number greater than 1, such as 2013.
• For the month value, enter a double value that is a whole number greater than 0, within the range

1 to 12.
• For the hour value, enter a double value that is a whole number greater than 0, within the range 1

to 24.
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• For the hour value, enter a double value that is a whole number greater than 0, within the range 1
to 60.

• For the minute and second values, enter a double value that is a whole number greater than 0,
within the range 1 to 60.

Specify these values in one of the following formats:

• 1-by-6 array

Specify a 1-row-by-6-column array of UTC values.
• M-by-6 matrix

Specify an M-by-6 array of UTC values, where M is the number of transformation matrices to
calculate. Each row corresponds to one set of UTC values.

This example is a one-row-by-6-column array of UTC values.
Example: [2000 1 12 4 52 12.4]

This example is an M-by-6 array of UTC values, where M is 2.
Example: [2000 1 12 4 52 12.4;2010 6 5 7 22 0]
Data Types: double

lla0 — Geodetic coordinates
M-by-3 array

Geodetic coordinates of the local reference (latitude, longitude, and ellipsoidal altitude), in degrees,
degrees, and meters. Latitude and longitude values can be any value. However, latitude values of +90
and –90 can return unexpected values because of singularity at the poles.

reduction — Reduction method
'IAU-2000/2006' (default) | 'IAU-76/FK5'

Reduction method to calculate the coordinate conversion, specified as one of the following:

• 'IAU-76/FK5'

Reduce the calculation using the International Astronomical Union (IAU)-76/Fifth Fundamental
Catalogue (FK5) (IAU-76/FK5) reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5. You can use the 'dNutation' Name,Value pair with
this reduction.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, eci2aer performs a coordinate conversion that is not orthogonal
due to the polar motion approximation.

• 'IAU-2000/2006'

Reduce the calculation using the International Astronomical Union (IAU)-2000/2005 reference
system. Choose this reduction method if the reference coordinate system for the conversion is
IAU-2000. This reduction method uses the P03 precession model to reduce the calculation. You
can use the 'dCIP' Name,Value pair with this reduction.
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deltaAT — Difference between International Atomic Time and UTC
scalar | one-dimensional array

Difference between International Atomic Time (IAT) and UTC, in seconds, for which the function
calculates the direction cosine or transformation matrix. By default, the function assumes an M-by-1
array of zeroes.

• scalar

Specify one difference-time value to calculate one direction cosine or transformation matrix.
• one-dimensional array

Specify a one-dimensional array with M elements, where M is the number of direction cosine or
transformation matrices to calculate. Each row corresponds to one set of UTC values.

Example: 32

Specify 32 seconds as the difference between IAT and UTC.
Data Types: double

deltaUT1 — Difference between UTC and Universal Time (UT1)
scalar | one-dimensional array

Difference between UTC and Universal Time (UT1) in seconds, for which the function calculates the
direction cosine or transformation matrix. By default, the function assumes an M-by-1 array of zeroes.

• scalar

Specify one difference-time value to calculate one direction cosine or transformation matrix.
• one-dimensional array

Specify a one-dimensional array with M elements of difference time values, where M is the
number of direction cosine or transformation matrices to be calculated. Each row corresponds to
one set of UTC values.

Example: 0.234

Specify 0.234 seconds as the difference between UTC and UT1.
Data Types: double

polarmotion — Polar displacement
1-by-2 array | M-by-2 array

Polar displacement of the Earth, in radians, from the motion of the Earth crust, along the x- and y-
axes. By default, the function assumes an M-by-2 array of zeroes.

• 1-by-2 array

Specify a 1-by-2 array of the polar displacement values to convert one direction cosine or
transformation matrix.

• M-by-2 array

Specify an M-by-2 array of polar displacement values, where M is the number of direction cosine
or transformation matrices to convert. Each row corresponds to one set of UTC values.
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Example: [-0.0682e-5 0.1616e-5]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'dNutation',[-0.2530e-6 -0.0188e-6]

dNutation — Adjustment to longitude (dDeltaPsi) and obliquity (dDeltaEpsilon)
M-by-2 array of zeroes (default) | M-by-2 array

Adjustment to the longitude (dDeltaPsi) and obliquity (dDeltaEpsilon), in radians, specified as the
comma-separated pair consisting of 'dNutation' and an M-by-2 array. You can use this Name,Value
pair with the IAU-76/FK5 reduction.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of adjustment values, where M is the number of LLA coordinates to be
converted. Each row corresponds to one set of longitude and obliquity values.

Data Types: double

dCIP — Adjustment to the location of the celestial intermediate pole (CIP)
M-by-2 array of zeroes (default)

Adjustment to the location of the celestial intermediate pole (CIP), in radians, specified as the
comma-separated pair consisting of 'dCIP' and an M-by-2 array. This location (dDeltaX, dDeltaY) is
along the x- and y- axes. You can use this argument with the IAU-200/2006 reduction.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of location adjustment values, where M is the number of LLA coordinates to
convert. Each row corresponds to one set of dDeltaX and dDeltaY values.

Example: 'dCIP',[-0.2530e-6 -0.0188e-6]
Data Types: double

flattening — Custom ellipsoid planet
1-by-1 array

Custom ellipsoid planet defined by flattening, specified as the comma-separated pair consisting of
'flattening' and a 1-by-1 array.
Example: 1/290
Data Types: double
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re — Custom planet ellipsoid radius
1-by-1 array

Custom planet ellipsoid radius, in meters, specified as the comma-separated pair consisting of 're'
and a 1-by-1 array.
Example: 60000
Data Types: double

See Also
dcmeci2ecef | ecef2lla | geoc2geod | geod2geoc | lla2ecef | lla2eci

Introduced in R2015a
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eci2ecef
Position, velocity, and acceleration vectors in Earth-centered Earth-fixed (ECEF) coordinate system

Syntax
[r_ecef,v_ecef,a_ecef] = eci2ecef(utc,r_eci,v_eci,a_eci)
[r_ecef,v_ecef,a_ecef] = eci2ecef(utc,r_eci,v_eci,a_eci,Name,Value)

Description
[r_ecef,v_ecef,a_ecef] = eci2ecef(utc,r_eci,v_eci,a_eci) calculates position, velocity,
and acceleration vectors in Earth-centered Earth-fixed (ECEF) coordinate system for given position,
velocity, and acceleration vectors in the Earth-centered inertial (ECI) coordinate system at a specific
Coordinated Universal Time (UTC). For more information on the Earth-centered Earth-fixed
coordinate system, see “Algorithms” on page 4-368.

[r_ecef,v_ecef,a_ecef] = eci2ecef(utc,r_eci,v_eci,a_eci,Name,Value) calculates
the position, velocity, and acceleration vectors at a higher precision using Earth orientation
parameters.

Examples

Convert ECI Position and Velocity to ECEF

Convert ECI position and velocity to ECEF at 12:00 on January 4, 2019.

r_eci = [-2981784 5207055 3161595];
v_eci = [-3384 -4887 4843];
utc = [2019 1 4 12 0 0];
[r_ecef, v_ecef] = eci2ecef(utc, r_eci, v_eci)

r_ecef =
   1.0e+06 *
   -5.7627
   -1.6827
    3.1560

v_ecef =
   1.0e+03 *
    3.8319
   -4.0243
    4.8370

Convert ECI Position to ECEF Including Polar Motion Effects

Convert ECI position to ECEF at 12:00 on January 4, 2019 including effects of polar motion.

r_eci = [-2981784 5207055 3161595];
utc = [2019 1 4 12 0 0];
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mjd = mjuliandate(utc);
pm = polarMotion(mjd, 'action', 'none')*180/pi;
r_ecef = eci2ecef(utc, r_eci, 'pm', pm)

r_ecef =
   1.0e+06 *
   -5.7627
   -1.6827
    3.1560

Input Arguments
utc — Universal Coordinated Time
1-by-6 array | 1-by-6 matrix

Universal Coordinated Time (UTC) in the order year, month, day, hour, minutes, and seconds,
specified as 1-by-6 array of UTC values:

Time Value Enter
Year Double value that is a whole number greater than

1, such as 2013.
Month Double value that is a whole number greater than

0, within the range 1 to 12.
Day Double value that is a whole number greater than

0, within the range 1 to 31.
Hour Double value that is a whole number greater than

0, within the range 1 to 24.
Minute and second Double value that is a whole number greater than

0, within the range 1 to 60.

Example: [2000 1 12 4 52 12.4]
Data Types: double

r_eci — Position components
3-by-1 array

ECI position components, specified as a 3-by-1 array.
Data Types: double

v_eci — Velocity components
3-by-1 array

ECI velocity components, specified as a 3-by-1 array.
Data Types: double

a_eci — Acceleration components
3-by-1 array

ECI acceleration components, specified as a 3-by-1 array.
Data Types: double
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'dUT1',0.234

dAT — Difference between TAI and UTC
0 (default) | scalar

Difference between International Atomic Time (TAI) and UTC, specified as a scalar, in seconds.
Example: 32
Data Types: double

dUT1 — Difference between UTC and Universal Time
0 (default) | scalar

Difference between UTC and Universal Time (UT1), specified as a scalar, in seconds.
Example: 0.234
Data Types: double

pm — Polar displacement
array of zeroes (default) | 1-by-2 array

Polar displacements due to the motion of Earth crust along the x- and y-axis, in degrees.

Tip To calculate the displacement, use the polarMotion function.

Example: pm = polarMotion(mjd, 'action', 'none')*180/pi;
Data Types: double

dCIP — Adjustment to the CIP
1-by-2 array

Adjustment to the location of the Celestial Intermediate Pole (CIP), in degrees, specified as a comma-
separated pair consisting of dCIP and an M-by-2 array. This location (dDeltaX, dDeltaY) is along the
x- and y- axes. By default, this function assumes a 1-by-2 array of zeroes.

For historical values, see the International Earth Rotation and Reference Systems Service Web site
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify a M-by-2 array of location adjustment values, where M is the number of direction cosine
or transformation matrices to be converted. Each row corresponds to one set of dDeltaX and
dDeltaY values.

Example: [-0.2530e-6 -0.0188e-6]
Data Types: double
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lod — Excess length of day
0 (default) | scalar

Excess length of day (difference between astronomically determined duration of day and 86400 SI
seconds), specified as a scalar, in seconds.
Example: 32
Data Types: double

Output Arguments
r_ecef — Position components
3-by-1 array

ECEF position components, specified as a 3-by-1 array.

v_ecef — Velocity components
3-by-1 array

ECEF velocity components, specified as a 3-by-1 array.

a_ecef — Acceleration components
3-by-1 array

ECEF acceleration components, specified as a 3-by-1 array.

Algorithms
The eci2ecef function uses these Earth-centric coordinate systems:

• Earth Centered Inertial Frame (ECI) — The inertial frame used is the International Celestial
Reference Frame (ICRF). This frame can be treated as equal to the ECI coordinate system realized
at J2000 (Jan 1 2000 12:00:00 TT). For more information, see “ECI Coordinates” on page 2-7.

• Earth-centered Earth-fixed Frame (ECEF) — The fixed-frame used is the International Terrestrial
Reference Frame (ITRF). This reference frame is realized by the IAU2000/2006 reduction from the
ICRF coordinate system. For more information, see “ECEF Coordinates” on page 2-8.

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. alg. 4. New York: McGraw-Hill,

1997.

[2] Gottlieb, R. G., "Fast Gravity, Gravity Partials, Normalized Gravity, Gravity Gradient Torque and
Magnetic Field: Derivation, Code and Data," Technical Report NASA Contractor Report
188243, NASA Lyndon B. Johnson Space Center, Houston, Texas, February 1993.

[3] Konopliv, A. S., S. W. Asmar, E. Carranza, W. L. Sjogen, D. N. Yuan., "Recent Gravity Models as a
Result of the Lunar Prospector Mission, Icarus", Vol. 150, no. 1, pp 1–18, 2001.

[4] Lemoine, F. G., D. E. Smith, D.D. Rowlands, M.T. Zuber, G. A. Neumann, and D. S. Chinn, "An
improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor", Journal
Of Geophysical Research, Vol. 106, No. E10, pp 23359-23376, October 25, 2001.
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[5] Seidelmann, P.K., Archinal, B.A., A’hearn, M.F. et al. "Report of the IAU/IAG Working Group on
cartographic coordinates and rotational elements: 2006." Celestial Mech Dyn Astr 98, 155–
180 (2007).

See Also
ecef2eci | dcmeci2ecef | aeroReadIERSData | deltaCIP | polarMotion | deltaUT1 |
siderealTime | CubeSat Vehicle

Introduced in R2019a
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eci2lla
Convert Earth-centered inertial (ECI) coordinates to latitude, longitude, altitude (LLA) geodetic
coordinates

Syntax
lla = eci2lla(position,utc)

lla = eci2lla(position,utc,reduction)
lla = eci2lla(position,utc,reduction,deltaAT)
lla = eci2lla(position,utc,reduction,deltaAT,deltaUT1)
lla = eci2lla(position,utc,reduction,deltaAT,deltaUT1,polarmotion)
lla = eci2lla(position,utc,reduction,deltaAT,deltaUT1,polarmotion,Name,Value)

Description
lla = eci2lla(position,utc) converts Earth-centered inertial (ECI) coordinates, specified by
position, to latitude, longitude, altitude (LLA) geodetic coordinates. The conversion is based on the
Universal Coordinated Time (UTC) you specify.

lla = eci2lla(position,utc,reduction) converts Earth-centered inertial (ECI) coordinates,
specified by position, to latitude, longitude, altitude (LLA) geodetic coordinates. The conversion is
based on the specified reduction method and the Universal Coordinated Time (UTC) you specify.

lla = eci2lla(position,utc,reduction,deltaAT) uses the difference between International
Atomic Time and UTC that you specify as deltaAT to calculate the ECI coordinates.

lla = eci2lla(position,utc,reduction,deltaAT,deltaUT1) uses the difference between
UTC and Universal Time (UT1), which you specify as deltaUT1, in the calculation.

lla = eci2lla(position,utc,reduction,deltaAT,deltaUT1,polarmotion) uses the polar
displacement, polarmotion, in the calculation.

lla = eci2lla(position,utc,reduction,deltaAT,deltaUT1,polarmotion,Name,Value)
uses additional options specified by one or more Name,Value pair arguments.

Examples

Convert Position to LLA Coordinates Using UTC

Convert the position to LLA coordinates from ECI coordinates [-6.07 -1.28 0.66]*1e6 at 01/17/2010
10:20:36 UTC.

lla = eci2lla([-6.07 -1.28 0.66]*1e6,[2010 1 17 10 20 36])

lla =

   1.0e+05 *
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    0.0001   -0.0008   -1.3940

Convert Position to LLA Coordinates Using UTC and Reduction Method IAU-76/FK5

Convert the position to LLA coordinates from ECI coordinates [-1.1 3.2 -4.9]*1e4 at 01/12/2000
4:52:12.4 UTC, with a difference of 32 seconds between TAI and UTC, and 0.234 seconds between
UTC and UT1. For an ellipsoid with a flattening of 1/290 and an equatorial radius of 60000 meters,
use the IAU-76/FK5 reduction, polar motion [-0.0682e-5 0.1616e-5] radians, and nutation angles
[-0.2530e-6 -0.0188e-6].

lla = eci2lla([-1.1 3.2 -4.9]*1e4,[2000 1 12 4 52 12.4],...
'IAU-76/FK5',32,0.234,[-0.0682e-5 0.1616e-5],'dNutation'...
,[-0.2530e-6 -0.0188e-6],...
'flattening',1/290,'RE',60000)

lla =

  -55.5592  -75.0892 -311.3709

Input Arguments
position — ECI coordinates
M-by-3 array

ECI coordinates in meters, specified as an M-by-3 array.

utc — Universal Coordinated Time
1-by-6 array | M-by-6 matrix

Universal Coordinated Time (UTC), in the order year, month, day, hour, minutes, and seconds, for
which the function calculates the conversion, specified as one of the following:

• For the year value, enter a double value that is a whole number greater than 1, such as 2013.
• For the month value, enter a double value that is a whole number greater than 0, within the range

1 to 12.
• For the hour value, enter a double value that is a whole number greater than 0, within the range 1

to 24.
• For the hour value, enter a double value that is a whole number greater than 0, within the range 1

to 60.
• For the minute and second values, enter a double value that is a whole number greater than 0,

within the range 1 to 60.

Specify these values in one of the following formats:

• 1-by-6 array

Specify a 1-row-by-6-column array of UTC values.
• M-by-6 matrix

Specify an M-by-6 array of UTC values, where M is the number of transformation matrices to
calculate. Each row corresponds to one set of UTC values.
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This is a one row-by-6 column array of UTC values.
Example: [2000 1 12 4 52 12.4]

This is an M-by-6 array of UTC values, where M is 2.
Example: [2000 1 12 4 52 12.4;2010 6 5 7 22 0]
Data Types: double

reduction — Reduction method
'IAU-2000/2006' (default) | 'IAU-76/FK5'

Reduction method to calculate the coordinate conversion, specified as one of the following:

• 'IAU-76/FK5'

Reduce the calculation using the International Astronomical Union (IAU)-76/Fifth Fundamental
Catalogue (FK5) (IAU-76/FK5) reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5. You can use the 'dNutation' Name,Value pair with
this reduction.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, eci2lla performs a coordinate conversion that is not orthogonal
because of the polar motion approximation.

• 'IAU-2000/2006'

Reduce the calculation using the International Astronomical Union (IAU)-2000/2005 reference
system. Choose this reduction method if the reference coordinate system for the conversion is
IAU-2000. This reduction method uses the P03 precession model to reduce the calculation. You
can use the 'dCIP' Name,Value pair with this reduction.

deltaAT — Difference between International Atomic Time and UTC
M-by-1 array of zeroes (default) | scalar | one-dimensional array

Difference between International Atomic Time (IAT) and UTC, in seconds, for which the function
calculates the coordinate conversion.

• scalar

Specify difference-time value to calculate one direction cosine or transformation matrix.
• one-dimensional array

Specify a one-dimensional array with M elements, where M is the number of ECI coordinates.
Each row corresponds to one set of ECI coordinates.

Specify 32 seconds as the difference between IAT and UTC.
Example: 32
Data Types: double

deltaUT1 — Difference between UTC and Universal Time (UT1)
M-by-1 array of zeroes (default) | scalar | one-dimensional array
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Difference between UTC and Universal Time (UT1), in seconds, for which the function calculates the
coordinate conversion.

• scalar

Specify difference-time value to calculate ECI coordinates.
• one-dimensional array

Specify a one-dimensional array with M elements of difference time values, where M is the
number of ECI coordinates. Each row corresponds to one set of ECI coordinates.

Specify 0.234 seconds as the difference between UTC and UT1.
Example: 0.234
Data Types: double

polarmotion — Polar displacement
M-by-2 array of zeroes (default) | 1-by-2 array | M-by-2 array

Polar displacement of the Earth, in radians, from the motion of the Earth crust, along the x- and y-
axes.

• 1-by-2 array

Specify a 1-by-2 array of the polar displacement values to convert one ECI coordinate.
• M-by-2 array

Specify an M-by-2 array of polar displacement values, where M is the number of ECI coordinates
to convert. Each row corresponds to one set of UTC values.

Example: [-0.0682e-5 0.1616e-5]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'dNutation',[-0.2530e-6 -0.0188e-6]

dNutation — Adjustment to longitude (dDeltaPsi) and obliquity (dDeltaEpsilon)
M-by-2 array of zeroes (default) | M-by-2 array

Adjustment to the longitude (dDeltaPsi) and obliquity (dDeltaEpsilon), in radians, specified as the
comma-separated pair consisting of dNutation and an M-by-2 array. You can use this Name,Value
pair with the IAU-76/FK5 reduction.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of adjustment values, where M is the number of LLA coordinates to be
converted. Each row corresponds to one set of longitude and obliquity values.
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Data Types: double

dCIP — Adjustment to the location of the celestial intermediate pole (CIP)
M-by-2 array of zeroes (default)

Adjustment to the location of the celestial intermediate pole (CIP), in radians, specified as the
comma-separated pair consisting of dCIP and an M-by-2 array. This location (dDeltaX, dDeltaY) is
along the x- and y- axes. You can use this argument with the IAU-200/2006 reduction.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of location adjustment values, where M is the number of LLA coordinates to
convert. Each row corresponds to one set of dDeltaX and dDeltaY values.

Example: 'dcip',[-0.2530e-5 -0.0188e-4]
Data Types: double

flattening — Custom ellipsoid planet
1-by-1 array

Custom ellipsoid planet defined by flattening.
Example: 1/290
Data Types: double

re — Custom planet ellipsoid radius
1-by-1 array

Custom planet ellipsoid radius, in meters.
Example: 60000
Data Types: double

See Also
dcmeci2ecef | ecef2lla | geoc2geod | geod2geoc | lla2ecef | lla2eci

Introduced in R2014a
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EGTIndicator Properties
Control exhaust gas temperature (EGT) indicator appearance and behavior

Description
EGT indicators are components that represent an EGT indicator. Properties control the appearance
and behavior of an EGT indicator. Use dot notation to refer to a particular object and property:

f = uifigure;
egtindicator = uiaeroegt(f);
egtindicator.Value = 100;

The EGT indicator displays temperature measurements for engine exhaust gas temperature (EGT) in
Celsius.

This gauge displays values using both:

• A needle on a gauge. A major tick is (Maximum-Minimum)/1,000 degrees, a minor tick is
(Maximum-Minimum)/200 degrees Celsius.

• A numeric indicator. The operating range for the indicator goes from Minimum to Maximum
degrees Celsius.

If the value of the signal is under Minimum, the needle displays 5 degrees under the Minimum value,
the numeric display shows the Minimum value. If the value exceeds the Maximum value, the needle
displays 5 degrees over the maximum tick, and the numeric displays the Maximum value.

Properties
EGT Indicator

Limits — Minimum and maximum indicator scale values
[0 1000] (default) | two-element finite, real, and scalar numeric vector

Minimum and maximum indicator scale values, specified as a two-element numeric vector. The first
value in the vector must be less than the second value, in degrees Celsius.

If you change Limits such that the Value property is less than the new lower limit, or more than the
new upper limit, then the indicator needle points to a location off the scale.

For example, suppose Limits is [0 100] and the Value property is 20. If the Limits changes to
[50 100], then the needle points to a location off the scale, slightly less than 50.

ScaleColors — Scale colors
[ ] (default) | 1-by-n string array | 1-by-n cell array | n-by-3 array of RGB triplets | hexadecimal color
code | ...

Scale colors, specified as one of the following arrays:

• A 1-by-n string array of color options, such as ["blue" "green" "red"].
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• An n-by-3 array of RGB triplets, such as [0 0 1;1 1 0].
• A 1-by-n cell array containing RGB triplets, hexadecimal color codes, or named color options. For

example, {'#EDB120','#7E2F8E','#77AC30'}.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Each color of the ScaleColors array corresponds to a colored section of the gauge. Set the
ScaleColorLimits property to map the colors to specific sections of the gauge.

If you do not set the ScaleColorLimits property, MATLAB distributes the colors equally over the
range of the gauge.

ScaleColorLimits — Scale color limits
[ ] (default) | n-by-2 array
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Scale color limits, specified as an n-by-2 array of numeric values. For every row in the array, the first
element must be less than the second element.

When applying colors to the indicator, MATLAB applies the colors starting with the first color in the
ScaleColors array. Therefore, if two rows in ScaleColorLimits array overlap, then the color
applied later takes precedence.

The indicator does not display any portion of the ScaleColorLimits that falls outside of the
Limits property.

If the ScaleColors and ScaleColorLimits property values are different sizes, then the indicator
shows only the colors that have matching limits. For example, if the ScaleColors array has three
colors, but the ScaleColorLimits has only two rows, then the indicator displays the first two color/
limit pairs only.

Temperature — Temperature value
0 (default) | finite, real, and scalar numeric

Temperature value, specified as any finite and scalar numeric, in degrees Celsius
Example: 10

Dependencies

Specifying this value changes the value of Value. Conversely, changing Value changes the
Temperature value.

Value — Temperature value
0 (default) | finite, real, and scalar numeric

Temperature value, specified as any finite and scalar numeric, in degrees Celsius.
Example: 10

Dependencies

Specifying this value changes the value of Temperature. Conversely, changing Temperature
changes the Value value.

Interactivity

Visible — Visibility of EGT indicator
'on' (default) | on/off logical value

Visibility of the EGT indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the EGT indicator,
is displayed on the screen. If the Visible property is set to 'off', then the entire EGT indicator is
hidden, but you can still specify and access its properties.

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.
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Enable — Operational state of EGT indicator
'on' (default) | on/off logical value

Operational state of EGT indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the appearance of the EGT indicator indicates that the EGT
indicator is operational.

• If you set this property to 'off', then the appearance of the EGT indicator appears dimmed,
indicating that the EGT indicator is not operational.

Position

Position — Location and size of EGT indicator
[100 100 120 120] (default) | [left bottom width height]

Location and size of the EGT indicator relative to the parent container, specified as the vector, [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the EGT indicator
bottom Distance from the inner bottom edge of the parent container to the

outer bottom edge of an imaginary box surrounding the EGT
indicator

width Distance between the right and left outer edges of the EGT
indicator

height Distance between the top and bottom outer edges of the EGT
indicator

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of EGT indicator
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the EGT indicator, specified as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

OuterPosition — Outer location and size of EGT indicator
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.
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Outer location and size of the EGT indicator returned as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an EGT indicator in the third row and second column of its parent grid.

g = uigridlayout([4 3]);
gauge = uiaeroegt(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the EGT indicator span multiple rows or columns, specify the Row or Column property as a
two-element vector. For example, this EGT indicator spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:
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• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:
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• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object
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Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.

Identifiers

Type — Type of graphics object
'uiaeroegt'

This property is read-only.

Type of graphics object, returned as 'uiaeroegt'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.
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See Also
uiaeroegt

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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fieldOfView
Package: matlabshared.satellitescenario

Visualize field of view of conical sensor

Syntax
fieldOfView(sensor)
fieldOfView(sensor,Name,Value)
fov = fieldOfView( ___ )

Description
fieldOfView(sensor) adds a FieldOfView object to the specified conical sensor, and draws
contours on the Earth. Each contour represents the field of view of a conical sensor in sensor based
on the current state of the scenario.

Locations inside the contour are inside the field of view. If no viewer is open, a new viewer is
launched, and the field of view contours are shown in the open viewer. If a viewer is already open, the
field of view contours are added to it. The contours are the lines of intersection of the surface of the
earth and the field of view cone. The half angle of the field of view cone is equal to the MaxViewAngle
property of the conical sensor, and the axis of the cone is the z-axis (or boresight) of the conical
sensor. The vertex of the cone is located at the position of the conical sensor. The cone becomes wider
along the positive body z-axis of the conical sensor.

fieldOfView(sensor,Name,Value) specifies options by using one or more name-value
arguments.

fov = fieldOfView( ___ ) returns a vector of handles to the added field of view graphic objects.
Specify any input combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60;                                      % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 21-Jun-2021 08:55:00
          StopTime: 26-Jun-2021 08:55:00
        SampleTime: 60
           Viewers: [0x0 matlabshared.satellitescenario.Viewer]
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        Satellites: [1x0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;                                                                    % meters
eccentricity = 0;
inclination = 50;                                                                           % degrees
rightAscensionOfAscendingNode = 0;                                                          % degrees
argumentOfPeriapsis = 0;                                                                    % degrees
trueAnomaly = 50;                                                                           % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
    argumentOfPeriapsis,trueAnomaly)

sat = 
  Satellite with properties:

               Name:  Satellite 1
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  sgp4
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
    "Latitude",42.3001,"Longitude",-71.3504)               % degrees

gs = 
  GroundStation with properties:

                 Name:  Location To Photograph
                   ID:  2
             Latitude:  42.3 degrees
            Longitude:  -71.35 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [0 1 1]
           MarkerSize:  10
            ShowLabel:  true
       LabelFontColor:  [0 1 1]
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        LabelFontSize:  15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g = 
  Gimbal with properties:

                Name:  Gimbal 3
                  ID:  3
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
      ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
        Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
           Receivers:  [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor = 
  ConicalSensor with properties:

                Name:  Conical sensor 4
                  ID:  4
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
        MaxViewAngle:  60 degrees
            Accesses:  [1x0 matlabshared.satellitescenario.Access]
         FieldOfView:  [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac = 
  Access with properties:

    Sequence:  [4 2]
    LineWidth:  1
    LineColor:  [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);
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Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
          Source                   Target             IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    __________________    ________________________    ______________    ____________________    ____________________    ________    __________    ________

    "Conical sensor 4"    "Location To Photograph"           1          21-Jun-2021 10:38:00    21-Jun-2021 10:55:00      1020           1            2   
    "Conical sensor 4"    "Location To Photograph"           2          21-Jun-2021 12:36:00    21-Jun-2021 12:58:00      1320           2            3   
    "Conical sensor 4"    "Location To Photograph"           3          21-Jun-2021 14:37:00    21-Jun-2021 15:01:00      1440           3            4   
    "Conical sensor 4"    "Location To Photograph"           4          21-Jun-2021 16:41:00    21-Jun-2021 17:04:00      1380           5            5   
    "Conical sensor 4"    "Location To Photograph"           5          21-Jun-2021 18:44:00    21-Jun-2021 19:07:00      1380           6            6   
    "Conical sensor 4"    "Location To Photograph"           6          21-Jun-2021 20:46:00    21-Jun-2021 21:08:00      1320           7            7   
    "Conical sensor 4"    "Location To Photograph"           7          21-Jun-2021 22:50:00    21-Jun-2021 23:04:00       840           8            8   
    "Conical sensor 4"    "Location To Photograph"           8          22-Jun-2021 09:51:00    22-Jun-2021 10:02:00       660          13           13   
    "Conical sensor 4"    "Location To Photograph"           9          22-Jun-2021 11:46:00    22-Jun-2021 12:07:00      1260          14           15   
    "Conical sensor 4"    "Location To Photograph"          10          22-Jun-2021 13:46:00    22-Jun-2021 14:10:00      1440          15           16   
    "Conical sensor 4"    "Location To Photograph"          11          22-Jun-2021 15:50:00    22-Jun-2021 16:13:00      1380          16           17   
    "Conical sensor 4"    "Location To Photograph"          12          22-Jun-2021 17:53:00    22-Jun-2021 18:16:00      1380          18           18   
    "Conical sensor 4"    "Location To Photograph"          13          22-Jun-2021 19:55:00    22-Jun-2021 20:18:00      1380          19           19   
    "Conical sensor 4"    "Location To Photograph"          14          22-Jun-2021 21:58:00    22-Jun-2021 22:16:00      1080          20           20   
    "Conical sensor 4"    "Location To Photograph"          15          23-Jun-2021 10:56:00    23-Jun-2021 11:16:00      1200          26           27   
    "Conical sensor 4"    "Location To Photograph"          16          23-Jun-2021 12:56:00    23-Jun-2021 13:19:00      1380          27           28   
      ⋮

Calculate the maximum revisit time in hours.
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startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes)                             % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

Input Arguments
sensor — Conical sensor
ConicalSensor object

Conical sensor, specified as a ConicalSensor object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LineWidth',2.5 sets the line width of the field of view to 2.5 pixels.
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Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

NumContourPoints — Number of contour points
40 (default) | integer greater than or equal to 4

Number of contour points used to draw the contour of the field of view, specified as an integer
greater than or equal to 4.
Data Types: double

LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Output Arguments
fov — Field of view of conical sensor
row vector of FieldOfView objects

Field of view of conical sensor, returned as a row vector of FieldOfView objects.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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FieldOfView
Field of view object belonging to satellite scenario

Description
The FieldOfView object defines a field of view object belonging to a satellite scenario.

Creation
You can create a FieldOfView object using the fieldOfView object function of the
ConicalSensor object.

Properties
LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of field of view contour
'inherit' (default) | 'manual'

Visibility mode of the field of view contour, specified as one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent
• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide Hides satellite scenario entity from viewer

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.
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startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60;                                      % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 21-Jun-2021 08:55:00
          StopTime: 26-Jun-2021 08:55:00
        SampleTime: 60
           Viewers: [0x0 matlabshared.satellitescenario.Viewer]
        Satellites: [1x0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;                                                                    % meters
eccentricity = 0;
inclination = 50;                                                                           % degrees
rightAscensionOfAscendingNode = 0;                                                          % degrees
argumentOfPeriapsis = 0;                                                                    % degrees
trueAnomaly = 50;                                                                           % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
    argumentOfPeriapsis,trueAnomaly)

sat = 
  Satellite with properties:

               Name:  Satellite 1
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  sgp4
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
    "Latitude",42.3001,"Longitude",-71.3504)               % degrees

gs = 
  GroundStation with properties:

                 Name:  Location To Photograph
                   ID:  2
             Latitude:  42.3 degrees
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            Longitude:  -71.35 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [0 1 1]
           MarkerSize:  10
            ShowLabel:  true
       LabelFontColor:  [0 1 1]
        LabelFontSize:  15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g = 
  Gimbal with properties:

                Name:  Gimbal 3
                  ID:  3
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
      ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
        Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
           Receivers:  [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor = 
  ConicalSensor with properties:

                Name:  Conical sensor 4
                  ID:  4
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
        MaxViewAngle:  60 degrees
            Accesses:  [1x0 matlabshared.satellitescenario.Access]
         FieldOfView:  [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac = 
  Access with properties:
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    Sequence:  [4 2]
    LineWidth:  1
    LineColor:  [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
          Source                   Target             IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    __________________    ________________________    ______________    ____________________    ____________________    ________    __________    ________

    "Conical sensor 4"    "Location To Photograph"           1          21-Jun-2021 10:38:00    21-Jun-2021 10:55:00      1020           1            2   
    "Conical sensor 4"    "Location To Photograph"           2          21-Jun-2021 12:36:00    21-Jun-2021 12:58:00      1320           2            3   
    "Conical sensor 4"    "Location To Photograph"           3          21-Jun-2021 14:37:00    21-Jun-2021 15:01:00      1440           3            4   
    "Conical sensor 4"    "Location To Photograph"           4          21-Jun-2021 16:41:00    21-Jun-2021 17:04:00      1380           5            5   
    "Conical sensor 4"    "Location To Photograph"           5          21-Jun-2021 18:44:00    21-Jun-2021 19:07:00      1380           6            6   
    "Conical sensor 4"    "Location To Photograph"           6          21-Jun-2021 20:46:00    21-Jun-2021 21:08:00      1320           7            7   
    "Conical sensor 4"    "Location To Photograph"           7          21-Jun-2021 22:50:00    21-Jun-2021 23:04:00       840           8            8   
    "Conical sensor 4"    "Location To Photograph"           8          22-Jun-2021 09:51:00    22-Jun-2021 10:02:00       660          13           13   
    "Conical sensor 4"    "Location To Photograph"           9          22-Jun-2021 11:46:00    22-Jun-2021 12:07:00      1260          14           15   
    "Conical sensor 4"    "Location To Photograph"          10          22-Jun-2021 13:46:00    22-Jun-2021 14:10:00      1440          15           16   
    "Conical sensor 4"    "Location To Photograph"          11          22-Jun-2021 15:50:00    22-Jun-2021 16:13:00      1380          16           17   
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    "Conical sensor 4"    "Location To Photograph"          12          22-Jun-2021 17:53:00    22-Jun-2021 18:16:00      1380          18           18   
    "Conical sensor 4"    "Location To Photograph"          13          22-Jun-2021 19:55:00    22-Jun-2021 20:18:00      1380          19           19   
    "Conical sensor 4"    "Location To Photograph"          14          22-Jun-2021 21:58:00    22-Jun-2021 22:16:00      1080          20           20   
    "Conical sensor 4"    "Location To Photograph"          15          23-Jun-2021 10:56:00    23-Jun-2021 11:16:00      1200          26           27   
    "Conical sensor 4"    "Location To Photograph"          16          23-Jun-2021 12:56:00    23-Jun-2021 13:19:00      1380          27           28   
      ⋮

Calculate the maximum revisit time in hours.

startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes)                             % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access
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Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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fganimation (Aero.FlightGearAnimation)
Construct FlightGear animation object

Syntax
h = fganimation
h = Aero.FlightGearAnimation

Description
h = fganimation and h = Aero.FlightGearAnimation construct a FlightGear animation
object. The FlightGear animation object is returned to h.

Examples
Construct a FlightGear animation object, h:

h = fganimation

See Also
Aero.FlightGearAnimation

Introduced in R2007a
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findstartstoptimes (Aero.Body)
Return start and stop times of time series data

Syntax
[tstart,tstop] = findstartstoptimes(h,tsdata)
[tstart,stop] = h.findstartstoptimes(tsdata)

Description
[tstart,tstop] = findstartstoptimes(h,tsdata) and [tstart,stop] =
h.findstartstoptimes(tsdata) return the start and stop times of time series data tsdata for
the animation body object h.

Examples
Find the start and stop times of the time series data, tsdata.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');
tsdata = [ ...
    0,  1,1,1, 0,0,0; ...
    10  2,2,2, 1,1,1; ];
 b.TimeSeriesSource = tsdata;
[tstart,tstop] = findstartstoptimes(b,tsdata);

See Also
load

Introduced in R2007a
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findstartstoptimes (Aero.Node)
Return start and stop times for time series data

Syntax
[tstart,tstop] = findstartstoptimes(h,tsdata)
[tstart,stop] = h.findstartstoptimes(tsdata)

Description
[tstart,tstop] = findstartstoptimes(h,tsdata) and [tstart,stop] =
h.findstartstoptimes(tsdata) return the start and stop times of time series data tsdata for
the virtual reality animation object h.

Examples
Find the start and stop times of the time series data, takeoffData.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
load takeoffData;
h.Nodes{7}.TimeseriesSource = takeoffData;
h.Nodes{7}.TimeseriesSourceType = 'StructureWith Time';
[tstart,stop]=h.Nodes{7}.findstartstoptimes;

Introduced in R2007b
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fixedWingAircraft
Create fixed-wing aircraft

Syntax
aircraft = fixedWingAircraft(name,referencearea,referencespan,
referencelength)
aircraft = fixedWingAircraft(name,referencearea,referencespan,
referencelength,degreesoffreedom)
aircraft = fixedWingAircraft( ___ ,Name,Value)

Description
aircraft = fixedWingAircraft(name,referencearea,referencespan,
referencelength) returns a fixed-wing aircraft object, aircraft, specified by the aircraft name,
name, reference area, referencearea, reference span, referencespan, and reference length,
referencelength.

aircraft = fixedWingAircraft(name,referencearea,referencespan,
referencelength,degreesoffreedom) returns a fixed-wing aircraft object created with the
specified degrees of freedom, degreesoffreedom.

aircraft = fixedWingAircraft( ___ ,Name,Value) returns a fixed-wing aircraft object
created with one or more Name,Value arguments.

Examples

Create FIxed-Wing Aircraft Object

Create a fixed-wing aircraft.

aircraft = fixedWingAircraft("MyPlane",174,36,4.9)

aircraft = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           Properties: [1×1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"
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Create 4th Order Point Mass Fixed-Wing Aircraft Object

Create a 4th order point-mass fixed-wing aircraft using positional arguments.

aircraft = fixedWingAircraft("MyPlane",174,36,4.9,"PM4")

aircraft = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "PM4"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           Properties: [1×1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

Create Fixed-Wing Aircraft Object Unit System as Name,Value Argument

Create a fixed-wing aircraft specifying the unit system as a Name,Value argument.
aircraft = fixedWingAircraft("MyPlane",174,36,4.9,"UnitSystem","English (kts)")

aircraft = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×0 Aero.FixedWing.Surface]
              Thrusts: [1×0 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           Properties: [1×1 Aero.Aircraft.Properties]
           UnitSystem: "English (kts)"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

Input Arguments
name — Fixed-wing aircraft name
scalar

Fixed-wing aircraft name, specified as a scalar string.
Data Types: string

referencearea — Reference area
0 (default) | scalar numeric
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Reference area, specified as a scalar numeric, commonly denoted as 'S', in units of:

Units UnitSystem
meters squared (m2) 'Metric'
feet squared (ft2) 'English (kts)' or 'English (ft/s)'

Tip This argument also exists as the Name,Value argument ReferenceArea. If you specify the
ReferenceArea Name,Value argument, its value supersedes the referencearea positional
argument.

Data Types: double

referencespan — Reference span
0 (default) | scalar numeric

Reference span, specified as a scalar numeric, commonly denoted as 'b', in units of:

Units UnitSystem
meters squared (m) 'Metric'
feet squared (ft) 'English (kts)' or 'English (ft/s)'

Tip This argument also exists as the Name,Value argument ReferenceSpan. If you specify the
ReferenceSpan Name,Value argument, its value supersedes the referencespan positional
argument.

Data Types: double

referencelength — Reference length
0 (default) | scalar numeric

Reference length, specified as a scalar numeric, commonly denoted as 'c', in units of:

Units UnitSystem
meters squared (m) 'Metric'
feet squared (ft) 'English (kts)' or 'English (ft/s)'

Tip This argument also exists as the Name,Value argument ReferenceLength. If you specify the
ReferenceLength Name,Value argument, its value supersedes the referencelength positional
argument.

Data Types: double

degreesoffreedom — Degrees of freedom
'6DOF' (default) | '3DOF' | 'PM4' | 'PM6'

Degrees of freedom, specified as a string or character vector.
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Degrees of Freedom Description
'6DOF' Six degrees of freedom. Describes translational

and rotational movement in 3-D space.
'3DOF' Three degrees of freedom. Describes

translational and rotational movement in 2-D
space.

'PM4' Fourth order point-mass. Describes translational
movement in 2-D space.

'PM6' Sixth order point-mass. Describes translational
movement in 3-D space.

Tip This argument also exists as the Name,Value argument DegreesofFreedom. If you specify the
DegreesofFreedom Name,Value argument, its value supersedes the degreesoffreedom
positional argument.

Data Types: string

Name-Value Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "UnitSystem","English (kts)"

UnitSystem — Unit system
'Metric' (default) | 'English (kts)' | 'English (ft/s)' | scalar | character vector

Unit system, specified as 'Metric', 'English (kts)', or 'English (ft/s)'.
Data Types: string | char

AngleSystem — Angle system
'Radians' (default) | 'Degrees'

Angle system, specified as 'Radians' or 'Degrees'.
Data Types: string | char

TemperatureSystem — Temperature system
'Kelvin' (default) | 'Celsius' | 'Rankine' | 'Fahrenheit'

Temperature system, specified as 'Kelvin', 'Celsius', 'Rankine', or 'Fahrenheit'.
Data Types: string | char

ReferenceArea — Reference area
0 (default) | scalar numeric

Reference area, specified as a scalar numeric, commonly denoted as 'S', in units of:
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Units UnitSystem
meters squared (m2) 'Metric'
feet squared (ft2) 'English (kts)' or 'English (ft/s)'

Tip This argument also exists as the referencearea positional argument. If you specify the
ReferenceArea Name,Value argument, its value supersedes the referencearea positional
argument.

Data Types: double

ReferenceSpan — Reference span
0 (default) | scalar numeric

Reference span, specified as a scalar numeric, commonly denoted as 'b', in units of:

Units UnitSystem
meters squared (m) 'Metric'
feet squared (ft) 'English (kts)' or 'English (ft/s)'

Tip This argument also exists as the referencespan positional argument. If you specify the
ReferenceSpan Name,Value argument, its value supersedes the referencespan positional
argument.

Data Types: double

ReferenceLength — Reference length
0 (default) | scalar numeric

Reference length, specified as a scalar numeric, commonly denoted as 'c', in units of:

Units UnitSystem
meters squared (m) 'Metric'
feet squared (ft) 'English (kts)' or 'English (ft/s)'

Tip This argument also exists as the referencelength positional argument. If you specify the
ReferenceLength Name,Value argument, its value supersedes the referencelength positional
argument.

Data Types: double

Coefficients — Aero.FixedWing.Coefficients class instance
scalar

Aero.FixedWing.Coefficients class instance, specified as a scalar that contains the coefficients
defining the fixed-wing aircraft. This object ignores this property if no value is set.
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DegreesOfFreedom — Degrees of freedom
'6DOF' (default) | '3DOF' | 'PM4' | 'PM6'

Degrees of freedom, specified as a string or character vector.

Degrees of Freedom Description
'6DOF' Six degrees of freedom. Describes

translational and rotational movement

in 3-D space.
'3DOF' Three degrees of freedom. Describes

translational and rotational movement

in 2-D space.
'PM4' Fourth order point-mass. Describes

translational movement in 2-D space.
'PM6' Sixth order point-mass. Describes

translational movement in 3-D space.

Tip This argument also exists as the degreesoffreedom positional argument. If you specify the
DegreesofFreedom Name,Value argument, its value supersedes the degreesoffreedom
positional argument.

Data Types: char | string

Surfaces — Aero.FixedWing.Surface definitions
vector

Aero.FixedWing.Surface definitions, specified as a vector that contains the definitions of the
surfaces on the fixed-wing aircraft. The object ignores this property if no value is set.

Thrusts — Aero.FixedWing.Thrust definitions
vector

Aero.FixedWing.Thrust definitions, specified as a vector that contains the definitions of the thrust
on the fixed-wing aircraft. The object ignores this property if no value is set.
Data Types: double

Output Arguments
aircraft — fixed-wing aircraft
scalar

Fixed-wing aircraft, returned as a scalar.
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See Also
aircraftEnvironment | aircraftProperties | fixedWingCoefficient | fixedWingState |
fixedWingSurface | fixedWingThrust

Introduced in R2021b
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fixedWingCoefficient
Define numeric coefficients of fixed-wing aircraft

Syntax
coefficient = fixedWingCoefficient( )
coefficient = fixedWingCoefficient(statevariables)
coefficient = fixedWingCoefficient(statevariables,referenceframe)
coefficient = fixedWingCoefficient(statevariables,referenceframe,
multiplystatevariables)
coefficient = fixedWingCoefficient(statevariables,multiplystatevariables,
nondimensional)
coefficient = fixedWingCoefficient( ___ ,Name,Value)

Description
coefficient = fixedWingCoefficient( ) returns a fixed-wing coefficient object with default
properties.

coefficient = fixedWingCoefficient(statevariables) returns a fixed-wing coefficient
object with the specified state variables, statevariables.

coefficient = fixedWingCoefficient(statevariables,referenceframe) returns a fixed-
wing coefficient object with the specified state variables, statevariables, and reference frame,
referenceframe.

coefficient = fixedWingCoefficient(statevariables,referenceframe,
multiplystatevariables) returns a fixed-wing coefficient object with the specified state
variables, statevariables, reference frame, referenceframe, and multiply state variables
switch, multiplystatevariables.

coefficient = fixedWingCoefficient(statevariables,multiplystatevariables,
nondimensional) returns a fixed-wing coefficient object with the specified state variables,
statevariables, reference frame, referenceframe, multiply state variables switch,
multiplystatevariables, and nondimensional switch, nondimensional.

coefficient = fixedWingCoefficient( ___ ,Name,Value) returns a fixed-wing coefficient
object created with one or more Name,Value arguments.

Examples

Create Fixed-Wing Coefficient Object

Create a fixed-wing coefficient object.

coeffs = fixedWingCoefficient( )
 

coeffs = 
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  Coefficient with properties:

                     Table: [6×1 table]
                    Values: {6×1 cell}
            StateVariables: "Zero"
               StateOutput: [6×1 string]
            ReferenceFrame: "Wind"
    MultiplyStateVariables: on
            NonDimensional: on
                Properties: [1×1 Aero.Aircraft.Properties]

Create Fixed-Wing Coefficient Object with Specified State Variables

Create a fixed-wing coefficient object in the body frame nondimensional coefficients and nondefault
state variables.

coeffs = fixedWingCoefficient(["U","Alpha"],"body","on","off")

coeffs = 

  Coefficient with properties:

                     Table: [6×2 table]
                    Values: {6×2 cell}
            StateVariables: ["U"    "Alpha"]
               StateOutput: [6×1 string]
            ReferenceFrame: "Body"
    MultiplyStateVariables: on
            NonDimensional: off
                Properties: [1×1 Aero.Aircraft.Properties]

Input Arguments
statevariables — State variable names
'Zero' (default) | 1-by-N vector

State variable names, specified as a 1-by-N vector of strings. Each entry in this property corresponds
to a column in the Values property. Each entry in StateVariables must be a valid property in the
Aero.FixedWing.State object. Adding a state variable adds a column of zeros to the end of the
Values cell array.

Tip This argument also exists as the Name,Value argument StateVariables. If you specify the
StateVariables Name,Value argument, its value supersedes the statevariables argument.

Data Types: string

referenceframe — Reference frame for coefficients
'Wind' (default) | 'Body'

Reference frame for coefficients, specified as Wind or Body with these outputs.
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Reference Frame Coefficient Output
Wind Forces:

• drag (CD)
• Y (CY)
• lift (CL)
Moments:

• L (Cl)
• M (Cm)
• N (Cn)

Body Forces:

• X (CX)
• Y (CY)
• Z (CZ)
Moments:

• L (Cl)
• M (Cm)
• N (Cn)

Example of Wind table:

Coefficient State
CD state
CY state
CL state
Cl state
Cm state
Cn state

Example of Body table:

Coefficient State
CX state
CY state
CZ state
Cl state
Cm state
Cn state
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Tip This argument also exists as the Name,Value argument ReferenceFrame. If you specify the
ReferenceFrame Name,Value argument, its value supersedes the referenceframe argument.

Data Types: string

multiplystatevariables — Option to multiply coefficients by state variables
'on' (default) | 'off'

Option to multiply coefficients by state variables when calculating forces and moments. To multiply
coefficients by state variables, set this property to 'on'. Otherwise, set this property to 'off'.

Tip This argument also exists as the Name,Value argument MultiplyStateVariables. If you
specify the MultiplyStateVariables Name,Value argument, its value supersedes the
multiplystatevariables argument.

Data Types: string

nondimensional — Option to specify coefficients are nondimensional
'on' (default) | 'off'

Option to specify that nondimensional coefficients. To specify nondimensional coefficients, set this
property to 'on'. Otherwise, set this property to 'off'.
Data Types: double

Name-Value Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ReferenceFrame','Body'

Table — Coefficient values
6-by-N table

Coefficient values, specified in a 6-by-N table. Each row in the table must be a member of and in the
same order as the “StateOutput” on page 4-0  property.

Setting the Table property also sets the contents of the Values property and StateVariables to
the Table property variables. To have a Simulink.LookupTable object and a constant value in the
same column, use the setCoefficient function or set the desired content of the Values property.
Setting the Table property does not set the ReferenceFrame.

Note Tables must have a single data type per column. If there are both constant values and
Simulink.LookupTable objects in a given column, the Table property automatically converts the
constants to Simulink.LookupTable objects.

Data Types: double

Values — Coefficient values
6-by-N cell array
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Coefficient values, specified as a 6-by-N cell array. Each entry in the cell array must be a single
coefficient value corresponding to the StateOutput (row) and StateVariable (column) properties.
Each coefficient value must be a scalar numeric value or a Simulink.LookupTable object. If a
value is a Simulink.LookupTable object, the FieldName of each breakpoint must be a valid
property of the Aero.FixedWing.State object.

Note Values do need to be a single data type per column.

Data Types: double

StateVariables — State variable names
'Zero' (default) | 1-by-N vector

State variable names, specified as a 1-by-N vector of strings. Each entry in this property corresponds
to a column in the Values property. Each entry in StateVariables must be a valid property in the
Aero.FixedWing.State object. Adding a state variable adds a column of zeros to the end of the
Values cell array.

Tip This argument also exists as the statevariables argument. If you specify the
StateVariables Name,Value argument, its value supersedes the statevariables argument.

Data Types: char | string

ReferenceFrame — Reference frame for coefficients
Wind (default) | Body

Reference frame for coefficients, specified as Wind or Body with these outputs.

Reference Frame Coefficient Output
Wind Forces:

• drag (CD)
• Y (CY)
• lift (CL)
Moments:

• L (Cl)
• M (Cm)
• N (Cn)

Body Forces:

• X (CX)
• Y (CY)
• Z (CZ)
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Reference Frame Coefficient Output
Moments:

• L (Cl)
• M (Cm)
• N (Cn)

Example of Wind table:

Coefficient State
CD state
CY state
CL state
Cl state
Cm state
Cn state

Example of Body table:

Coefficient State
CX state
CY state
CZ state
Cl state
Cm state
Cn state

Tip This argument also exists as the referenceframe argument. If you specify the
ReferenceFrame Name,Value argument, its value supersedes the referenceframe argument.

Data Types: char | string

MultiplyStateVariables — Option to multiply coefficients by state variables
on (default) | off

Option to multiply coefficients by state variables when calculating forces and moments. To multiply
coefficients by state variables, set this property to 'on'. Otherwise, set this property to 'off'.

Tip This argument also exists as the multiplystatvariables argument. If you specify the
MultiplyStateVariables Name,Value argument, its value supersedes the
multiplystatvariables argument.

Data Types: char | string
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NonDimensional — Option to specify coefficients are nondimensional
on (default) | off

To specify nondimensional coefficients, set this property to 'on'. Otherwise, set this property to
'off'.

Tip This argument also exists as the nondimensional argument. If you specify the
NonDimensional Name,Value argument, its value supersedes the nondimensional argument.

Data Types: char | string

Properties — Aero.Aircraft.Properties object
scalar

Aero.Aircraft.Properties object, specified as a scalar.

Output Arguments
coefficient — fixed-wing aircraft
scalar

Fixed-wing aircraft, returned as a scalar.

See Also
aircraftEnvironment | aircraftProperties | fixedWingAircraft | fixedWingState |
fixedWingSurface | fixedWingThrust | atmoscira | atmoscoesa

Introduced in R2021b
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fixedWingState
Define fixed-wing aircraft state at time instant

Syntax
state = fixedWingState(aircraft)
state = fixedWingState(aircraft,environment)
state = fixedWingState( ___ ,Name,Value)

Description
state = fixedWingState(aircraft) returns a fixed-wing state object created from a fixed-
wing aircraft using a default environment.

state = fixedWingState(aircraft,environment) returns a fixed-wing state object using a
specified environment.

state = fixedWingState( ___ ,Name,Value) returns a fixed-wing state object with an
environment defined by Name,Value arguments.

Examples

Create Fixed-Wing Aircraft State Object and Default Environment

Create a fixed-wing aircraft state object from a fixed-wing aircraft object.

aircraft = astC182();
state = fixedWingState(aircraft)

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 0
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
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                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 0
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.0448
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 2.9711
             Environment: [1×1 Aero.Aircraft.Environment]
           ControlStates: [1×4 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]
              UnitSystem: "English (ft/s)"
             AngleSystem: "Radians"
       TemperatureSystem: "Fahrenheit"

Create Fixed-Wing Aircraft State Object from Fixed-Wing Aircraft Object and Mass

Create a fixed-wing aircraft state object from a fixed-wing aircraft object and specify the mass using
positional arguments.

aircraft = astC182();
state = fixedWingState(aircraft,"Mass",500)

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 500
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
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                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 1.6093e+04
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.0448
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 2.9711
             Environment: [1×1 Aero.Aircraft.Environment]
           ControlStates: [1×4 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]
              UnitSystem: "English (ft/s)"
             AngleSystem: "Radians"
       TemperatureSystem: "Fahrenheit"

Create Fixed-Wing Aircraft State Object and Custom Environment

Create a fixed-wing aircraft state object from a fixed-wing aircraft object using a custom environment
and Name,Value arguments.
aircraft = astC182();
state = fixedWingState(aircraft,aircraftEnvironment(aircraft,"COESA",1000))

state = 

  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 0
                 Inertia: [3×3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
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                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 0
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.0449
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 2.8851
             Environment: [1×1 Aero.Aircraft.Environment]
           ControlStates: [1×4 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]
              UnitSystem: "English (ft/s)"
             AngleSystem: "Radians"
       TemperatureSystem: "Fahrenheit"

Input Arguments
aircraft — Fixed-wing aircraft object
scalar

Fixed-wing aircraft object, specified as a scalar.

environment — Fixed-wing aircraft environment name
aircraftEnvironment(aircraft, "ISA", 0) (default) | scalar

Fixed-wing aircraft environment name, specified as a scalar string.

Tip This argument also exists as the Name,Value argument Environment. If you specify the
Environment Name,Value argument, its value supersedes the environment positional argument.

Data Types: string
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Name-Value Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "Mass",500

UnitSystem — Unit system
'Metric' (default) | 'English (kts)' | 'English (ft/s)'

Unit system, specified as 'Metric', 'English (kts)', 'English (ft/s)'.
Data Types: string | char

AngleSystem — Angle system
'Radians' (default) | 'Degrees'

Angle system, specified as 'Radians' or 'Degrees'.
Data Types: string | char

TemperatureSystem — Temperature system
'Kelvin' (default) | 'Celsius' | 'Rankine' | 'Fahrenheit'

Temperature system, specified as 'Kelvin', 'Celsius', 'Rankine', or 'Fahrenheit'.
Data Types: string | char

Mass — Fixed-wing aircraft mass
0 (default) | scalar numeric

Fixed-wing aircraft mass, specified as a scalar numeric in these units.

Unit Unit System
newtons (N) 'Metric'
slugs (slug) 'English (kts)' and 'English (ft/s)'

Data Types: double

Inertia — Inertial matrix of aircraft
3-by-3 table of numeric values (default) | scalar numeric

Inertial matrix of aircraft, specified as a 3-by-3 table of numeric values specifying the body in this
matrix form:

 X Y Z
X Ixx Ixy Ixz
Y Iyx Iyy Iyz
Z Izx Izy Izz

The matrix has these units.
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Unit Unit System
kilogram meters squared (kg m^2) 'Metric'
slug feet squared (slug ft^2) 'English (kts)' and 'English (ft/s)'

Data Types: string | char

CenterOfGravity — Location of center of gravity
[0, 0, 0] (default) | three-element vector

Location of center of gravity on the fixed-wing aircraft in the body frame, specified as a three-element
vector in these units.

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Data Types: double

CenterOfPressure — Location of center of pressure
[0, 0, 0] (default) | three-element vector

Location of center of pressure on the fixed-wing aircraft in the body frame, specified as a three-
element vector in these units.

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Data Types: double

AltitudeMSL — Altitude above sea level
0 (default) | scalar numeric

Altitude above sea level, specified as a scalar numeric in these units.

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Data Types: double

GroundHeight — Ground height above sea level
0 (default) | scalar numeric

Ground height above sea level, specified as a scalar numeric in these units.

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'
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Data Types: double

XN — North position of fixed-wing aircraft
0 (default) | scalar numeric

North position of fixed-wing aircraft, specified as a scalar numeric in these units.

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Data Types: double

XE — East position of fixed-wing aircraft
0 (default) | scalar numeric

East position of fixed-wing aircraft, specified as a scalar numeric in these units.

Unit Unit System
Meters (m) 'Metric'
Feet (ft) 'English (kts)' and 'English (ft/s)'

Data Types: double

U — Forward component of ground velocity
50 (default) | scalar numeric

Forward component of ground velocity, specified as a scalar numeric in these units.

Unit Unit System
Meters per second (m/s) 'Metric'
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Data Types: double

V — Side component of ground velocity
0 (default) | scalar numeric

Side component of ground velocity, specified as a scalar numeric in these units.

Unit Unit System
Meters per second (m/s) 'Metric'
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Data Types: string | char

W — Downward component of ground velocity
0 (default) | scalar numeric

 fixedWingState

4-421



Downward component of ground velocity, specified as a scalar numeric in these units.

Unit Unit System
Meters per second (m/s) 'Metric'
Feet per second (ft/s) 'English (kts)'
Knots (kts) 'English (ft/s)'

Data Types: double

Phi — Euler roll angle
0 (default) | scalar numeric

Euler roll angle, specified as a scalar numeric in units of radians or degrees, depending on the
AngleSystem property.
Data Types: double

Theta — Euler pitch angle
0 (default) | scalar numeric

Euler pitch angle, specified as a scalar numeric in units of radians or degrees, depending on the
AngleSystem property.
Data Types: double

Psi — Euler yaw angle
0 (default) | scalar numeric

Euler yaw angle, specified as a scalar numeric in units of radians or degrees, depending on the
AngleSystem property.
Data Types: double

P — Body roll rate
0 (default) | scalar numeric

Body roll rate, specified as a scalar numeric in units of radians per second or degrees per second,
depending on the AngleSystem property.
Data Types: double

Q — Body pitch rate
0 (default) | scalar numeric

Body pitch rate, specified as a scalar numeric in units of radians per second or degrees per second,
depending on the AngleSystem property.
Data Types: double

R — Body yaw rate
0 (default) | scalar numeric

Body yaw rate, specified as a scalar numeric in units of radians per second or degrees per second,
depending on the AngleSystem property.
Data Types: double
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AlphaDot — Angle of attack rate on fixed-wing aircraft
0 (default) | scalar numeric

Angle of attack rate on fixed-wing aircraft, specified as a scalar numeric in units of radians per
second or degrees per second, depending on the AngleSystem property.
Data Types: double

BetaDot — Angle of sideslip rate on fixed-wing aircraft
0 (default) | scalar numeric

Angle of sideslip rate on the fixed-wing aircraft, specified as a scalar numeric in units of radians per
second or degrees per second, depending on the AngleSystem property.
Data Types: double

ControlStates — Current control state values
vector

Current control state values, specified as a vector.

• To set up control states, use setupControlStates.
• To set the control state positions, use setState.
• To get the control state positions, use getState.

Data Types: double

Environment — Definition of current environment
scalar

Definition of current environment, contained in an Aero.Aircraft.Environment object, specified
as a scalar.

Tip This argument also exists as the environment positional argument. If you specify the
Environment Name,Value argument, its value supersedes the environment positional argument.

Output Arguments
state — Aero.FixedWing.State objects
matrix

Aero.FixedWing.State objects, returned as a matrix the same size as environment.

See Also
aircraftEnvironment | aircraftProperties | fixedWingAircraft |
fixedWingCoefficient | fixedWingSurface | fixedWingThrust | atmoscira | atmoscoesa

Introduced in R2021b
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fixedWingSurface
Define aerodynamic or control surface on fixed-wing aircraft

Syntax
surface = fixedWingSurface(name)
surface = fixedWingSurface(name,controllable)
surface = fixedWingSurface(name,controllable,symmetry)
surface = fixedWingSurface(name,controllable,symmetry,bounds)
surface = fixedWingSurface(Name,Value)

Description
surface = fixedWingSurface(name) returns a fixed-wing aerodynamic surface object with a
specified component name.

surface = fixedWingSurface(name,controllable) returns a fixed-wing surface object
specifying the controllability of the surface.

surface = fixedWingSurface(name,controllable,symmetry) returns a fixed-wing surface
object specifying the controllability and symmetry of the surface.

surface = fixedWingSurface(name,controllable,symmetry,bounds) returns a fixed-wing
surface object specifying the controllability, symmetry, and bounds of the surface.

surface = fixedWingSurface(Name,Value) returns a fixed-wing surface object with one or
more Name,Value arguments.

Examples

Create Fixed-Wing Surface Object

Create a fixed-wing surface object MySurface.

surface = fixedWingSurface("MySurface")

surface = 

  Surface with properties:

            Surfaces: [1×0 Aero.FixedWing.Surface]
        Coefficients: [1×1 Aero.FixedWing.Coefficient]
        MaximumValue: Inf
        MinimumValue: -Inf
        Controllable: off
            Symmetry: "Symmetric"
    ControlVariables: [0×0 string]
          Properties: [1×1 Aero.Aircraft.Properties]
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Create Fixed-Wing Asymmetric Control Surface

Create a fixed-wing asymmetric control surface using arguments.

ctrlsurface = fixedWingSurface("MyCtrl","on","asymmetric")

ctrlsurface = 

  Surface with properties:

            Surfaces: [1×0 Aero.FixedWing.Surface]
        Coefficients: [1×1 Aero.FixedWing.Coefficient]
        MaximumValue: Inf
        MinimumValue: -Inf
        Controllable: on
            Symmetry: "Asymmetric"
    ControlVariables: ["MyCtrl_1"    "MyCtrl_2"]
          Properties: [1×1 Aero.Aircraft.Properties]

Create Fixed-Wing Symmetric Control Surface with Specified Bounds

Create a fixed-wing symmetric control surface with specified bounds and add it to an aerodynamic
surface using a Name,Value argument.

ctrlsurface = fixedWingSurface("MyCtrl","on","symmetric",[-20, 20]);
surface = fixedWingSurface("MySurface","Surfaces",ctrlsurface)

surface = 

  Surface with properties:

            Surfaces: [1×1 Aero.FixedWing.Surface]
        Coefficients: [1×1 Aero.FixedWing.Coefficient]
        MaximumValue: Inf
        MinimumValue: -Inf
        Controllable: off
            Symmetry: "Symmetric"
    ControlVariables: [0×0 string]
          Properties: [1×1 Aero.Aircraft.Properties]

Input Arguments
name — Fixed-wing aircraft surface name
scalar

Fixed-wing aircraft surface name, specified as a string.
Data Types: string

controllable — Option to control surface
'off' (default) | 'on'

To control the control surface, set this property to 'on'. Otherwise, set this property to 'off'.
Data Types: string
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symmetry — Symmetry of control surface
Symmetric (default) | Asymmetric

Symmetry of the control surface, specified as Symmetric or Asymmetric.

The Asymmetric option creates two control variables, denoted by the name on the properties and
appended by _1 and _2. These control variables can be independently controlled but also produce an
effective control variable specified by the name on the properties. This equation defines the control
variable:

name = (name_1-name_2)/2.

You cannot set this effective control variable.
Data Types: string

bounds — Lower and upper bounds
[-inf,inf] (default) | two-element numeric vector

Lower and upper bounds of a controllable surface, specified as a two-element numeric vector.
Data Types: double

Name-Value Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "Surfaces",ctrlsurface

Surfaces — Aero.FixedWing.Surface objects
vector

Aero.FixedWing.Surface objects providing nested control surfaces, specified as a vector.

Coefficients — Aero.FixedWing.Coefficients objects
scalar

Aero.FixedWing.Coefficients objects that define the control surface, specified as a scalar.

MaximumValue — Maximum value of control surfaces
infinity (default) | scalar numeric

Maximum value of control surfaces, specified as a scalar numeric.
Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.

MinimumValue — Minimum value of control surface
negative infinity (default) | scalar numeric

Minimum value of control surface, specified as a scalar numeric.
Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.
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Controllable — Controllable control surface
off (default) | on

To control the control surface, set this property to on. Otherwise, set this property to off.

Symmetry — Symmetry of control surface
Symmetric (default) | Asymmetric

Symmetry of the control surface, specified as Symmetric or Asymmetric.

The Asymmetric option creates two control variables, denoted by the name on the properties and
appended by _1 and _2. These control variables can be independently controlled but also produce an
effective control variable specified by the name on the properties. This equation defines the control
variable:

name = (name_1-name_2)/2.

You cannot set this effective control variable.

Properties — Aero.Aircraft.Properties object
scalar

Aero.Aircraft.Properties object, specified as a scalar.

Output Arguments
surface — Aero.FixedWing.Surface object
scalar

Aero.FixedWing.State object, returned as a scalar.

See Also
aircraftEnvironment | aircraftProperties | fixedWingAircraft |
fixedWingCoefficient | fixedWingState | fixedWingThrust

Introduced in R2021b
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fixedWingThrust
Define thrust vector on fixed-wing aircraft

Syntax
thrust = fixedWingThrust(name)
thrust = fixedWingThrust(name,controllable)
thrust = fixedWingThrust(name,controllable,symmetry)
thrust = fixedWingThrust(name,controllable,symmetry,bounds)
thrust = fixedWingThrust(Name,Value)

Description
thrust = fixedWingThrust(name) returns a fixed-wing thrust object with a component name.

thrust = fixedWingThrust(name,controllable) returns a fixed-wing thrust object specifying
the controllability of the thrust.

thrust = fixedWingThrust(name,controllable,symmetry) returns a fixed-wing thrust
object specifying the controllability and symmetry of the thrust.

thrust = fixedWingThrust(name,controllable,symmetry,bounds) returns a fixed-wing
thrust object specifying the controllability, symmetry, and bounds of the thrust.

thrust = fixedWingThrust(Name,Value) returns a fixed-wing thrust object with one or more
Name,Value arguments.

Examples

Create Fixed-Wing Thrust Object

Create a fixed-wing thrust object MyThrust.

thrust = fixedWingThrust("MyThrust")

thrust = 

  Thrust with properties:

        Coefficients: [1×1 Aero.FixedWing.Coefficient]
        MaximumValue: 1
        MinimumValue: 0
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "MyThrust"
          Properties: [1×1 Aero.Aircraft.Properties]
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Create Asymmetric Thrust Object

Create a asymmetric fixed-wing thrust object using arguments.

thrust = fixedWingThrust("MyThrust","on","asymmetric")

thrust = 

  Thrust with properties:

        Coefficients: [1×1 Aero.FixedWing.Coefficient]
        MaximumValue: 1
        MinimumValue: 0
        Controllable: on
            Symmetry: "Asymmetric"
    ControlVariables: ["MyThrust_1"    "MyThrust_2"]
          Properties: [1×1 Aero.Aircraft.Properties]

Input Arguments
name — Fixed-wing aircraft thrust name
scalar

Fixed-wing aircraft thrust name, specified as a string.
Data Types: char | string

controllable — Controllable thrust value
'off' (default) | 'on'

To control the control thrust, set this property to 'on'. Otherwise, set this property to 'off'.
Data Types: string

symmetry — Symmetry of thrust control
Symmetric (default) | Asymmetric

Symmetry of the thrust control, specified as Symmetric or Asymmetric.

The Asymmetric option creates two control variables, denoted by the name on the properties and
appended by _1 and _2. These control variables can be independently controlled, but also produce an
effective control variable specified by the name on the properties. This equation defines the control
variable:

name = (name_1-name_2)/2.

You cannot set this effective control variable.
Data Types: string

bounds — Lower and upper bounds
[-inf,inf] (default) | two-element numeric vector

Lower and upper bounds of a controllable thrust, specified as a two-element numeric vector.
Data Types: double
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Name-Value Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaximumValue','500'

Coefficients — Aero.FixedWing.Coefficients object
scalar

Aero.FixedWing.Coefficients object, specified as a scalar, that defines the thrust vector.

MaximumValue — Maximum thrust value
1 (default) | scalar | scalar numeric

Maximum thrust value, specified as a scalar numeric.

Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.
Data Types: double

MinimumValue — Minimum thrust value
0 (default) | scalar numeric

Minimum thrust value, specified as a scalar numeric.

Dependencies

If Symmetry is set to Asymmetric, then this value applies to both control variables.
Data Types: double

Controllable — Controllable thrust value
on (default) | off

To control the thrust value, set this property to on. Otherwise, set this property to off.
Data Types: double

Symmetry — Symmetry of thrust control
Symmetric (default) | Asymmetric

Symmetry of the thrust control, specified as Symmetric or Asymmetric.

The Asymmetric option creates two control variables, denoted by the name on the properties and
appended by _1 and _2. These control variables can be independently controlled, but also produce an
effective control variable specified by the name on the properties. This equation defines the control
variable:

name = (name_1-name_2)/2.

You cannot set this effective control variable.
Data Types: char | string
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Properties — Aero.Aircraft.Properties object
scalar

Aero.Aircraft.Properties object, specified as a scalar.

Output Arguments
thrust — Aero.FixedWing.Thrust object
scalar

Aero.FixedWing.Thrust object, returned as a scalar.

See Also
aircraftEnvironment | aircraftProperties | fixedWingAircraft |
fixedWingCoefficient | fixedWingState | fixedWingSurface

Introduced in R2021b
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flat2lla
Convert from flat Earth position to array of geodetic coordinates

Syntax
lla = flat2lla(flatearth_pos,llo,psio,href)
lla = flat2lla( ___ , ellipsoidModel)
lla = flat2lla( ___ ,flattening,equatorialRadius)

Description
lla = flat2lla(flatearth_pos,llo,psio,href) estimates an array of geodetic coordinates,
lla, from an array of flat Earth coordinates, flatearth_pos. This function estimates the lla value
with respect to a reference location that you define with llo, psio, and href.

lla = flat2lla( ___ , ellipsoidModel) estimates the coordinates for a specific ellipsoid
planet.

lla = flat2lla( ___ ,flattening,equatorialRadius) estimates the coordinates for a custom
ellipsoid planet defined by flattening and equatorialRadius.

Examples

Estimate Latitude, Longitude, and Altitude at Single Coordinate

Estimate latitude, longitude, and altitude at a single coordinate:

lla = flat2lla( [ 4731 4511 120 ], [0 45], 5, -100)

lla =
    0.0391   45.0441  -20.0000

Estimate Latitudes, Longitudes, and Altitudes at Multiple Coordinates with WGS84 Ellipsoid
Model

Estimate latitudes, longitudes, and altitudes at multiple coordinates with the WGS84 ellipsoid model:

lla = flat2lla( [ 4731 4511 120; 0 5074 4498 ], [0 45], 5, -100, 'WGS84' )

lla =
   1.0e+03 *

    0.0000    0.0450   -0.0200
   -0.0000    0.0450   -4.3980
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Estimate Latitudes, Longitudes, and Altitudes at Multiple Coordinates with Custom
Ellipsoid Model:

Estimate latitudes, longitudes, and altitudes at multiple coordinates with a custom ellipsoid model:
f = 1/196.877360;
Re = 3397000;
lla = flat2lla( [ 4731 4511 120; 0 5074 4498 ], [0 45], 5, -100,  f, Re )

lla =
   1.0e+03 *

    0.0001    0.0451   -0.0200
   -0.0000    0.0451   -4.3980

Input Arguments
flatearth_pos — Flat Earth position coordinates
3-element vector

Flat Earth position coordinates, specified as 3-element vector, in meters.
Data Types: double

llo — Latitude and longitude of reference location
m-by-2 array

Latitude and longitude of reference location , specified as an m-by-2 array in degrees, for the origin of
the estimation and the origin of the flat Earth coordinate system.
Data Types: double

psio — Angular direction of flat Earth
scalar

Angular direction of flat Earth x-axis, specified as a scalar. The angular direction is the degrees
clockwise from the north, which is the angle in degrees used for converting flat Earth x and y
coordinates to the north and east coordinates.
Data Types: double

href — Reference height
scalar

Reference height from the surface of the Earth to the flat Earth frame with respect to the flat Earth
frame, specified as a scalar, in meters.
Data Types: double

ellipsoidModel — Ellipsoid planet model
'WGS84' (default)

Ellipsoid planet model. 'WGS84' is the only option.
Data Types: char | string

flattening — Flattening of planet
1/298.257223563 (default) | scalar

 flat2lla

4-433



Flattening of the planet, specified as a double scalar.
Data Types: double

equatorialRadius — Planetary equatorial radius
scalar

Planetary equatorial radius, specified as a scalar, in meters.
Data Types: double

Output Arguments
lla — Geodetic coordinates
m-by-3 array

Geodetic coordinates (latitude, longitude, and altitude), returned as an m-by-3 array, in [degrees,
degrees, meters].

Algorithms
The estimation begins by transforming the flat Earth x and y coordinates to north and east
coordinates. The transformation has the form of

N
E

=
cosψ −sinψ
sinψ cosψ

px
py

,

where ψ  is the angle in degrees clockwise between the x-axis and north.

To convert the north and east coordinates to geodetic latitude and longitude, the estimation uses the
radius of the curvature in the prime vertical (RN) and the radius of the curvature in the meridian (RM).
(RN) and (RM) are defined by the following relationships:

RN = R
1− (2f − f 2)sin2μ0

,

and

RM = RN
1− (2f − f 2)

1− (2f − f 2)sin2μ0
,

where (R) is the equatorial radius of the planet and f  is the flattening of the planet.

Small changes in the latitude and longitude are approximated from small changes in the North and
East positions by

dμ = atan 1
RM

dN

dι = atan 1
RNcosμ dE

and
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dι = atan 1
RNcosμ dE .

The output latitude and longitude are the initial latitude and longitude plus the small changes in
latitude and longitude.

μ = μ0 + dμ
ι = ι0 + dι

The altitude is the negative flat Earth z-axis value minus the reference height (href).

h = − pz− href

References
[1] Etkin, B., Dynamics of Atmospheric Flight. New York: John Wiley & Sons, 1972.

[2] Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed. New York: John Wiley &
Sons, 2003.

See Also
lla2flat

Introduced in R2011a
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flowfanno
Fanno line flow relations

Syntax
[mach,T,P,rho,velocity,P0,fanno] = flowfanno(gamma,fanno_flow)

[mach,T,P,rho,velocity,P0,fanno] = flowfanno( ___ ,mtype)

Description
Default Input Mode

[mach,T,P,rho,velocity,P0,fanno] = flowfanno(gamma,fanno_flow) returns an array for
each Fanno line flow relation. This function calculates the arrays for a given set of specific heat ratios
(gamma) for the Mach input mode.

Specify Input Mode

[mach,T,P,rho,velocity,P0,fanno] = flowfanno( ___ ,mtype) uses any one of the Fanno
flow types mtype. Specify mtype types after all other input arguments.

Examples

Calculate Fanno Line Flow Relations for Subsonic Fanno Parameter

Calculate the Fanno line flow relations for air (gamma = 1.4) for subsonic Fanno parameter 1.2. This
example returns scalar values for mach, T, P, rho, velocity, P0, and fanno.

[mach,T,P,rho,velocity,P0,fanno] = flowfanno(1.4,1.2,'fannosub')

mach =
    0.4849

T =
    1.1461

P =
    2.2080

rho =
    1.9265

velocity =
    0.5191

P0 =
    1.3699
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fanno =
    1.2000

Calculate Fanno Line Flow Relations for Gases with Specific Heat Ratios

Calculate the Fanno line flow relations for gases with specific heat ratios given in the following 1 x 4
row array for the Mach number 0.5. This example yields a 1 x 4 row array for mach, T, P, rho,
velocity, P0, and fanno.

gamma = [1.3,1.33,1.4,1.67];
[mach,T, P,rho,velocity,P0,fanno] = flowfanno(gamma,0.5)

mach =

    0.5000    0.5000    0.5000    0.5000

T =

    1.1084    1.1188    1.1429    1.2318

P =

    2.1056    2.1155    2.1381    2.2198

rho =

    1.8997    1.8908    1.8708    1.8020

velocity =

    0.5264    0.5289    0.5345    0.5549

P0 =

    1.3479    1.3454    1.3398    1.3201

fanno =

    1.1724    1.1397    1.0691    0.8549

Calculate Fanno Line Flow Relations for Specific Heat Ratio and range of Temperature
Ratios

Calculate the Fanno line flow relations for a specific heat ratio of 1.4 and range of temperature ratios
from 0.40 to 0.70 in increments of 0.10. This example returns a 4 x 1 column array for mach, T, P,
rho, velocity, P0, and fanno.

[mach,T,P,rho,velocity,P0,fanno] = flowfanno(1.4,[1.1 1.2],'temp')
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mach =
    0.6742         0

T =
    1.1000    1.2000

P =
    1.5556       Inf

rho =
    1.4142       Inf

velocity =
    0.7071         0

P0 =
    1.1144       Inf

fanno =
    0.2630       Inf

Input Arguments
gamma — Specific heat ratios
scalar | array | real numbers greater than 1

Specific heat ratios, specified as an array or scalar of N specific heat ratios.

Dependencies

gamma must be a real, finite scalar greater than 1 for these input modes:

• Subsonic total pressure ratio
• Supersonic total pressure ratio
• Subsonic Fanno parameter
• Supersonic Fanno parameter

Data Types: double

fanno_flow — One Fanno flow
array of real numerical values

One Fanno flow, specified as an array of real numerical values. This argument can be one of these
types.

Fanno Flow Type Description
Mach numbers Mach numbers, specified as a scalar or array of N real

numbers greater than or equal to 0. If flow_fanno
and gamma are arrays, they must be the same size.

Use flow_fanno with the mtype value 'mach'.
Because 'mach' is the default of mtype, mtype is
optional when this array is the input mode.
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Fanno Flow Type Description
Temperature ratios Temperature ratios on page 4-441, specified as an

array or scalar of N real numbers:

• Greater than or equal to 0 (as the Mach number
approaches infinity)

• Less than or equal to (gamma+1)/2 (at Mach
number equal 0)

Use flow_fanno with mtype value 'temp'.
Pressure ratios Pressure ratios on page 4-441, specified as an array or

scalar of real numbers greater than or equal to 0. If
flow_fanno and gamma are arrays, they must be the
same size.

Use flow_fanno with mtype value 'pres'.
Density ratios Density ratios on page 4-441, specified as an array or

scalar of real numbers. These numbers must be
greater than or equal to:

sqrt((gamma-1)/(gamma+1)) (as the Mach number
approaches infinity).

If flow_fanno and gamma are arrays, they must be
the same size.

Use flow_fanno with mtype value 'dens'.
Velocity ratios Velocity ratios on page 4-441, specified as an array or

scalar of N real numbers:

• Greater than or equal to 0
• Less than or equal to sqrt((gamma+1)/

(gamma-1)) (as the Mach number approaches
infinity)

If flow_fanno and gamma are both arrays, they must
be the same size.

Use flow_fanno with mtype value 'velo'.
Total pressure ratio Total pressure ratio on page 4-442, specified as a

scalar greater than or equal to 1.

Use flow_fanno with mtype values 'totalp' and
'totalpsup'.
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Fanno Flow Type Description
Fanno parameter scalar “Fanno Parameter” on page 4-442, specified as a

scalar. In subsonic mode, flow_fanno must be
greater than or equal to 0. In supersonic mode,
flow_fanno must be:

• Greater than or equal to 0 (at Mach number equal
1)

• Less than or equal to (gamma+1)/
(2*gamma)*log((gamma+1)/(gamma-1))-1/
gamma (as Mach number approaches infinity)

Use flow_fanno with mtype values 'fannosub' and
'fannosup'.

Data Types: double

mtype — Input mode of Fanno flow
'mach' (default) | 'temp' | 'pres' | 'dens' | 'velo' | 'totalpsub' | 'totalpsup' |
'fannosub' | 'fannosup'

Input mode of Fanno flow, specified as one of these values.

Type Description
'mach' Default Mach number
'temp' Temperature ratio
'pres' Pressure ratio
'dens' Density ratio
'velo' Velocity ratio
'totalpsub' Subsonic total pressure ratio
'totalpsup' Supersonic total pressure ratio
'fannosub' Subsonic Fanno parameter
'fannosup' Supersonic Fanno parameter

Data Types: double

Output Arguments
All outputs are the same size as the array inputs. If there are no array inputs, all outputs are scalars.

mach — Mach numbers
array

Mach numbers, returned as an array.

T — Temperature ratios
array

Temperature ratios on page 4-441, returned as an array.
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P — Pressure ratios
array

Pressure ratios on page 4-441, returned as an array.

rho — Density ratios
array

Density ratios on page 4-441, returned as an array.

velocity — Velocity ratios
array

Velocity ratios on page 4-441, returned as an array.

P0 — Stagnation pressure ratios
array

Stagnation (total) pressure ratios on page 4-442, returned as an array.

fanno — Fanno parameters
array

Fanno parameters on page 4-442, returned as an array.

Limitations
• This function assumes that variables vary only in one dimension. It also assumes that the main

mechanism for the change of flow variables is the change of cross-sectional area of the flow
stream tubes.

• If the temperature experiences large fluctuations, the perfect gas assumption might be invalid. If
the stagnation temperature is above 1500 K, do not assume constant specific heats. In this case,
the medium ceases to be a calorically perfect gas. Consider it a thermally perfect gas. For
thermally perfect gas correction factors, see [2]. If the temperature is so high that molecules
dissociate and ionize (static temperature 5000 K for air), you cannot assume a perfect gas.

More About
Pressure Ratio

Calculated as local static pressure over the reference static pressure for sonic flow.

Temperature Ratio

Calculated as local static temperature over the reference static temperature for sonic flow.

Density Ratio

Calculated as local density over the reference density for sonic flow.

Velocity Ratio

Calculated as local velocity over the reference velocity for sonic flow.
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Total Pressure Ratio

Calculated as local total pressure over the reference total pressure for sonic flow.

Fanno Parameter

This function uses Fanno variables given by the equation: F = f*L/D, where:

• F is the Fanno parameter.
• f is the friction coefficient.
• L is the length of constant area duct required to achieve sonic flow.
• D is the hydraulic diameter of the duct.

References
[1] James, John E. A. Gas Dynamics. 2nd ed. Boston: Allyn and Bacon 1984.

[2] Ames Research Staff. NACA Technical Report 1135. Moffett Field, CA: National Advisory
Committee on Aeronautics, 1953. 667–671.

See Also
flowisentropic | flownormalshock | flowprandtlmeyer | flowrayleigh

Introduced in R2010a
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flowisentropic
Isentropic flow ratios

Syntax
[mach,T,P,rho,area] = flowisentropic(gamma,flow)

[mach,T,P,rho,area] = flowisentropic( ___ ,mtype)

Description
Default Input Mode

[mach,T,P,rho,area] = flowisentropic(gamma,flow) returns an array that contains an
isentropic flow Mach number mach, temperature ratio T, pressure ratio P, density ratio rho, and area
ratio area. This function calculates these arrays given a set of specific heat ratios (gamma) for the
Mach input mode.

Specify Input Mode

[mach,T,P,rho,area] = flowisentropic( ___ ,mtype) uses any one of the isentropic flow
types mtype. Specify mtype types after all other input arguments.

Examples

Calculate Isentropic Flow Relations for Gases with Specific Heat Ratios

Calculate the isentropic flow relations for gases with specific heat ratios given in the following 1 x 4
row array for the Mach number 0.5. This example returns a 1 x 4 row array for mach, T, P, rho, and
area.

gamma = [1.3,1.33,1.4,1.67];
[mach,T,P,rho,area] = flowisentropic(gamma,0.5)

mach =
    0.5000    0.5000    0.5000    0.5000

T =
    0.9639    0.9604    0.9524    0.9227

P =
    0.8525    0.8497    0.8430    0.8183

rho =
    0.8845    0.8847    0.8852    0.8869

area =
    1.3479    1.3454    1.3398    1.3201
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Calculate Isentropic Flow Relations for Air

Calculate the isentropic flow relations for air (gamma = 1.4) for a design subsonic area ratio of 1.255.
This example returns scalar values for mach, T, P, rho, and area.

[mach,T,P,rho,area] = flowisentropic(1.4,1.255,'sub')

mach =
    0.5500

T =
    0.9430

P =
    0.8142

rho =
    0.8634

area =
    1.2550

Calculate Isentropic Flow Relations for Gases with Specific Heat Ratio and Density Ratio

Calculate the isentropic flow relations for gases with provided specific heat ratio and density ratio
combinations. This example returns a 1 x 2 array for mach, T, P, rho, and area each. The elements of
each vector correspond to the inputs element-wise.

gamma = [1.3,1.4];
rho = [0.13,0.9];
[mach,T,P,rho,area] = flowisentropic(gamma,rho,'dens')

mach =
    2.3724    0.4639

T =
    0.5422    0.9587

P =
    0.0705    0.8629

rho =
    0.1300    0.9000

area =
    2.5769    1.4155

Calculate Isentropic Flow Relations for Specific Heat Ratio

Calculate the isentropic flow relations for a specific heat ratio of 1.4, and calculate range of
temperature ratios from 0.40 to 0.70 in increments of 0.10. This example returns a 4 x 1 column
array for mach, T, P, rho, and area.

[mach,T,P,rho,area] = flowisentropic(1.4,(0.40:0.10:0.70)','temp')
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mach =
    2.7386
    2.2361
    1.8257
    1.4639

T =
    0.4000
    0.5000
    0.6000
    0.7000

P =
    0.0405
    0.0884
    0.1673
    0.2870

rho =
    0.1012
    0.1768
    0.2789
    0.4100

area =
    3.3018
    2.0704
    1.4674
    1.1526

Input Arguments
gamma — Specific heat ratios
scalar | array | real numbers greater than 1

Specific heat ratios, specified as an array or scalar of N specific heat ratios.

Dependencies

gamma must be a real, finite scalar greater than 1 for these input modes:

• Subsonic area ratio
• Supersonic area ratio

Data Types: double

flow — One isentropic flow relation
array | real numerical

One isentropic flow relation, specified as an array of real numerical values. This argument can be one
of these types:
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Isentropic Flow Type Description
Mach numbers Mach numbers, specified as a scalar or array of N real

numbers greater than or equal to 0. If flow and
gamma are arrays, they must be the same size.

Use flow with the mtype value 'mach'. Because
'mach' is the default of mtype, mtype is optional
when this array is the input mode.

Temperature ratios Temperature ratios on page 4-448, specified as an
array or scalar of real numbers:

• Greater than or equal to 0 (as the Mach number
approaches infinity)

• Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are both arrays, they must be the
same size.

Use flow with mtype value 'temp'.
Pressure ratios Pressure ratios on page 4-448, specified as an array or

scalar of real numbers greater than or equal to 0.

• Greater than or equal to 0 (as the Mach number
approaches infinity)

• Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are both arrays, they must be the
same size.

Use flow with mtype value 'pres'.
Density ratios Density ratios on page 4-448, specified as an array or

scalar of real numbers.

• Greater than or equal to 0 (as the Mach number
approaches infinity)

• Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are arrays, they must be the same
size.

Use flow with mtype value 'dens'.
Area ratios Area ratios on page 4-448, specified as a scalar real

value greater than or equal to 1.

Use flow with mtype value 'sup'.

Data Types: double

mtype — Input mode of Fanno flow
'mach' (default) | 'temp' | 'pres' | 'dens' | 'velo' | 'totalpsub' | 'totalpsup' |
'fannosub' | 'fannosup'
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Input mode of Fanno flow, specified as one of these values.

Type Description
'mach' Default Mach number
'temp' Temperature ratio
'pres' Pressure ratio
'dens' Density ratio
'velo' Velocity ratio
'totalpsub' Subsonic total pressure ratio
'totalpsup' Supersonic total pressure ratio
'fannosub' Subsonic Fanno parameter
'fannosup' Supersonic Fanno parameter

Data Types: double

Output Arguments
mach — Mach numbers
array

Mach numbers, returned as an array.

T — Temperature ratios
array

Temperature ratios on page 4-448, returned as an array.

P — Pressure ratios
array

Pressure ratios on page 4-448, returned as an array.

rho — Density ratios
array

Density ratios on page 4-448, returned as an array.

area — Density ratios
array

Area ratios on page 4-448, returned as an array.

Limitations
• This function assumes that variables vary only in one dimension. It also assumes that the main

mechanism for the change of flow variables is the change of cross-sectional area of the flow
stream tubes.

• If the temperature experiences large fluctuations, the perfect gas assumption might be invalid. If
the stagnation temperature is above 1500 K, do not assume constant specific heats. In this case,
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the medium ceases to be a calorically perfect gas. Consider it a thermally perfect gas. For
thermally perfect gas correction factors, see [2]. If the temperature is so high that molecules
dissociate and ionize (static temperature 5000 K for air), you cannot assume a perfect gas.

More About
Temperature Ratio

Calculated as local static temperature over the stagnation temperature.

Pressure Ratio

Calculated as local static pressure over the stagnation pressure.

Density Ratio

Calculated as local density over the stagnation density.

Area Ration

Calculated as local stream tube area over the reference stream tube area for sonic conditions.

See Also
flowfanno | flownormalshock | flowprandtlmeyer | flowrayleigh

Introduced in R2010a
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flownormalshock
Normal shock relations

Syntax
[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock(gamma,
normal_shock_relations,mtype)

[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock( ___ ,mtype)

Description
[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock(gamma,
normal_shock_relations,mtype) produces an array for each normal shock relation
(normal_shock_relations). This function calculates these arrays for a given set of specific heat
ratios, gamma, and any one of the normal shock relations, normal_shock_relations. mtype selects
the normal shock relations that normal_shock_relations represents. All ratios are downstream
value over upstream value. Consider upstream to be before or ahead of the shock and downstream to
be after or behind the shock.

[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock( ___ ,mtype) uses any one
of the normal shock relations mtype. Specify mtype types after all other input arguments.

Examples

Calculate Normal Shock Relations for Gases with Specific Heat Ratios

Calculate the normal shock relations for gases with specific heat ratios given in the following 1 x 4
row array for upstream Mach number 1.5. This example yields a 1 x 4 array for mach, T, P, rho,
downstream_mach, P0, and P1.

gamma = [1.3,1.33,1.4,1.67];
[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock(gamma,1.5)

mach =
    1.5000    1.5000    1.5000    1.5000

T =
    1.2473    1.2697    1.3202    1.4968

P =
    2.4130    2.4270    2.4583    2.5637

rho =
    1.9346    1.9116    1.8621    1.7128

downstream_mach =
    0.6942    0.6964    0.7011    0.7158

P0 =
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    0.9261    0.9272    0.9298    0.9381

P1 =
    0.3062    0.3021    0.2930    0.2628

Calculate Normal Shock Relations for Air

Calculate the normal shock relations for air (gamma = 1.4) for a total pressure ratio of 0.61. This
example returns scalar values for mach, T, P, rho, downstream_mach, P0, and P1.
[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock(1.4,0.61,'totalp')

mach =
    2.2401

T =
    1.8925

P =
    5.6875

rho =
    3.0053

downstream_mach =
    0.5418

P0 =
    0.6100

P1 =
    0.1440

Calculate Normal Shock Relations for Specific Heat Ratio and Range of Density Ratios

Calculate the normal shock relations for a specific heat ratio of 1.4 and a range of density ratios from
2.40 to 2.70 in increments of 0.10. This example returns a 4 x 1 column array for mach, T, P, rho,
downstream_mach, P0, and P1.

[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock(1.4,...
 (2.4:.1:2.7)','dens')

mach =
    1.8257
    1.8898
    1.9554
    2.0226

T =
    1.5509
    1.6000
    1.6516
    1.7059

P =
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    3.7222
    4.0000
    4.2941
    4.6061

rho =
    2.4000
    2.5000
    2.6000
    2.7000

downstream_mach =
    0.6108
    0.5976
    0.5852
    0.5735

P0 =
    0.8012
    0.7720
    0.7417
    0.7103

P1 =
    0.2088
    0.1964
    0.1847
    0.1737

Calculate Normal Shock Relations for Gases with Specific Heat Ratio and Downstream Mach
Number Combinations

Calculate the normal shock relations for gases with a specific heat ratio and downstream Mach
number combinations as shown. This example returns a 1 x 2 array for mach, T, P, rho,
downstream_mach, P0, and P1 each, where the elements of each vector corresponds to the inputs
element-wise.

gamma = [1.3,1.4];
downstream_mach = [.34,.49];
[mach,T,P,rho,downstream_mach,P0,P1] = flownormalshock(gamma,...
 downstream_mach,'down')

mach =
   60.2773    2.7745

T =
  536.6972    2.4233

P =
   1.0e+03 *

    4.1071    0.0088

rho =
    7.6526    3.6374
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downstream_mach =
    0.3400    0.4900

P0 =
    0.0000    0.3979

P1 =
    0.0002    0.0963

Input Arguments
gamma — Specific heat ratios
scalar | array | real numbers greater than 1

Specific heat ratios, specified as an array or scalar of N specific heat ratios.

Dependencies

gamma must be a real, finite scalar greater than 1 for these input modes:

• Temperature ratio
• Total pressure ratio
• Rayleigh-Pitot ratio

Data Types: double

normal_shock_relations — One normal shock relation
array | scalar

One normal shock relation, specified as an array or scalar of real numerical values. This argument
can be one of these types:

Normal Shock Relation Types Description
Mach numbers Mach numbers, specified as a scalar or array of N real

numbers greater than or equal to 1. If
normal_shock_relations and gamma are arrays,
they must be the same size.

Use normal_shock_relations with the mtype
value 'mach'. Because 'mach' is the default of
mtype, mtype is optional when this array is the input
mode.

Temperature ratio Temperature ratios on page 4-455, specified as a
scalar or array of real numbers.
normal_shock_relations must be a real scalar
greater than or equal to 1.

Use normal_shock_relations with mtype value
'temp'.
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Normal Shock Relation Types Description
Pressure ratios Pressure ratios on page 4-455, specified as an array or

scalar. normal_shock_relations must be a scalar
or array of real numbers greater than or equal to 1. If
normal_shock_relations and gamma are arrays,
they must be the same size.

Use normal_shock_relations with mtype value
'pres'.

Density ratios Density ratios on page 4-455, specified as an array or
scalar of real numbers that are:

• Greater than or equal to 1 (at Mach number equal
1)

• Less than or equal to 1 (gamma+1)/(gamma-1)
(as the Mach number approaches infinity)

If normal_shock_relations and gamma are arrays,
they must be the same size.

Use normal_shock_relations with mtype value
'dens'.

Downstream Mach numbers Mach numbers, specified as a scalar or array of real
numbers:

• Greater than or equal to 0 (as the Mach number
approaches infinity)

• Less than or equal to sqrt((gamma-1)/
(2*gamma)) (at Mach number equal 1)

If normal_shock_relations and gamma are arrays,
they must be the same size.

Use flow with mtype value 'down'.
Total pressure ratio Total pressure ratios on page 4-455, specified as a

scalar. normal_shock_relations must be:

• Greater than or equal to 0 (as the Mach number
approaches infinity)

• Less than or equal to 1 (at Mach number equal 1)

If normal_shock_relations and gamma are both
arrays, they must be the same size. Use
normal_shock_relations with mtype value
'totalp'.
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Normal Shock Relation Types Description
Rayleigh-Pitot ratio Rayleigh-Pitot ratio on page 4-455, specified as a

scalar. normal_shock_relations must be:

• Real scalar greater than or equal to 0 (as the Mach
number approaches infinity)

• Less than or equal to ((gamma+1)/2)^(-gamma/
(gamma-1)) (at Mach number equal 1)

Data Types: double

mtype — Input mode for normal shock relations
'mach' (default) | 'temp' | 'pres' | 'dens' | 'down' | 'totalp' | 'pito'

Input mode for normal shock relations, specified as one of these values.

Type Description
'mach' Default. Mach number.
'temp' Temperature ratio.
'pres' Pressure ratio.
'dens' Density ratio.
'down' Downstream Mach number.
'totalp' Total pressure ratio.
'pito' Rayleigh-Pitot ratio.

Data Types: string

Output Arguments
mach — Mach numbers
array

Mach numbers, returned as an array.

P — Pressure ratios
array

Pressure ratios on page 4-455, returned as an array.

T — Temperature ratios
array

Temperature ratios on page 4-455, returned as an array.

rho — Density ratios
array

Density ratios on page 4-455, returned as an array.

downstream_mach — Downstream Mach numbers
array
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Downstream Mach numbers, returned as an array.

P0 — Total pressure ratios
array

Total pressure ratios on page 4-455, returned as an array.

P1 — Rayleigh-Pitot ratios
array

Rayleigh-Pitot ratios on page 4-455, returned as an array.

Limitations
• This function assumes that:

• The medium is a calorically perfect gas.
• The flow is frictionless and adiabatic.
• The flow variables vary in one dimension only.
• The main mechanism for the change of flow variables is the change of cross-sectional area of

the flow stream tubes.
• If the temperature experiences large fluctuations, the perfect gas assumption might be invalid. If

the stagnation temperature is above 1500 K, do not assume constant specific heats. In this case,
the medium ceases to be a calorically perfect gas. You must then consider it a thermally perfect
gas. For thermally perfect gas correction factors, see [2]. If the temperature is so high that
molecules dissociate and ionize (static temperature 5000 K for air), you cannot assume a perfect
gas.

More About
Pressure Ratio

Calculated as the static pressure downstream of the shock over the static pressure upstream of the
shock.

Temperature Ratio

Calculated as the static temperature downstream of the shock over the static temperature upstream
of the shock.

Density Ratio

Calculated as the fluid density downstream of the shock over the density upstream of the shock.

Total Pressure Ratio

Calculated as static pressure downstream of the shock over the static pressure upstream of the
shock..

Rayleigh-Pitot Ratio

Static pressure upstream of the shock over the total pressure downstream of the shock
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References
[1] James, John E. A. Gas Dynamics. 2nd ed. Boston: Allyn and Bacon 1984.

[2] Ames Research Staff. NACA Technical Report 1135. Moffett Field, CA: National Advisory
Committee on Aeronautics, 1953. 667–671.

See Also
flowfanno | flowisentropic | flowprandtlmeyer | flowrayleigh

Introduced in R2010a
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flowprandtlmeyer
Calculate Prandtl-Meyer functions for expansion waves

Syntax
[mach,nu,mu] = flowprandtlmeyer(gamma,prandtlmeyer_array)

[mach,nu,mu] = flowprandtlmeyer( ___ ,mtype)

Description
Default Input Mode

[mach,nu,mu] = flowprandtlmeyer(gamma,prandtlmeyer_array) returns an array
containing Mach numbers mach, Prandtl-Meyer angles nu, and Mach angles mu. flowprandtlmeyer
calculates these arrays for a given set of specific heat ratios, gamma, for the Mach input mode.
Specify Input Mode

[mach,nu,mu] = flowprandtlmeyer( ___ ,mtype) uses any one of the isentropic flow types
mtype. Specify mtype types after all other input arguments.

Examples

Calculate Prandtl-Meyer Functions for Gases with Specific Heat Ratios

Calculate the Prandtl-Meyer functions for gases with specific heat ratios. This example yields a 1 x 4
array for nu, but only a scalar for mach and mu.

gamma = [1.3,1.33,1.4,1.67];
[mach,nu,mu] = flowprandtlmeyer(gamma,1.5)

mach =
    1.5000    1.5000    1.5000    1.5000

nu =
   12.6928   12.4455   11.9052   10.2042

mu =
   41.8103   41.8103   41.8103   41.8103

Calculate Prandtl-Meyer Relations for Air

Calculate the Prandtl-Meyer relations for air (gamma = 1.4) for Prandtl-Meyer angle 61 degrees. This
example returns a scalar for mach, nu, and mu.

[mach,nu,mu] = flowprandtlmeyer(1.4,61,'nu')

mach =
    3.6600
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nu =
    61

mu =
   15.8564

Calculate Prandtl-Meyer Angles for Specific Heat Ratio and Range of Mach Angles

Calculate the Prandtl-Meyer angles for a specific heat ratio of 1.4 and range of Mach angles from 40
degrees to 70 degrees. This example uses increments of 10 degrees and returns a 4 x 1 column array
for mach, nu, and mu.

[mach,nu,mu] = flowprandtlmeyer(1.4,(40:10:70)','mu')

mach =
    1.5557
    1.3054
    1.1547
    1.0642

nu =
   13.5505
    6.3185
    2.4868
    0.7025

mu =
    40
    50
    60
    70

Calculate Prandtl-Meyer Relations for Gases with Specific Heat Ratio and Mach Number
Combinations

Calculate the Prandtl-Meyer relations for gases with specific heat ratio and Mach number
combinations as shown. This example returns a 1 x 2 arrayeach for nu and mu, where the elements of
each vector correspond to the inputs element-wise.

gamma = [1.3,1.4];
prandtlmeyer_array = [1.13,9];
[mach,nu,mu] = flowprandtlmeyer(gamma,prandtlmeyer_array)

mach =
    1.1300    9.0000

nu =
    2.0405   99.3181

4 Functions

4-458



mu =
   62.2461    6.3794

Input Arguments
gamma — Specific heat ratios
scalar | array | real numbers greater than 1

Specific heat ratios, specified as an array or scalar of N specific heat ratios.

Dependencies

gamma must be a real, finite scalar greater than 1 for these input modes:

• Subsonic area ratio
• Supersonic area ratio

Data Types: double

prandtlmeyer_array — Prandtl-Meyer types
array | real number

Prandtl-Meyer types, specified as an array of one of these types.

Prandtl-Meyer Type Description
Mach numbers Mach numbers, specified as a scalar or array of N real

numbers greater N real numbers greater than or equal
to 0. If prandtlmeyer_array and gamma are arrays,
they must be the same size.

Use prandtlmeyer_array with the mtype value
'mach'. Because 'mach' is the default of mtype,
mtype is optional when this array is the input mode.

Prandtl-Meyer angle Prandtl-Meyer angle on page 4-460, specified as a
scalar or array of N real numbers greater than or
equal to 0 in degrees. prandtlmeyer_array must be:

• Real scalar greater than or equal to 0 (at Mach
number equal 1)

• Less than or equal to 90 * (sqrt((gamma+1)/
(gamma-1)) - 1) (as the Mach number
approaches infinity).

Use prandtlmeyer_array with mtype value 'nu'.
Mach angles Mach angles on page 4-461, specified as a scalar or

array of N in degrees. A Mach angle is a function of
Mach number only.

Data Types: double

mtype — Input mode of Isentropic flow
'mach' (default) | 'nu' | 'mu'
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Input mode of Isentropic flow, specified as one of these types.

Type Description
'mach' Mach number.
'nu' Prandtl-Meyer angle.
'mu' Mach angle.

Data Types: double

Output Arguments
mach — Mach numbers
array

Mach numbers, returned as an array.

nu — Prandtl-Meyer angles
array

Prandtl-Meyer angles on page 4-460, returned as an array.

mu — Mach angles
array

Mach angles on page 4-461, returned as an array.

Limitations
• The function assumes that the flow is two-dimensional. The function also assumes a smooth and

gradual change in flow properties through the expansion fan.
• This function assumes that the environment is a perfect gas. It cannot assume a perfect gas

environment if:

• There is a large change in either temperature or pressure without a proportionally large
change in the other.

• The stagnation temperature is above 1500 K. The function cannot assume constant specific
heats. In this case, you must consider it a thermally perfect gas. For thermally perfect gas
correction factors, see [2].

• The local static temperature is so high that molecules might dissociate and ionize (static
temperature 5000 K for air). In this case, you cannot assume a calorically or thermally perfect
gas.

More About
Prandtl-Meyer Angle

Angle change required for a Mach 1 flow to achieve a given Mach number after expansion.
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Mach angle

Angle between the flow direction and the lines of pressure disturbance caused by supersonic motion
in degrees.

References
[1] James, John E. A. Gas Dynamics. 2nd ed. Boston: Allyn and Bacon 1984.

[2] Ames Research Staff. NACA Technical Report 1135. Moffett Field, CA: National Advisory
Committee on Aeronautics, 1953. 667–671.

See Also
flowfanno | flowisentropic | flownormalshock | flowrayleigh

Introduced in R2010a
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flowrayleigh
Rayleigh line flow relations

Syntax
[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(gamma,rayleigh_flow)

[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(gamma,rayleigh_flow,mtype)

Description
[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(gamma,rayleigh_flow) returns an
array for each Rayleigh line flow relation. This function calculates these arrays for a given set of
specific heat ratios (gamma) for the Mach input mode.

[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(gamma,rayleigh_flow,mtype) uses
any one of the Rayleigh flow types mtype. Specify mtype types after all other input arguments.

Examples

Calculate Rayleigh Line Flow Relations for Specific Heat Ratios in Array

Calculate the Rayleigh line flow relations for gases with specific heat ratios given in this 1 x 4 row
array for the Mach number 0.5.

gamma = [1.3,1.33,1.4,1.67];
[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(gamma,0.5)

mach =
    0.5000    0.5000    0.5000    0.5000

T =
    0.7533    0.7644    0.7901    0.8870

P =
    1.7358    1.7486    1.7778    1.8836

rho =
    2.3043    2.2876    2.2500    2.1236

velocity =
    0.4340    0.4371    0.4444    0.4709

T0 =
    0.6796    0.6832    0.6914    0.7201

P0 =
    1.1111    1.1121    1.1141    1.1202
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This example returns a 1 x 4 row array for mach, T, P, rho, velocity, T0, and P0.

Calculate Rayleigh Line Flow Relations Given Air

Calculate the Rayleigh line flow relations for air (gamma = 1.4) for supersonic total pressure ratio 1.2.

[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(1.4,1.2,'totalpsup')

mach =
    1.6397

T =
    0.6823

P =
    0.5038

rho =
    0.7383

velocity =
    1.3545

T0 =
    0.8744

P0 =
    1.2000

Calculate Rayleigh Line Flow Relations for Specific Heat Ratios and High-Speed
Temperature

Calculate the Rayleigh line flow relations for a specific heat ratio of 1.4 and high-speed temperature
ratio 0.70.

[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(1.4,0.70,'temphi')

mach =
    1.6035

T =
    0.7000

P =
    0.5218

rho =
    0.7454

velocity =
    1.3416

T0 =
    0.8833
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P0 =
    1.1777

Calculate Rayleigh Line Flow Relations for Gases with Specific Heat Ratio and Static
Pressure

Calculate the Rayleigh line flow relations for gases with specific heat ratio and static pressure ratio
combinations as shown.

gamma = [1.3,1.4];
P = [0.13,1.7778];
[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(gamma,P,'pres')

mach =
    3.5833    0.5000

T =
    0.2170    0.7901

P =
    0.1300    1.7778

rho =
    0.5991    2.2501

velocity =
    1.6692    0.4444

T0 =
    0.5521    0.6913

P0 =
    7.4381    1.1141

This example returns a 1 x 2 array for mach, T, P, rho, velocity, T0, and P0 each. The elements of
each array correspond to the inputs element-wise.

Input Arguments
gamma — Specific heat ratios
array | scalar | real numbers greater than 1

Specific heat ratios, specified an array or scalar of N real numbers greater than 1.

Dependencies

gamma must be a real, finite scalar greater than 1 for these input modes:

• Low-speed temperature ratio
• High-speed temperature ratio
• Subsonic total temperature
• Supersonic total temperature
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• Subsonic total pressure
• Supersonic total pressure

Data Types: double

rayleigh_flow — One Rayleigh line flow
array | real numerical

One Rayleigh line flow, specified as an array of real numerical values. This argument can be one of
these types.

Normal Shock Relation Types Description
Mach numbers Mach numbers, specified as a scalar or array of N real

numbers greater than or equal to 1. If
rayleigh_flow and gamma are arrays, they must be
the same size.

Use rayleigh_flow with the mtype value 'mach'.
Because 'mach' is the default of mtype, mtype is
optional when this array is the input mode.

Temperature ratio Temperature ratios on page 4-468, specified as a
scalar of real numbers:

• Greater than or equal to 0 (at the Mach number
equal 0 for low speeds or as Mach number
approaches infinity for high speeds)

• Less than or equal to 1/4*(gamma+1/gamma)+1/2
(at mach = 1/sqrt(gamma))

Use rayleigh_flow with mtype values 'templo'
and 'temphi'.

Pressure ratios Pressure ratios on page 4-468, specified as an array or
scalar. normal_shock_relations must be a scalar
or array of real numbers greater than or equal to
gamma+1 (at the Mach number equal 0). If
rayleigh_flow and gamma are arrays, they must be
the same size. . If rayleigh_flow and gamma are
arrays, they must be the same size.

Use rayleigh_flow with mtype value 'pres'.
Density ratios Density ratios on page 4-468, specified as an array or

scalar of real numbers that are greater than or equal
to gamma/(gamma+1) (as Mach number approaches
infinity).

If rayleigh_flow and gamma are arrays, they must
be the same size.

Use rayleigh_flow with mtype value 'dens'.
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Normal Shock Relation Types Description
Velocity ratios Velocity ratios on page 4-468, specified as an array or

scalar of N real numbers:

• Greater than or equal to 0
• Less than or equal to sqrt((gamma+1)/

(gamma-1)) (as the Mach number approaches
infinity)

If flow_fanno and gamma are both arrays, they must
be the same size.

Use flow_fanno with mtype value 'velo'.
Total temperature ratio Total temperature ratios on page 4-469, specified as a

real scalar:

• In subsonic mode, rayleigh_flow must be a real
scalar:

• Greater than or equal to 0 (at the Mach number
equal 0)

• Less than or equal to 1 (at the Mach number
equal 1)

• In supersonic mode, rayleigh_flow must be a
real scalar:

• Greater than or equal to (gamma
+1)^2*(gamma-1)/2/(gamma^2*(1+(gamma-1)/
2))) (as Mach number approaches infinity)

• Less than or equal to 1 (at the Mach number
equal 1)

Use rayleigh_flow with the mtype values
'totaltsub' and 'totaltsup'.

Total pressure ratio Total pressure ratios on page 4-469, specified as a
scalar:

• In subsonic mode, rayleigh_flow must be a real
scalar:

• Greater than or equal to 1 (at the Mach number
equal 1)

• Less than or equal to (1+gamma)*(1+(gamma-1)/
2)^(-gamma/(gamma-1)) (at Mach number equal
0)

• In supersonic mode, rayleigh_flow must be a
real scalar greater than or equal to 1.

Use rayleigh_flow with mtype values
'totalpsub' and 'totalpsup'.
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Data Types: double

mtype — Input mode for Rayleigh
'mach' (default) | 'templo' | 'temphi' | 'pres' | 'dens' | 'velo' | 'totaltsub' |
'totaltsup' | 'totalpsub' | 'totalpsup'

Input mode for the Rayleigh flow in rayleigh_flow, specified as one of these types.

Type Description
'mach' Default. Mach number.
'templo' Low-speed static temperature ratio. The low-speed temperature ratio is the

local static temperature over the reference sonic temperature. This ratio for
when the Mach number of the upstream flow is less than the critical Mach
number of 1/sqrt(gamma).

'temphi' High-speed static temperature ratio. The high-speed temperature ratio is the
local static temperature over the reference sonic temperature. This ratio is
for when the Mach number of the upstream flow is greater than the critical
Mach number of 1/sqrt(gamma).

'pres' Pressure ratio.
'dens' Density ratio.
'velo' Velocity ratio.
'totaltsub' Subsonic total temperature ratio.
'totaltsup' Supersonic total temperature ratio.
'totalpsub' Subsonic total pressure ratio.
'totalpsup' Supersonic total pressure ratio.

Data Types: string

Output Arguments
All output ratios are static conditions over the sonic conditions. All outputs are the same size as the
array inputs. If there are no array inputs, all outputs are scalars.

mach — Mach numbers
array

Mach numbers, returned as an array.

T — Temperature ratios
array

Temperature ratios on page 4-441, returned as an array.

P — Pressure ratios
array

Pressure ratios on page 4-468, returned as an array.

rho — Density ratios
array
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Density ratios on page 4-468, returned as an array.

velocity — Velocity ratios
array

Velocity ratios on page 4-468, returned as an array.

T0 — Total temperature ratios
array

Total temperature ratios on page 4-469, returned as an array.

P0 — Total pressure ratios
array

Total pressure ratios on page 4-469, returned as an array.

Limitations
• This function assumes that:

• The medium is a calorically perfect gas in a constant area duct.
• The flow is steady, frictionless, and one dimensional.
• The main mechanism for the change of flow variables is heat transfer.

• This function assumes that the environment is a perfect gas. In the following instances, it cannot
assume a perfect gas environment.

• If there is a large change in either temperature or pressure without a proportionally large
change in the other.

• If the stagnation temperature is above 1500 K, do not assume constant specific heats. In this
case, the medium ceases to be a calorically perfect gas; you must then consider it a thermally
perfect gas. For thermally perfect gas correction factors, see [2]. The local static temperature
might be so high that molecules dissociate and ionize (static temperature 5000 K for air). In
this case, you cannot assume a calorically or thermally perfect gas.

More About
Temperature Ratio

Calculated as the local static temperature over the reference static temperature for sonic flow.

Pressure Ratio

Calculated as the static pressure downstream of the shock over the static pressure upstream of the
shock.

Density Ratio

Calculated as the fluid density downstream of the shock over the density upstream of the shock.

Velocity Ratio

Calculated as local velocity over the reference velocity for sonic flow.
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Total Temperature Ratio

Calculated as the static temperature downstream of the shock over the static temperature upstream
of the shock.

Total Pressure Ratio

Calculated as static pressure downstream of the shock over the static pressure upstream of the
shock..

References
[1] James, John E. A. Gas Dynamics. 2nd ed. Boston: Allyn and Bacon 1984.

[2] Ames Research Staff. NACA Technical Report 1135. Moffett Field, CA: National Advisory
Committee on Aeronautics, 1953. 667–671.

See Also
flowisentropic | flownormalshock | flowprandtlmeyer | flowfanno

Introduced in R2010a
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forcesAndMoments
Class: Aero.FixedWing
Package: Aero

Calculate forces and moments of fixed-wing aircraft

Syntax
[F,M] = forcesAndMoments(aircraft,state)

Description
[F,M] = forcesAndMoments(aircraft,state) calculates the forces and moments of a fixed-
wing aircraft, aircraft, based around a state state.

Input Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, specified as a scalar.

state — Aero.FixedWing.State object
scalar

Aero.FixedWing.State object, specified as a scalar.

Output Arguments
F — Body forces
three-element vector

Body forces, returned as a three-element vector.

M — Body moments
three-element vector

Body moments, returned as a three-element vector.

Examples

Calculate Forces and Moments of a Cessna 182

Calculate the forces and moments of a Cessna 182.

[C182,CruiseState] = astC182();
[F,M] = forcesAndMoments(C182, CruiseState)
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F =
 -233.0908
         0
   -0.3300

M =
   1.0e+03 *

         0
    1.8739
         0

See Also
Aero.FixedWing | linearize | nonlinearDynamics

Topics
“Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129

Introduced in R2021a
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generatePatches (Aero.Body)
Generate patches for body with loaded face, vertex, and color data

Syntax
generatePatches(h, ax)
h.generatePatches(ax)

Description
generatePatches(h, ax) and h.generatePatches(ax) generate patches for the animation
body object h using the loaded face, vertex, and color data in ax.

Examples
Generate patches for b using the axes, ax.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d'); 
f = figure;
ax = axes;
b.generatePatches(ax);

See Also
load

Introduced in R2007a

4 Functions

4-472



GenerateRunScript (Aero.FlightGearAnimation)
Generate run script for FlightGear flight simulator

Syntax
GenerateRunScript(h)
h.GenerateRunScript

Description
GenerateRunScript(h) and h.GenerateRunScript generate a run script for FlightGear flight
simulator using the following FlightGear animation object properties:

OutputFileName Specify the name of the output file. The file name is the name of
the command you will use to start FlightGear with these initial
parameters. The default value is 'runfg.bat'.

FlightGearBaseDirectory Specify the name of your FlightGear installation folder. The
default value is 'C:\Applications\FlightGear'.

GeometryModelName Specify the name of the folder containing the desired model
geometry in the FlightGear\data\Aircraft folder. The
default value is 'HL20'.

DestinationIpAddress Specify your destination IP address. The default value is
'127.0.0.1'.

DestinationPort Specify your network flight dynamics model (fdm) port. This
destination port should be an unused port that you can use when
you launch FlightGear. The default value is '5502'.

AirportId Specify the airport ID. The list of supported airports is available
in the FlightGear interface, under Location. The default value is
'KSFO'.

RunwayId Specify the runway ID. The default value is '10L'.
InitialAltitude Specify the initial altitude of the aircraft, in feet. The default

value is 7224 feet.
InitialHeading Specify the initial heading of the aircraft, in degrees. The default

value is 113 degrees.
OffsetDistance Specify the offset distance of the aircraft from the airport, in

miles. The default value is 4.72 miles.
OffsetAzimuth Specify the offset azimuth of the aircraft, in degrees. The default

value is 0 degrees.
InstallScenery Direct FlightGear to automatically install required scenery while

the simulator is running. This property requires a steady Internet
connection. For Windows systems, you may encounter an error
message while launching FlightGear with this option enabled. For
more information, see “Installing Additional FlightGear Scenery”
on page 2-42.
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DisableShaders Disable FlightGear shader options. Your computer built-in video
card, such as NVIDIA cards, can conflict with FlightGear shaders.
Consider using this property if you have this conflict.

Architecture Specify the architecture on which the FlightGear software is
running.

Examples
Create a run script, runfg.bat, to start FlightGear flight simulator using the default object settings:

h = fganimation
GenerateRunScript(h)

Create a run script, myscript.bat, to start FlightGear flight simulator using the default object
settings:

h = fganimation
h.OutputFileName = 'myscript.bat'
GenerateRunScript(h)

See Also
initialize | play | update

Introduced in R2007a
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geoc2geod
Convert geocentric latitude to geodetic latitude

Syntax
geodeticLatitude = geoc2geod(geocentricLatitude,radii)
[geodeticLatitude,height] = geoc2geod(geocentricLatitude,radii)

geodeticLatitude = geoc2geod(geocentricLatitude,radii,model)
[geodeticLatitude,height] = geoc2geod(geocentricLatitude,radii,model)

geodeticLatitude = geoc2geod(geocentricLatitude,radii,flattening, Re)
[geodeticLatitude,height] = geoc2geod(geocentricLatitude,radii,flattening,Re)

Description
WGS84 Ellipsoid Planet

geodeticLatitude = geoc2geod(geocentricLatitude,radii) and [geodeticLatitude,
height] = geoc2geod(geocentricLatitude,radii) convert an array of geocentric latitudes
and an array of radii from the center of the planet into an array of geodetic latitudes. The optional
height returns the mean sea-level altitude (MSL).

Specific Ellipsoid Planet

geodeticLatitude = geoc2geod(geocentricLatitude,radii,model) and [
geodeticLatitude,height] = geoc2geod(geocentricLatitude,radii,model) convert for
a specific ellipsoid planet.

Custom Ellipsoid Planet

geodeticLatitude = geoc2geod(geocentricLatitude,radii,flattening, Re) and [
geodeticLatitude,height] = geoc2geod(geocentricLatitude,radii,flattening,Re)
convert for a custom ellipsoid planet defined by flattening and the equatorial radius.

Examples

Determine Geodetic Latitude with Geocentric Latitude and Radius

Determine geodetic latitude given a geocentric latitude and radius.

[gd,h] = geoc2geod(45,6379136)

gd =
   45.1921

h =
   1.1718e+04
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Determine Geodetic Latitude at Multiple Geocentric Latitudes Using Radius and WGS84
Ellipsoid Model

Determine geodetic latitude at multiple geocentric latitudes given a radius, and specifying a WGS84
ellipsoid model.

[gd,h] = geoc2geod([0 45 90],6379136,'WGS84')

gd =
         0   45.1921   90.0000
h =
   1.0e+04 *
    0.0999    1.1718    2.2384

Determine Geodetic Latitude at Multiple Geocentric Latitudes Using Radius Custom
Ellipsoid Model

Determine geodetic latitude at multiple geocentric latitudes given a radius, and specifying a custom
ellipsoid model.

f = 1/196.877360;
Re = 3397000;
[gd,h] = geoc2geod([0 45 90],6379136,f,Re)

gd =
         0   45.1550   90.0000
h =
   1.0e+06 *
    2.9821    2.9908    2.9994

Input Arguments
geocentricLatitude — Geocentric latitudes
array

Geocentric latitudes, specified as an array in degrees. Latitude values can be any value. However,
values of +90 and -90 may return unexpected values because of singularity at the poles.
Data Types: double

radii — Radii from center of planet
array

Radii from center of planet, specified as an array in meters.
Data Types: double

model — Specific ellipsoid planet model
'WGS84'

Specific ellipsoid planet model, specified as 'WGS84'.
Data Types: char | string

flattening — Flattening
scalar
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Flattening at each pole, specified as a scalar.
Data Types: double

Re — Equatorial radius
scalar

Equatorial radius, specified as a scalar in meters.
Data Types: double

Output Arguments
geodeticLatitude — Geocentric latitudes
array

Geocentric latitudes, returned as an array in degrees.

height — Mean sea-level altitude
scalar | array

Mean sea-level altitude (MSL), returned as a scalar or array in meters.

Limitations
This function generates a geocentric latitude that lies between ±90 degrees.

See Also

Introduced in R2006b
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geocradius
Convert from geocentric latitude to radius of ellipsoid planet

Syntax
r = geocradius(lambda)
r = geocradius(lambda,model)

r = geocradius(lambda,f,Re)

Description
WGS84 Ellipsoid Planet

r = geocradius(lambda) estimates the radius, r, of an ellipsoid planet at a particular geocentric
latitude, lambda.

r = geocradius(lambda,model) estimates the radius for a specific ellipsoid planet.

Custom Ellipsoid Planet

r = geocradius(lambda,f,Re) is another alternate method for estimating the radius for a
custom ellipsoid planet defined by flattening, f, and the equatorial radius, Re, in meters.

Examples

Determine radius at 45 degrees latitude

Determine radius at 45 degrees latitude.

r = geocradius(45)

r =

  6.3674e+006

Determine radius at multiple latitudes

Determine radius at multiple latitudes.

r = geocradius([0 45 90])

r =

  1.0e+006 *

    6.3781    6.3674    6.3568
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Determine radius at multiple latitudes with WGS84 ellipsoid model

Determine radius at multiple latitudes, specifying WGS84 ellipsoid model.

r = geocradius([0 45 90], 'WGS84')

r =

  1.0e+006 *

    6.3781    6.3674    6.3568

Determine radius at multiple latitudes with custom ellipsoid model

Determine radius at multiple latitudes, specifying custom ellipsoid model.

f = 1/196.877360;
Re = 3397000;
r = geocradius([0 45 90], f, Re)

r =

  1.0e+006 *

    3.3970    3.3883    3.3797

Input Arguments
lambda — Geocentric latitude
scalar

Geocentric latitude, specified as a double, in degrees.
Data Types: double

model — Ellipsoid planet model
'WGS84' (default)

Ellipsoid planet model, specified as 'WGS84'.
Data Types: double

f — Flattening
scalar

Flattening at each pole, specified as a scalar.
Data Types: double

Re — Equatorial radius
scalar

Equatorial radius, specified as a scalar in meters.
Data Types: double
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Output Arguments
r — Radius
vector

Radius of an ellipsoid planet, returned as a double, in meters.

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, John Wiley & Sons, New York,

NY, 1992.

[2] Zipfel, Peter H., and D. E. Penny, Modeling and Simulation of Aerospace Vehicle Dynamics. Second
Edition. Reston, VA: AIAA Education Series, 2000.

See Also
geoc2geod | geod2geoc

Introduced in R2021b
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geod2geoc
Convert geodetic latitude to geocentric latitude

Syntax
geocentricLatitude = geod2geoc(geodeticLatitude,height)
[geocentricLatitude,radii] = geod2geoc(geodeticLatitude,height)

geocentricLatitude = geod2geoc(geodeticLatitude,height,model)
[geocentricLatitude,radii] = geod2geoc(geodeticLatitude,height,model)

geocentricLatitude = geod2geoc(geodeticLatitude,height,flattening,Re)
[geocentricLatitude,radii] = geod2geoc(geodeticLatitude,height,flattening,Re)

Description
WGS84 Ellipsoid Planet

geocentricLatitude = geod2geoc(geodeticLatitude,height) converts an array of
geodetic latitudes, geodeticLatitude, and an array of mean sea level altitudes, height, into an
array of geocentric latitudes, geocentricLatitude.

[geocentricLatitude,radii] = geod2geoc(geodeticLatitude,height) returns the radius
radii from the center of the planet to the center of gravity.
Specific Ellipsoid Planet

geocentricLatitude = geod2geoc(geodeticLatitude,height,model) converts from
geodetic to geocentric latitude for a specific ellipsoid planet.

[geocentricLatitude,radii] = geod2geoc(geodeticLatitude,height,model) returns
the radius radii from the center of the planet to the center of gravity.
Custom Ellipsoid Planet

geocentricLatitude = geod2geoc(geodeticLatitude,height,flattening,Re) converts
from geodetic to geocentric latitude for a custom ellipsoid planet defined by flattening, flattening,
and the equatorial radius, equatorialRadius.

[geocentricLatitude,radii] = geod2geoc(geodeticLatitude,height,flattening,Re)
returns the radius radii from the center of the planet to the center of gravity.

Examples

Determine Geocentric Latitude with Geodetic Latitude and Altitude

Determine geocentric latitude given a geodetic latitude and altitude.

[gc,r] = geod2geoc(45,1000)

gc =
   44.8076
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r =
   6.3685e+06

Determine Geocentric Latitude at Multiple Geodetic Latitudes and Altitudes, Specifying
WGS84 Ellipsoid Model

Determine geocentric latitude at multiple geodetic latitudes and altitudes, specifying WGS84 ellipsoid
model.

[gc,r] = geod2geoc([0 45 90],[1000 0 2000],'WGS84')

gc =
         0   44.8076   90.0000

r =

   1.0e+06 *
    6.3791    6.3675    6.3588

Determine Geocentric Latitude at Multiple Geodetic Latitudes, Given Altitude and Custom
Ellipsoid Model

Determine geocentric latitude at multiple geodetic latitudes, given an altitude and specifying custom
ellipsoid model.

f = 1/196.877360;
Re = 3397000;
[gc,r] = geod2geoc([0 45 90],2000,f,Re)

gc =
         0   44.7084   90.0000

r =
   1.0e+06 *
    3.3990    3.3904    3.3817

Input Arguments
geodeticLatitude — Geodetic latitude
array

Geodetic latitude, specified as an array in degrees.
Data Types: double

height — Mean sea-level altitude
scalar

Mean sea-level altitude (MSL), specified as a scalar in meters.
Data Types: double
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model — Specific ellipsoid planet model
'WGS84'

Specific ellipsoid planet model, specified as 'WGS84'.
Data Types: double

flattening — Flattening
scalar

Flattening at each pole, specified as a scalar.
Data Types: double

Re — Equatorial radius
scalar

Equatorial radius, specified as a scalar in meters.
Data Types: double

Output Arguments
geocentricLatitude — Geocentric latitudes
array

Geocentric latitudes, returned as an array in degrees. Latitude values can be any value. However,
values of +90 and -90 may return unexpected values because of singularity at the poles.

radii — Radii from center of planet
array

Radii from the center of the planet, returned as an array in meters.

Limitations
This function generates a geocentric latitude that lies between ±90 degrees.

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley–Interscience, 1992.

See Also
ecef2lla | geoc2geod | lla2ecef

Introduced in R2006b
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geoidegm96
Calculate geoid height as determined from EGM96 Geopotential Model

Syntax
N = geoidegm96(latitude,longitude)
N = geoidegm96(latitude,longitude,action)

Description
N = geoidegm96(latitude,longitude) calculates the geoid height as determined from the
EGM96 Geopotential Model. This function interpolates geoid heights from a 15-minute grid of point
values in the tide-free system, using the EGM96 Geopotential Model to the degree and order 360. The
geoid undulations are relative to the WGS84 ellipsoid.

N = geoidegm96(latitude,longitude,action) performs action if latitude latitude or
longitude longitude are out of range.

Examples

Calculate Geoid Height at 42.4 Degrees N Latitude and 71.0 Degrees E Longitude

Calculate the geoid height at 42.4 degrees N latitude and 71.0 degrees E longitude

N = geoidegm96( 42.4, 71.0)

N =
  -36.5900

Calculate the Geoid Height at Two Different Locations with Actions

Calculate the geoid height at two different locations, with out-of-range actions generating warnings.

N = geoidegm96( [39.3,33.4], [-77.2, 36.5])

N =
  -33.0100   25.5500

Calculate Geoid Height with Latitude Wrapping with No Warnings

Calculate the geoid height with latitude wrapping, with out-of-range actions displaying no warnings.

N = geoidegm96(100,150,'None')
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N =
   36.4100

Input Arguments
latitude — Geocentric latitudes
array of m values

Geocentric latitudes, specified as an array of m values in degrees, where north latitude is positive and
south latitude is negative. If lat is not within the range -90 to 90, inclusive, this function wraps the
value to be within the range.
Data Types: double | single

longitude — Geocentric longitudes
array of m values

Geocentric longitudes, specified as an array of m values in degrees, where east longitude is positive
and west longitude is negative. If long is not within the range 0 to 360 inclusive, this function wraps
the value to be within the range.
Data Types: double | single

action — Action
'Warning' (default) | 'Error' | 'None'

Action for out-of-range input, specified as:

• 'Error' — Displays warning and indicates that the input is out of range
• 'Warning' — Displays error and indicates that the input is out of range
• 'None' — Does not display warning or error

Data Types: char | string

Output Arguments
N — Geoid height
array

Geoid height, returned as an array in meters. The function calculates geoid heights to 0.01 meters.

Compatibility Considerations
Use geoidheight Instead
Behavior change in future release

geoidegm96 will be removed in a future version. Use geoidheight instead.

References
[1] NIMA TR8350.2: "Department of Defense World Geodetic System 1984, Its Definition and

Relationship with Local Geodetic Systems."
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[2] NASA/TP-1998-206861: "The Development of the Joint NASA GSFC and NIMA Geopotential Model
EGM96."

See Also
gravitywgs84

External Websites
Office of Geomatics

Introduced in R2007b
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geoidheight
Calculate geoid height

Syntax
N = geoidheight(latitude,longitude)
N = geoidheight(latitude,longitude,modelname)
N = geoidheight(latitude,longitude,action)
N = geoidheight(latitude,longitude,modelname,action)
N = geoidheight(latitude,longitude,'custom',datafile)
N = geoidheight( ___ ,action)

Description
N = geoidheight(latitude,longitude) calculates the geoid height using the EGM96
Geopotential Model. For this geopotential model, the function calculates the geoid heights to an
accuracy of 0.01 m and interpolates an array of m geoid heights at m geodetic latitudes, latitude,
and m longitudes, longitude.

N = geoidheight(latitude,longitude,modelname) calculates the geoid height using the
geopotential model, modelname.

N = geoidheight(latitude,longitude,action) calculates the geoid height and performs
action if latitude or longitude are out of range.

N = geoidheight(latitude,longitude,modelname,action) calculates the geoid height using
modelname and performs action if latitude or longitude are out of range.

N = geoidheight(latitude,longitude,'custom',datafile) calculates the geoid height
using the custom model specified by datafile.

N = geoidheight( ___ ,action) calculates the geoid height using the custom geopotential model
and performs function performs action if latitude or longitude are out of range. Specify
action as the last input argument preceded by any of the input argument combinations in the
previous syntaxes.

Examples

Calculate EGM96 Geoid Height with Warning

Calculate the EGM96 geoid height at 42.4 degrees N latitude and 71.0 degrees W longitude. A
warning, enabled by default, is returned for the out-of-range longitude value:

N = geoidheight(42.4,-71.0)

Warning: One or more longitude values exceed [0,360] range. Wrapping out of
range longitude values within 0 degrees and 360 degrees and continuing. 
> In geoidheight>@()warning(message('aero:geoidheight:warnLongitudeWrap')) (line 324)
In geoidheight/checklongitude (line 328)
In geoidheight (line 166) 
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N =

  -28.3700

Calculate EGM2008 Geoid height at Two Locations with Error Action

Calculate the EGM2008 geoid height at two different locations. The function returns an error if the
results are out of range:

N = geoidheight([39.3, 33.4],[77.2,36.5],'egm2008','error')

N =

  -49.9440   23.6110

Calculate Custom Geoid Height at Two Locations

Calculate a custom geoid height at two different locations:

N = geoidheight([39.3,33.4],[-77.2,36.5],'custom',...
'geoidegm96grid','none')

N =

  -33.0100   25.5500

Input Arguments
latitude — Geodetic latitudes
array

Geodetic latitudes, specified as an array of m geodetic latitudes, in degrees, where north latitude is
positive and south latitude is negative.

If latitude is not within the range –90 to 90, inclusive, this function wraps the value to be within
the range when action is set to 'None' or 'Warning'. It does not wrap when action is set to
'Error'.
Data Types: double | single

longitude — Longitudes
array

Longitudes, specified as an array of m longitudes, in degrees, where east longitude is positive and
west longitude is negative. If longitude is not within the range 0 to 360 inclusive, this function
wraps the value to be within the range.

If longitude is not within the range –90 to 90, inclusive, this function wraps the value to be within
the range when action is set to 'None' or 'Warning'. It does not wrap when action is set to
'Error'.
Data Types: double | single
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modelname — Geopotential model
'EGM96' (default) | 'EGM2008' | 'custom'

Geopotential model, specified as:

Geopotential Model Description
'EGM96' EGM96 Geopotential Model to degree and order 360. This model uses a 15-

minute grid of point values in the tide-free system. This function calculates
geoid heights to an accuracy of 0.01 m for this model.

'EGM2008' EGM2008 Geopotential Model to degree and order 2159. This model uses a
2.5-minute grid of point values in the tide-free system. This function
calculates geoid heights to an accuracy of 0.001 m for this model.

Note This function requires that you download EGM2008 Geopotential
Model data with the Add-On Explorer. For more information, see
aeroDataPackage.

Data Types: char | string

datafile — Custom geopotential model definitions
scalar

Custom geopotential model definitions, specified as a scalar file of definitions for a custom
geopotential model.

This file must contain these variables:

Variable Description
'latbp' Array of geodetic latitude breakpoints.
'lonbp' Array of longitude breakpoints.
'grid' Table of geoid height values.
'windowSize' Even integer scalar greater than 2 for the number of interpolation points.

Data Types: char | string

action — Action
'Warning' (default) | 'Error' | 'None'

Action for out-of-range input, specified as:

• 'Error' — Displays warning and indicates that the input is out of range
• 'Warning' — Displays error and indicates that the input is out of range
• 'None' — Does not display warning or error

Data Types: char | string

Output Arguments
N — Geoid heights
array | same data type as latitude argument
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Geoid heights, returned as an array of M geoid heights, in meters.

Tips
• This function interpolates geoid heights from a grid of point values in the tide-free system.
• When using the EGM96 Model, this function has the limitations of the 1996 Earth Geopotential

Model.
• When using the EGM2008 Model, this function has the limitations of the 2008 Earth Geopotential

Model.
• The interpolation scheme wraps over the poles to allow for geoid height calculations at and near

pole locations.
• The geoid undulations for the EGM96 and EGM2008 models are relative to the WGS84 ellipsoid.
• The WGS84 EGM96 geoid undulations have an error range of +/– 0.5 to +/– 1.0 m worldwide.

References
[1] Vallado, D. A. "Fundamentals of Astrodynamics and Applications." McGraw-Hill, New York, 1997.

[2] NIMA TR8350.2: "Department of Defense World Geodetic System 1984, Its Definition and
Relationship with Local Geodetic Systems."

See Also
gravitywgs84 | gravitysphericalharmonic

External Websites
Office of Geomatics

Introduced in R2010b
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Geometry (Aero.Geometry)
Construct 3-D geometry for use with animation object

Syntax
h = Aero.Geometry

Description
h = Aero.Geometry defines a 3-D geometry for use with an animation object.

See Aero.Geometry for further details.

See Also
Aero.Geometry

Introduced in R2007a
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getCoefficient
Class: Aero.FixedWing
Package: Aero

Get coefficient value for Aero.FixedWing object

Syntax
value = getCoefficient(aircraft,stateOutput,stateVariable)
value = getCoefficient( ___ ,Name,Value)

Description
value = getCoefficient(aircraft,stateOutput,stateVariable) gets the coefficient value
value from the coefficient specified by stateOutput and stateVariable.

value = getCoefficient( ___ ,Name,Value) gets the coefficient value using one or more
Name,Value pairs.

Input Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, specified as a scalar.

stateOutput — Valid state output
vector of strings | character array

Valid state output, specified in a vector of strings or character array. For more information, see
Aero.FixedWing.Coefficient.
Data Types: string | char

stateVariable — Valid state variable
vector

Valid state variable, specified in a vector of strings or character array. Valid state variables depend on
the coefficients defined on the object. For more information, see Aero.FixedWing.Coefficient.
Data Types: string | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Component','Hello'
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State — Aero.FixedWing.State object to calculate numeric values of
Simulink.LookupTable objects
scalar

Aero.FixedWing.State object to calculate numeric values of Simulink.LookupTable objects,
specified as a scalar.
Data Types: double

Component — Valid component name
scalar string

Valid component name, specified as a scalar string. Valid component names depend on the 'Name'
property of an object and all its subcomponents. The default component is the current object.
Data Types: char | string

Output Arguments
value — Coefficient values
vector

Coefficient values, returned as a value of the same size as stateOutput and stateVariable.
Vector contents depend on the type of coefficients in the vector.

Type of Coefficients in Vector Vector
All numeric constants Numeric vector
Simulink.LookupTable objects Vector of Simulink.LookupTable objects
Mix of numeric constants and
Simulink.LookupTable objects

Vector of cells

Simulink.LookupTable objects with state
included

Numeric vector

Examples

Get Coefficient for Angle of Attack

Get a CD_alpha on an Aero.FixedWing object.

C182 = astC182();
CD_alpha = getCoefficient(C182, "CD", "Alpha")

CD_alpha =
    0.1210

Get Vector of Coefficient Values

Get a vector of coefficient values on a component within an Aero.FixedWing object.
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C182 = astC182();
coeffs = getCoefficient(C182,{'CY'; 'Cm'},{'Aileron';'Aileron'},'Component','Aileron')

Get Simulink.LookupTable Coefficient

Get a Simulink.LookupTable coefficient from an Aero.FixedWing object.

SkyHogg = astSkyHogg();
Cl_zero = getCoefficient(SkyHogg,"Cl","Zero")

Cl_zero =
     0

Get Simulink.LookupTable Coefficient with State

Get a Simulink.LookupTable coefficient from an Aero.FixedWing object and include a state.

[SkyHogg, CruiseState] = astSkyHogg();
Cl_zero = getCoefficient(SkyHogg, "Cl", "Zero", "State", CruiseState)

Cl_zero =
     0

Limitations
• Each vector of inputs stateOutput and stateVariable must be the same length.
• When used with Simulink.LookupTable objects, this method requires a Simulink license.

See Also
Aero.FixedWing | setCoefficient | Simulink.LookupTable

Introduced in R2021a
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getCoefficient
Class: Aero.FixedWing.Coefficient
Package: Aero

Get coefficient values from fixed-wing coefficient object

Syntax
value = getCoefficient(fixedWingCoefficient,stateOutput,stateVariable)
value = getCoefficient( ___ ,Name,Value)

Description
value = getCoefficient(fixedWingCoefficient,stateOutput,stateVariable) gets the
coefficient value value from the coefficient specified by stateOutput and stateVariable.

value = getCoefficient( ___ ,Name,Value) gets the coefficient value using one or more
Name,Value pairs.

Input Arguments
fixedWingCoefficient — Aero.FixedWing.Coefficient object for which to get coefficient
scalar

Aero.FixedWing.Coefficient object for which to get coefficient, specified as a scalar.

stateOutput — State output
6-by-1 vector

State output, specified as a 6-by-1 vector where each entry is a valid state output. For more
information on state outputs, see Aero.FixedWing.Coefficient.
Data Types: char | string

stateVariable — State variable
vector

State variable, specified as a vector where each entry is a valid state variable. Valid state variables
depend on the coefficients defined on the object. For more information on fixed-wing states, see
Aero.FixedWing.State.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'State','on'

 getCoefficient

4-495



State — Aero.FixedWing.State object
scalar | Aero.FixedWing.State object

Aero.FixedWing.State object, specified as a scalar, that calculates the numeric values of any
Simulink.LookupTable objects. Including an Aero.FixedWing.State guarantees value is a
numeric vector.
Data Types: char | string

Component — Component name
string

Component name, specified as a string. Valid component names depend on the object properties and
all subcomponents on the object. The default component name is the current object.
Data Types: char | string

Output Arguments
value — Coefficient values
vector

Coefficient values, returned as a vector of the same size as stateOutput and stateVariable.
Vector contents depend on the type of coefficients in the vector.

Type of Coefficients in Vector Vector
All numeric constants Numeric vector
Simulink.LookupTable objects Vector of Simulink.LookupTable objects
Mix of numeric constants and
Simulink.LookupTable objects

Vector of cells

Simulink.LookupTable objects with state
included

Numeric vector

Examples

Get CD_alpha on Fixed-Wing Coefficient Object

Get a CD_alpha on a fixed-wing coefficient object.

C182 = astC182();
CD_alpha = getCoefficient(C182, "CD", "Alpha")

CD_alpha =

    0.1210

Get Vector of Coefficient Values

Get a vector of coefficient values on a component within a fixed-wing coefficient object.
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C182 = astC182();
coeffs = getCoefficient(C182, ["CY"; "Cm"], ["Aileron"; "Aileron"], "Component", "Aileron")

coeffs =

     0     0

Get Simulink.LookupTable Coefficient

Get a Simulink.LookupTable coefficient from a fixed-wing coefficient object.

SkyHogg = astSkyHogg();
Cl_zero = getCoefficient(SkyHogg, "Cl", "Zero")

Cl_zero =

     0

Get Simulink.LookupTable Coefficient and Include State

Get a Simulink.LookupTable coefficient from a fixed-wing coefficient object and include a state.

[SkyHogg, CruiseState] = astSkyHogg();
Cl_zero = getCoefficient(SkyHogg, "Cl", "Zero", "State", CruiseState)

Cl_zero =

     0

Limitations
• The vectors for the stateOutput, stateVariable, and value arguments must be the same

length.
• When used with Simulink.LookupTable objects, this method requires a Simulink license.

See Also
Aero.FixedWing | getCoefficient | setCoefficient

Introduced in R2021a
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getCoefficient
Class: Aero.FixedWing.Surface
Package: Aero

Get coefficient for fixed-wing surface object

Syntax
value = getCoefficient(fixedWingSurface,stateOutput,stateVariable)
value = getCoefficient( ___ ,Name,Value)

Description
value = getCoefficient(fixedWingSurface,stateOutput,stateVariable) gets the
coefficient value value from the coefficient specified by stateOutput and stateVariable.

value = getCoefficient( ___ ,Name,Value) gets the coefficient value using one or more
Name,Value pairs.

Input Arguments
fixedWingSurface — Aero.FixedWing.Surface object for which to get coefficient
scalar

Aero.FixedWing.Surface object for which to get coefficient, specified as a scalar.

stateOutput — State output
6-by-1 vector

State output, specified as a 6-by-1 vector where each entry is a valid state output. For more
information on state outputs, see Aero.FixedWing.Coefficient.
Data Types: char | string

stateVariable — State variable
vector

State variable, specified as a vector where each entry is a valid state variable. Valid state variables
depend on the coefficients defined on the object. For more information on fixed-wing states, see
Aero.FixedWing.State.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Component','Hello'
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State — Aero.FixedWing.State object to calculate numeric values of
Simulink.LookupTable objects
scalar

Aero.FixedWing.State object to calculate numeric values of Simulink.LookupTable objects,
specified as a scalar.
Data Types: double

Component — Valid component Name
scalar

Valid component name, specified as a scalar string. Valid component names depend on the 'Name'
property of an object and all its subcomponents. The default component is the current object.
Data Types: char | string

Output Arguments
value — Coefficient values
vector

Coefficient values, returned as a vector of the same size as stateOutput and stateVariable.
Vector contents depend on the type of coefficients in the vector.

Type of Coefficients in Vector Vector
All numeric constants Numeric vector
Simulink.LookupTable objects Vector of Simulink.LookupTable objects
Mix of numeric constants and
Simulink.LookupTable objects

Vector of cells

Simulink.LookupTable objects with state
included

Numeric vector

See Also
Aero.FixedWing | Aero.FixedWing.Coefficient | Aero.FixedWing.Surface |
Aero.FixedWing.Thrust | setCoefficient

Introduced in R2021a
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getCoefficient
Class: Aero.FixedWing.Thrust
Package: Aero

Get coefficient for fixed-wing thrust object

Syntax
value = getCoefficient(fixedWingThrust,stateOutput,stateVariable)
value = getCoefficient( ___ ,Name,Value)

Description
value = getCoefficient(fixedWingThrust,stateOutput,stateVariable) gets the
coefficient value value from the coefficient specified by stateOutput and stateVariable.

value = getCoefficient( ___ ,Name,Value) gets the coefficient value using one or more
Name,Value pairs.

Input Arguments
fixedWingThrust — Aero.FixedWing.Thrust object for which to get coefficient
scalar

Aero.FixedWing.Thrust object for which to get coefficient, specified as a scalar.

stateOutput — State output
6-by-1 vector

State output, specified as a 6-by-1 vector where each entry is a valid state output. For more
information on state outputs, see Aero.FixedWing.Coefficient.
Data Types: char | string

stateVariable — State variable
vector

State variable, specified as a vector where each entry is a valid state variable. Valid state variables
depend on the coefficients defined on the object. For more information on fixed-wing states, see
Aero.FixedWing.State.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Component','Hello'
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State — Aero.FixedWing.State object to calculate numeric values of
Simulink.LookupTable objects
scalar

Aero.FixedWing.State object to calculate numeric values of Simulink.LookupTable objects,
specified as a scalar.
Data Types: double

Component — Valid component name
scalar

Valid component name, specified as a scalar string. Valid component names depend on the 'Name'
property of an object and all its subcomponents. The default component is the current object.
Data Types: char | string

Output Arguments
value — Coefficient values
vector

Coefficient values, specified as a vector of the same size as stateOutput and stateVariable.
Vector contents depend on the type of coefficients in the vector.

Type of Coefficients in Vector Vector Type
All numeric constants Numeric vector
Simulink.LookupTable objects Vector of Simulink.LookupTable objects
Mix of numeric constants and
Simulink.LookupTable objects

Vector of cells

Simulink.LookupTable objects with state
included

Numeric vector

See Also
Topics
Aero.FixedWing
Aero.FixedWing.Thrust
setCoefficient
Simulink.LookupTable

Introduced in R2021a
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getControlStates
Class: Aero.FixedWing
Package: Aero

Get control states for Aero.FixedWing object

Syntax
control_states = getControlStates(aircraft)

Description
control_states = getControlStates(aircraft) gets Aero.Aircraft.ControlState
control states for the Aero.FixedWing object aircraft.

Input Arguments
aircraft — Aero.FixedWing coefficient object
scalar | Aero.FixedWing | Aero.FixedWing.Surface | Aero.FixedWing.Control |
Aero.FixedWing.Thrust

Aero.FixedWing coefficient object, specified as a scalar of type Aero.FixedWing,
Aero.FixedWing.Surface, Aero.FixedWing.Control, or Aero.FixedWing.Thrust.

Output Arguments
control_states — Aero.Aircraft.ControlState objects
vector

Aero.Aircraft.ControlState objects, returned as a vector.

Examples

Get Aero.Aircraft.ControlState Control States

Get the control states for an Aero.FixedWing object.

C182 = astC182();
ctrlStates = getControlStates(C182)

ctrlStates = 
  1×4 ControlState array with properties:

    Position
    MaximumValue
    MinimumValue
    DependsOn
    Settable
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    DeflectionAngle
    Properties

See Also
Aero.FixedWing | Aero.Aircraft.ControlState | Aero.FixedWing.State

Introduced in R2021a
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getControlStates
Class: Aero.FixedWing.Surface
Package: Aero

Get control states for Aero.FixedWing.Surface object

Syntax
control_states = getControlStates(surface)

Description
control_states = getControlStates(surface) gets control states, control_states, for the
Aero.FixedWing.Surface object, surface.

Input Arguments
surface — Aero.FixedWing.Surface object
scalar

Aero.FixedWing.Surface object, specified as a scalar.

Output Arguments
control_states — Aero.Aircraft.ControlState objects
vector

Aero.Aircraft.ControlState objects, returned as a vector.

See Also
Aero.FixedWing | Aero.Aircraft.ControlState | Aero.FixedWing.State |
getControlStates

Introduced in R2021a
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getControlStates
Class: Aero.FixedWing.Thrust
Package: Aero

Get control states for Aero.FixedWing.Thrust object

Syntax
control_states = getControlStates(thrust)

Description
control_states = getControlStates(thrust) gets control states, control_states, for the
Aero.FixedWing.Thrust object, thrust.

Input Arguments
thrust — Aero.FixedWing.Thrust object
scalar

Aero.FixedWing.Thrust object, specified as a scalar.

Output Arguments
control_states — Aero.Aircraft.ControlState objects
vector

Aero.Aircraft.ControlState objects, returned as a vector.

See Also
Aero.FixedWing | Aero.Aircraft.ControlState | Aero.FixedWing.State |
getControlStates

Introduced in R2021a
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getState
Class: Aero.FixedWing.State
Package: Aero

Get state value

Syntax
value = getState(state,statename)

Description
value = getState(state,statename) gets the state value from the state name statename.

Input Arguments
state — Aero.FixedWing.State object
scalar

Aero.FixedWing.State object, specified as a scalar.

statename — State name
vector

State names, specified as a vector. For more information on state names, see the
Aero.FixedWing.State “Properties” on page 4-60.
Data Types: char | string

Output Arguments
value — State values
vector

State values, returned as a vector.

• If the states are all scalar constants, value is a numeric vector.
• If one of more states are not scalar constants, value is a cell vector.

Examples

Get Angle of Attack from Cruise State

Get the angle of attack from a cruise state.

[C182, CruiseState] = astC182();
alpha = getState(CruiseState, 'Alpha')
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alpha =

     0

Get U, V, and W Velocity Components

Get the U, V, and W velocity components from a cruise state.

[C182, CruiseState] = astC182();
uvw = getState(CruiseState, {'U', 'V', 'W'})

uvw =
  220.1000         0         0

See Also
Aero.FixedWing.State | setState | setupControlStates

Introduced in R2021a
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gimbal
Add gimbal to satellite or ground station

Syntax
gimbal(parent)
gimbal(parent,Name,Value)
gimbal( ___ )

Description
gimbal(parent) adds a default Gimbal object to parent, which can be a satellite, ground station,
or gimbal. A gimbal can dynamically change orientation independent of the parent. Transmitters,
receivers, and conical sensors can be mounted on the gimbals.

gimbal(parent,Name,Value) specifies options using one or more name-value arguments.

gim = gimbal( ___ ) returns a handle to the added gimbal. Specify any input argument combination
from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60;                                      % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 21-Jun-2021 08:55:00
          StopTime: 26-Jun-2021 08:55:00
        SampleTime: 60
           Viewers: [0x0 matlabshared.satellitescenario.Viewer]
        Satellites: [1x0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;                                                                    % meters
eccentricity = 0;
inclination = 50;                                                                           % degrees
rightAscensionOfAscendingNode = 0;                                                          % degrees
argumentOfPeriapsis = 0;                                                                    % degrees
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trueAnomaly = 50;                                                                           % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
    argumentOfPeriapsis,trueAnomaly)

sat = 
  Satellite with properties:

               Name:  Satellite 1
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  sgp4
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
    "Latitude",42.3001,"Longitude",-71.3504)               % degrees

gs = 
  GroundStation with properties:

                 Name:  Location To Photograph
                   ID:  2
             Latitude:  42.3 degrees
            Longitude:  -71.35 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [0 1 1]
           MarkerSize:  10
            ShowLabel:  true
       LabelFontColor:  [0 1 1]
        LabelFontSize:  15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g = 
  Gimbal with properties:

                Name:  Gimbal 3
                  ID:  3
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    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
      ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
        Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
           Receivers:  [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor = 
  ConicalSensor with properties:

                Name:  Conical sensor 4
                  ID:  4
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
        MaxViewAngle:  60 degrees
            Accesses:  [1x0 matlabshared.satellitescenario.Access]
         FieldOfView:  [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac = 
  Access with properties:

    Sequence:  [4 2]
    LineWidth:  1
    LineColor:  [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);
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Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
          Source                   Target             IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    __________________    ________________________    ______________    ____________________    ____________________    ________    __________    ________

    "Conical sensor 4"    "Location To Photograph"           1          21-Jun-2021 10:38:00    21-Jun-2021 10:55:00      1020           1            2   
    "Conical sensor 4"    "Location To Photograph"           2          21-Jun-2021 12:36:00    21-Jun-2021 12:58:00      1320           2            3   
    "Conical sensor 4"    "Location To Photograph"           3          21-Jun-2021 14:37:00    21-Jun-2021 15:01:00      1440           3            4   
    "Conical sensor 4"    "Location To Photograph"           4          21-Jun-2021 16:41:00    21-Jun-2021 17:04:00      1380           5            5   
    "Conical sensor 4"    "Location To Photograph"           5          21-Jun-2021 18:44:00    21-Jun-2021 19:07:00      1380           6            6   
    "Conical sensor 4"    "Location To Photograph"           6          21-Jun-2021 20:46:00    21-Jun-2021 21:08:00      1320           7            7   
    "Conical sensor 4"    "Location To Photograph"           7          21-Jun-2021 22:50:00    21-Jun-2021 23:04:00       840           8            8   
    "Conical sensor 4"    "Location To Photograph"           8          22-Jun-2021 09:51:00    22-Jun-2021 10:02:00       660          13           13   
    "Conical sensor 4"    "Location To Photograph"           9          22-Jun-2021 11:46:00    22-Jun-2021 12:07:00      1260          14           15   
    "Conical sensor 4"    "Location To Photograph"          10          22-Jun-2021 13:46:00    22-Jun-2021 14:10:00      1440          15           16   
    "Conical sensor 4"    "Location To Photograph"          11          22-Jun-2021 15:50:00    22-Jun-2021 16:13:00      1380          16           17   
    "Conical sensor 4"    "Location To Photograph"          12          22-Jun-2021 17:53:00    22-Jun-2021 18:16:00      1380          18           18   
    "Conical sensor 4"    "Location To Photograph"          13          22-Jun-2021 19:55:00    22-Jun-2021 20:18:00      1380          19           19   
    "Conical sensor 4"    "Location To Photograph"          14          22-Jun-2021 21:58:00    22-Jun-2021 22:16:00      1080          20           20   
    "Conical sensor 4"    "Location To Photograph"          15          23-Jun-2021 10:56:00    23-Jun-2021 11:16:00      1200          26           27   
    "Conical sensor 4"    "Location To Photograph"          16          23-Jun-2021 12:56:00    23-Jun-2021 13:19:00      1380          27           28   
      ⋮

Calculate the maximum revisit time in hours.

 gimbal

4-511



startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes)                             % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

Input Arguments
parent — Element of scenario to which gimbal is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the gimbal is added, specified as a Satellite, GroundStation, or
Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of gimbal to 20, 35,
and 10 degrees, respectively.
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Name — gimbal name
"gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one gimbal is added, specify Name as a string scalar or a character vector.
• If multiple gimbals are added, specify Name as a string vector or a cell array of character vectors.

The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the gimbal added by the gimbal object function. If another
gimbal of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is incremented
by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

Output Arguments
gim — Gimbal
Gimbal object

Gimbal attached to parent, returned as a Gimbal object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | satellite | conicalSensor | hide

Topics
“Satellite Scenario Key Concepts” on page 2-63
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Gimbal
Gimbal object belonging to satellite scenario

Description
The Gimbal defines a gimbal object belonging to a satellite scenario.

Creation
You can create a Gimbal object using the gimbal object function of the Satellite or
GroundStation.

Properties
Name — Gimbal name
"Gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling Gimbal. After you call Gimbal, this property is read-only.

Gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Gimbal is added, specify Name as a string scalar or a character vector.
• If multiple Gimbals are added, specify Name as a string vector or a cell array of character vectors.

The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the Gimbal added by the Gimbal object function. If another
Gimbal of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is incremented
by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — Gimbal ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Gimbal ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers
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Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Gimbal, specified as a row vector of conical sensors.

Object Functions
conicalSensor Add conical sensor to satellite scenario
pointAt Target at which entity must be pointed
gimbalAngles Steering angles of gimbal

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);
sampleTime = 60;                                      % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 21-Jun-2021 08:55:00
          StopTime: 26-Jun-2021 08:55:00
        SampleTime: 60
           Viewers: [0x0 matlabshared.satellitescenario.Viewer]
        Satellites: [1x0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;                                                                    % meters
eccentricity = 0;
inclination = 50;                                                                           % degrees
rightAscensionOfAscendingNode = 0;                                                          % degrees
argumentOfPeriapsis = 0;                                                                    % degrees
trueAnomaly = 50;                                                                           % degrees
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, ...
    argumentOfPeriapsis,trueAnomaly)
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sat = 
  Satellite with properties:

               Name:  Satellite 1
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  sgp4
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", ...
    "Latitude",42.3001,"Longitude",-71.3504)               % degrees

gs = 
  GroundStation with properties:

                 Name:  Location To Photograph
                   ID:  2
             Latitude:  42.3 degrees
            Longitude:  -71.35 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [0 1 1]
           MarkerSize:  10
            ShowLabel:  true
       LabelFontColor:  [0 1 1]
        LabelFontSize:  15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

g = 
  Gimbal with properties:

                Name:  Gimbal 3
                  ID:  3
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
      ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
        Transmitters:  [1x0 satcom.satellitescenario.Transmitter]

 Gimbal

4-517



           Receivers:  [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,"MaxViewAngle",60)

camSensor = 
  ConicalSensor with properties:

                Name:  Conical sensor 4
                  ID:  4
    MountingLocation:  [0; 0; 0] meters
      MountingAngles:  [0; 0; 0] degrees
        MaxViewAngle:  60 degrees
            Accesses:  [1x0 matlabshared.satellitescenario.Access]
         FieldOfView:  [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac = 
  Access with properties:

    Sequence:  [4 2]
    LineWidth:  1
    LineColor:  [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);
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Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)

t=35×8 table
          Source                   Target             IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    __________________    ________________________    ______________    ____________________    ____________________    ________    __________    ________

    "Conical sensor 4"    "Location To Photograph"           1          21-Jun-2021 10:38:00    21-Jun-2021 10:55:00      1020           1            2   
    "Conical sensor 4"    "Location To Photograph"           2          21-Jun-2021 12:36:00    21-Jun-2021 12:58:00      1320           2            3   
    "Conical sensor 4"    "Location To Photograph"           3          21-Jun-2021 14:37:00    21-Jun-2021 15:01:00      1440           3            4   
    "Conical sensor 4"    "Location To Photograph"           4          21-Jun-2021 16:41:00    21-Jun-2021 17:04:00      1380           5            5   
    "Conical sensor 4"    "Location To Photograph"           5          21-Jun-2021 18:44:00    21-Jun-2021 19:07:00      1380           6            6   
    "Conical sensor 4"    "Location To Photograph"           6          21-Jun-2021 20:46:00    21-Jun-2021 21:08:00      1320           7            7   
    "Conical sensor 4"    "Location To Photograph"           7          21-Jun-2021 22:50:00    21-Jun-2021 23:04:00       840           8            8   
    "Conical sensor 4"    "Location To Photograph"           8          22-Jun-2021 09:51:00    22-Jun-2021 10:02:00       660          13           13   
    "Conical sensor 4"    "Location To Photograph"           9          22-Jun-2021 11:46:00    22-Jun-2021 12:07:00      1260          14           15   
    "Conical sensor 4"    "Location To Photograph"          10          22-Jun-2021 13:46:00    22-Jun-2021 14:10:00      1440          15           16   
    "Conical sensor 4"    "Location To Photograph"          11          22-Jun-2021 15:50:00    22-Jun-2021 16:13:00      1380          16           17   
    "Conical sensor 4"    "Location To Photograph"          12          22-Jun-2021 17:53:00    22-Jun-2021 18:16:00      1380          18           18   
    "Conical sensor 4"    "Location To Photograph"          13          22-Jun-2021 19:55:00    22-Jun-2021 20:18:00      1380          19           19   
    "Conical sensor 4"    "Location To Photograph"          14          22-Jun-2021 21:58:00    22-Jun-2021 22:16:00      1080          20           20   
    "Conical sensor 4"    "Location To Photograph"          15          23-Jun-2021 10:56:00    23-Jun-2021 11:16:00      1200          26           27   
    "Conical sensor 4"    "Location To Photograph"          16          23-Jun-2021 12:56:00    23-Jun-2021 13:19:00      1380          27           28   
      ⋮

Calculate the maximum revisit time in hours.
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startTimes = t.StartTime;
endTimes = t.EndTime;
revisitTimes = hours(startTimes(2:end) - endTimes(1:end-1));
maxRevisitTime = max(revisitTimes)                             % hours

maxRevisitTime = 12.6667

Visualize the revisit times that photographs the location.

play(sc);

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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gimbalAngles
Steering angles of gimbal

Syntax
az = gimbalAngles(gim)
[az,el] = gimbalAngles(gim)
[az,el,timeOut] = gimbalAngles(gim)
[ ___ ] = gimbalAngles(gim,timeIn)

Description
az = gimbalAngles(gim) returns the gimbal azimuth of the specified gimbal, in degrees. The
gimbal is steered to the desired pointing direction by first rotating it about its body z - axis (gimbal
azimuth) and secondly rotating it about its body y - axis (gimbal elevation).

[az,el] = gimbalAngles(gim) returns the gimbal azimuth and gimbal elevation of the specified
gimbal.

[az,el,timeOut] = gimbalAngles(gim) also returns the corresponding time in UTC.

[ ___ ] = gimbalAngles(gim,timeIn) returns the gimbal azimuth and gimbal elevation
(depending on the specified output arguments) of the gimbal at the specified time. If you do not
specify a time zone, the time zone is assumed to be Universal Time Coordinated (UTC).

Input Arguments
gim — Gimbal
scalar Gimbal object

Gimbal whose steering angle is being calculated, specified as a scalar Gimbal object.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Output Arguments
az — Gimbal azimuth
scalar | row vector

Gimbal azimuth, returned as a scalar or row vector. This represents the angle of rotation of the
gimbal about its z-axis.

Values are specified in degrees in the interval [-180, 180]. The vector elements correspond to the time
samples from the satellite scenario StartTime to StopTime properties, as specified by the SampleTime
property.
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el — Gimbal elevation
scalar | row vector

Gimbal elevation, returned as a scalar or row vector. This represents the angle of rotation of the
gimbal about its y-axis.

Values are specified in degrees in the closed interval [0, 180]. The vector elements correspond to the
time samples from the satellite scenario StartTime to StopTime properties, as specified by the
SampleTime property.

timeOut — Time samples between start and stop time of scenario
scalar | vector

Time samples between start and stop time of the scenario, returned as a scalar or vector. If az and el
histories are returned, timeOut is a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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gravitycentrifugal
Implement centrifugal effect of planetary gravity

Syntax
[gx gy gz] = gravitycentrifugal(planet_coordinates)

[gx gy gz] = gravitycentrifugal(planet_coordinates,model)

[gx gy gz] = gravitycentrifugal(planet_coordinates,'Custom',value)

Description
Planetary Gravitational Potential Based on Planetary Rotation Rate

[gx gy gz] = gravitycentrifugal(planet_coordinates) implements the mathematical
representation of centrifugal effect for planetary gravity based on planetary rotation rate. This
function calculates arrays of N gravity values in the x-axis, y-axis, and z-axis of the Planet-Centered
Planet-Fixed coordinates for the planet. The function performs these calculations using
planet_coordinates. You use centrifugal force in rotating or noninertial coordinate systems.
Gravity centrifugal effect values are greatest at the equator of a planet.

Planetary Gravitational Potential Based on Specified Planetary Model

[gx gy gz] = gravitycentrifugal(planet_coordinates,model) implements the
mathematical representation of centrifugal effect based on planetary gravitational potential for the
planetary model, model.

Planetary Gravitational Potential Based on Custom Rotational Rate

[gx gy gz] = gravitycentrifugal(planet_coordinates,'Custom',value) implements
the mathematical representation of centrifugal effect based on planetary gravitational potential using
the custom rotational rate, rotational_rate.

Examples

Calculate Centrifugal Effect of Earth Gravity

Calculate the centrifugal effect of Earth gravity in the x-axis at the equator on the surface of Earth.

gx = gravitycentrifugal([-6378.1363e3 0 0])

gx =
   -0.0339

Calculate Centrifugal Effect of Mars Gravity

Calculate the centrifugal effect of Mars gravity at 15,000 m over the equator and 11,000 m over the
North Pole.
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p  = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3]
[gx, gy, gz] = gravitycentrifugal( p, 'Mars' )

p =
     2412648    -2412648           0
           0           0     3376200
gx =
    0.0121
         0
gy =
   -0.0121
         0
gz =
     0
     0

Calculate Precessing Centrifugal Effect of Gravity for Earth

Calculate the precessing centrifugal effect of gravity for Earth at 15,000 m over the equator and
11,000 m over the North Pole. This example uses a custom planetary model at Julian date 2451545.

p = [2412.648e3 -2412.648e3 0; 0 0 3376e3];
% Set julian date to January 1, 2000 at noon GMT
JD = 2451545;
% Calculate precession rate in right ascension in meters
pres_RA = 7.086e-12 + 4.3e-15*(JD - 2451545)/36525;
% Calculate the rotational rate in a precessing reference
% frame
Omega = 7.2921151467e-5 + pres_RA;
[gx, gy, gz] = gravitycentrifugal(p,'Custom',Omega)

gx =
    0.0128
         0

gy =
   -0.0128
         0

gz =
     0
     0

Input Arguments
planet_coordinates — Planet-Centered Planet-Fixed coordinates
M-by-3 array

Planet-Centered Planet-Fixed coordinates, specified as an M-by-3 array in meters. The z-axis is
positive toward the North Pole. If model is 'Earth', the planet coordinates are ECEF coordinates.
Data Types: double

model — Planetary model
'Earth' (default) | 'Mercury' | 'Venus' | 'Moon' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus'
| 'Neptune'

4 Functions

4-524



Planetary model, specified as:

• 'Mercury'
• 'Venus'
• 'Earth'
• 'Moon'
• 'Mars'
• 'Jupiter'
• 'Saturn'
• 'Uranus'
• 'Neptune'

Data Types: double

'Custom',value — Custom planetary model
name-value argument | scalar | planetary model

Custom planetary model, specified as a name-value argument, where the value specifies the planetary
rotational rate in radians per second.
Example: 'Custom',Omega
Data Types: double

Output Arguments
gx — Gravity values in x-axis
array

Gravity values in x-axis of the Planet-Centered Planet-Fixed coordinates, returned as an array of M
gravity values in meters per second squared (m/s2).

gy — Gravity values in y-axis
array

Gravity values in y-axis of the Planet-Centered Planet-Fixed coordinates, returned as an array of M
gravity values in meters per second squared (m/s2).

gz — Gravity values in z-axis
array

Gravity values in z-axis of the Planet-Centered Planet-Fixed coordinates, returned as an array of M
gravity values in meters per second squared (m/s2).

See Also
gravitywgs84 | gravitysphericalharmonic

Introduced in R2010a
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gravitysphericalharmonic
Implement spherical harmonic representation of planetary gravity

Syntax
[gx gy gz] = gravitysphericalharmonic(planet_coordinates)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,degree)

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,model)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,model,degree)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,model,degree,action)

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,'Custom',degree,{
datafile dfreader},action)

Description
Default Planetary Model

[gx gy gz] = gravitysphericalharmonic(planet_coordinates) implements the
mathematical representation of spherical harmonic planetary gravity based on planetary gravitational
potential. This function calculates arrays of N gravity values in the x-axis, y-axis, and z-axis of the
Planet-Centered Planet-Fixed coordinates for the planet. The function performs these calculations
using planet_coordinates, an M-by-3 array of Planet-Centered Planet-Fixed coordinates.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,degree) uses the degree
and order that degree specifies.
Specified Planetary Model

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,model) implements the
mathematical representation for the planetary model, model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,model,degree) uses the
degree and order that degree specifies. model specifies the planetary model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,model,degree,action)
uses the specified action when input is out of range.
Custom Planetary Model

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,'Custom',degree,{
datafile dfreader},action) implements the mathematical representation for a custom model
planet. datafile defines the planetary model. dfreader specifies the reader for datafile.

Examples

Calculate Gravity in x-Axis at Equator on Earth Surface

Calculate the gravity in the x-axis at the equator on the surface of Earth. This example uses the
default 120 degree model of EGM2008 with default warning actions.
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gx = gravitysphericalharmonic([-6378.137e3 0 0])

gx =

    9.8143

Calculate Gravity at 25,000 Meters Over South Pole of Earth

Calculate the gravity at 25,000 m over the south pole of Earth. This example uses the 70 degree
model of EGM96 with error actions.

[gx, gy, gz] = gravitysphericalharmonic([0 0 -6381.751e3],'EGM96','Error')

gx =
     0

gy =
     0

gz =
    9.7552

Calculate Gravity at 15,000 Meters Over Equator and 11,000 Meters Over North Pole with
GMM2B Mars Model

Calculate the gravity at 15,000 m over the equator and 11,000 m over the North Pole. This example
uses a 30th order GMM2B Mars model with warning actions.

p  = [2412.648e3 -2412.648e3 0; 0 0 3397.2e3];
[gx, gy, gz] = gravitysphericalharmonic(p,'GMM2B',30,'Warning')

gx =
   -2.6085
         0

gy =
    2.6073
         0

gz =
    0.0000
   -3.6895

Calculate Gravity at 25,000 Meters Over South Pole and with 120th Order EIGEN-GL04C
Earth Model

Calculate the gravity at 25,000 meters over the south pole of Earth using a 120th order EIGEN-
GL04C Earth model with warning actions.

p = [0 0 -6381.751e3];
[gx, gy, gz] = gravitysphericalharmonic( p,'EIGENGL04C', ...
120,'Warning')

 gravitysphericalharmonic

4-527



gx =
     0

gy =
     0

gz =
    9.7552

Calculate Gravity at 15,000 Meters Over Equator and 11,000 Meters Over North Pole with
Custom Planetary Model

Calculate the gravity at 15,000 m over the equator and 11,000 m over the North Pole. This example
uses a 60th degree custom planetary model with no actions.

p = [2412.648e3 -2412.648e3 0; 0 0 3397e3];
[gx, gy, gz] = gravitysphericalharmonic(p,'Custom',60, ...
{'GMM2BC80_SHA.txt' @astReadSHAFile},'None')

gx =
   -2.6079
         0

gy =
    2.6067
         0

gz =
    0.0002
   -3.6902

Input Arguments
planet_coordinates — Planet coordinates
M-by-3 array

Planet coordinates, specified as an M-by-3 array of Planet-Centered Planet-Fixed coordinates in
meters. The z-axis is positive toward the North Pole. If model is 'EGM2008' or 'EGM96' (Earth), the
planet coordinates are ECEF coordinates.
Data Types: double

model — Planetary model
'EGM2008' (default) | 'EGM96' | 'LP100K' | 'LP165P' | 'GMM2B' | 'Custom' | 'EIGENGL04C'

Planetary model, specified as one of these values.

Planetary Model Planet
'EGM2008' Earth Gravitational Model 2008. Planet coordinates are ECEF (WGS84).
'EGM96' Earth Gravitational Model 1996. Planet coordinates are ECEF (WGS84).
'LP100K' 100th degree Moon model.
'LP165P' 165th degree Moon model.
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Planetary Model Planet
'GMM2B' Goddard Mars model 2B.
'Custom' Custom planetary model that you define in datafile.

Note To deploy a custom planetary model, explicitly include the custom
data and reader files to the MATLAB Compiler™ (mcc) command at
compilation. For example:

mcc -m mycustomsphericalgravityfunction...
-a customDataFile -a customReaderFile

For other planetary models, use the MATLAB Compiler as usual.

For more information, see “'Custom'” on page 4-0 .
'EIGENGL04C' Combined Earth gravity field model EIGEN-GL04C.

When inputting a large PCPF array and a high-degree value, you might receive an out-of-memory
error. For more information about avoiding out-of-memory errors in the MATLAB environment, see
“Resolve “Out of Memory” Errors”.

When inputting a large PCPF array, you might receive a maximum matrix size limitation. To
determine the largest matrix or array that you can create in the MATLAB environment for your
platform, see “Performance and Memory”.
Data Types: char | string

degree — Degree and order of harmonic gravity
scalar

Degree and order of harmonic gravity, specified as a scalar.

Planetary Model Degree and Order
'EGM2008' Maximum degree and order are 2159.

Default degree and order are 120.
'EGM96' Maximum degree and order are 360.

Default degree and order are 70.
'LP100K' Maximum degree and order are 100.

Default degree and order are 60.
'LP165P' Maximum degree and order are 165.

Default degree and order are 60.
'GMM2B' Maximum degree and order are 80.

Default degree and order are 60.
'Custom' Maximum degree is default degree and order. For more information, see

“'Custom'” on page 4-0 .
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Planetary Model Degree and Order
'EIGENGL04C' Maximum degree and order are 360.

Default degree and order are 70.

When inputting a large PCPF array and a high-degree value, you might receive an out-of-memory
error. For more information about avoiding out-of-memory errors in the MATLAB environment, see
“Performance and Memory”.

When inputting a large PCPF array, you might receive a maximum matrix size limitation. To
determine the largest matrix or array that you can create in the MATLAB environment for your
platform, see “Performance and Memory”.
Data Types: char | string

'Custom' — Custom planetary model
'Custom'

Custom planetary model definitions, specified as 'Custom'. Specify the planetary model definitions
with a definitions data file and accompanying reader. For more information, see “datafile dfreader” on
page 4-0 .
Data Types: char | string

datafile dfreader — Custom planetary model definitions file and reader
vector

Custom planetary model definitions file and reader, specified as a vector. datafile must contain
these variables.

Variable Description
Re Scalar of planet equatorial radius in meters (m)
GM Scalar of planetary gravitational parameter in meters cubed per second squared

(m3/s2)
degree Scalar of maximum degree
C (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, C
S (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, S

To read datafile, specify a MATLAB function in the dfreader parameter. The reader file that you
specify depends on the file type of datafile.

Data File Type Description
MATLAB file Specify the MATLAB load function, for example, @load.
Other file type Specify a custom MATLAB reader function. For examples of custom reader

functions, see astReadSHAFile.m and astReadEGMFile.m. Note the output
variable order in these files.

Example: {'GMM2BC80_SHA.txt' @astReadSHAFile}
Data Types: double
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action — Action
'Warning' (default) | 'Error' | 'None'

Action for out-of-range input, specified as:

• 'Error' — Displays warning and indicates that the input is out of range.
• 'Warning' — Displays error and indicates that the input is out of range.
• 'None' — Does not display warning or error.

Data Types: char | string

Output Arguments
gx — Gravity values in x-axis
array

Gravity values in x-axis of Planet-Centered Planet-Fixed coordinates, returned as an array of M
gravity values in meters per second squared (m/s2).

gy — Gravity values in y-axis
array

Gravity values in y-axis of Planet-Centered Planet-Fixed coordinates, returned as an array of M
gravity values in meters per second squared (m/s2).

gz — Gravity values in z-axis
array

Gravity values in z-axis of Planet-Centered Planet-Fixed coordinates, returned as an array of M
gravity values in meters per second squared (m/s2).

Limitations
• The function excludes the centrifugal effects of planetary rotation, and the effects of a precessing

reference frame.
• The spherical harmonic gravity model is valid for radial positions greater than the planet

equatorial radius. Minor errors might occur for radial positions near or at the planetary surface.
The spherical harmonic gravity model is not valid for radial positions less than planetary surface.

Tips
• When inputting a large PCPF array and a high-degree value, you might receive an out-of-memory

error. For more information about avoiding out-of-memory errors in the MATLAB environment, see
“Performance and Memory”.

• When inputting a large PCPF array, you might receive a maximum matrix size limitation. To
determine the largest matrix or array that you can create in the MATLAB environment for your
platform, see “Performance and Memory”.
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gravitywgs84
Implement 1984 World Geodetic System (WGS84) representation of Earth gravity

Syntax
g = gravitywgs84(h,lat)
g = gravitywgs84(h,lat,lon,method,[noatm,nocent,prec,jd],action)

gn = gravitywgs84(h,lat,lon,'Exact',[noatm,nocent,prec,jd],action)

[gn gt] = gravitywgs84(h,lat,lon,'Exact',noatm,nocent,prec,jd,action)

Description
g = gravitywgs84(h,lat) implements the mathematical representation of the geocentric
equipotential ellipsoid of WGS84 using altitude h and geodetic latitude lat.

g = gravitywgs84(h,lat,lon,method,[noatm,nocent,prec,jd],action) uses both
latitude and longitude, as well as other optional inputs. method must be 'CloseApprox', 'Exact',
or TaylorSeries.

gn = gravitywgs84(h,lat,lon,'Exact',[noatm,nocent,prec,jd],action) calculates an
array of total gravity values in the direction normal to the Earth surface.

[gn gt] = gravitywgs84(h,lat,lon,'Exact',noatm,nocent,prec,jd,action) calculates
gravity values in the direction both normal and tangential to the Earth surface.

Examples

Normal Gravity with Taylor Series

Calculate the normal gravity at 5000 meters and 55 degrees latitude using the Taylor Series
approximation method and return errors for out-of-range inputs:

g = gravitywgs84(5000,55,'TaylorSeries','Error') 

g =

    9.7997

Normal Gravity with Close Approximation

Calculate the normal gravity at 15,000 meters, 45 degrees latitude, and 120 degrees longitude using
the Close Approximation method with atmosphere, centrifugal effects, and no precession. A warning,
enabled by default, is returned for out-of-range inputs.

g = gravitywgs84(15000,45,120,'CloseApprox')
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g =

    9.7601

Normal and Tangential Gravity

Calculate the normal and tangential gravity at 1000 meters, 0 degrees latitude, and 20 degrees
longitude using the Exact method with atmosphere, centrifugal effects, and no precession. A warning,
enabled by default, is returned for out-of-range inputs.

[gn, gt] = gravitywgs84(1000,0,20,'Exact')

gn =
    9.7772

gt =
     0

Normal and Tangential Gravity with Latitude, Longitude, and Exact Method

Calculate the normal and tangential gravity at 1000 meters, 0 degrees latitude, and 20 degrees
longitude, and the normal and tangential gravity at 11,000 meters, 30 degrees latitude, and 50
degrees longitude using the Exact method with atmosphere, centrifugal effects, and no precession.
Do not return actions for out-of-range inputs.

h = [1000; 11000];
lat = [0; 30];
lon = [20; 50];
[gn, gt] = gravitywgs84(h,lat,lon,'Exact','None')

gn =
    9.7772
    9.7594

gt =
   1.0e-04 *

         0
   -0.7751

Normal Gravity with Latitude, Longitude, and Close Approximation Method

Calculate the normal gravity at 15,000 meters, 45 degrees latitude, and 120 degrees longitude, and
the normal gravity at 5000 meters, 55 degrees latitude, and 100 degrees longitude using the Close
Approximation method with atmosphere, no centrifugal effects, and no precession. A warning,
enabled by default, is returned for out-of-range inputs.

h = [15000 5000];
lat = [45 55];
lon = [120 100];
g = gravitywgs84(h,lat,lon,'CloseApprox',[false true false 0])
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g =

    9.7771    9.8109

Normal and Tangential Gravity with Latitude, Longitude, Julian date, and Exact Method

Calculate the normal and tangential gravity at 1000 meters, 0 degrees latitude, and 20 degrees
longitude using the Exact method with atmosphere, centrifugal effects, and precession at Julian date
2451545. Return warnings for out-of-range inputs.

[gn, gt] = gravitywgs84(1000,0,20,'Exact', ...
              [false false true 2451545],'Warning')

gn =

    9.7772

gt =

     0

Normal Gravity with Julian Date, No Atmosphere, and Close Method

Calculate the normal gravity at 15,000 meters, 45 degrees latitude, and 120 degrees longitude using
the Close Approximation method with no atmosphere, with centrifugal effects, and with precession at
Julian date 2451545. Return errors for out-of-range inputs.

g = gravitywgs84(15000,45,120,'CloseApprox', ...
        [true false true 2451545],'Error')

g =

    9.7601

Normal Gravity with Julian Date, No Atmosphere, and Exact Method

Calculate the total normal gravity at 15,000 meters, 45 degrees latitude, and 120 degrees longitude
using the Exact method with no atmosphere, with centrifugal effects, and with precession at Julian
date 2451545. Return errors for out-of-range inputs.

gn = gravitywgs84(15000,45,120,'Exact', ...
        [true false true 2451545],'Error')

gn =

    9.7601

Input Arguments
h — Altitudes
array

4 Functions

4-536



Altitudes, specified as an array of m values, with respect to the WGS84 ellipsoid, in meters.
Data Types: double

lat — Geodetic latitudes
array

Geodetic latitudes, specified as an array of m latitudes in degrees, where the north latitude is
positive, and south latitude is negative.
Data Types: double

lon — Geodetic longitudes
array

Geodetic longitudes, specified as an array of m longitudes, in degrees, where the east longitude is
positive, and west longitude is negative.

Only use this input when you specify method as 'CloseApprox' or 'Exact'.
Data Types: double

method — Gravity calculation method
'TaylorSeries' (default) | 'CloseApprox' | 'Exact'

Gravity calculation method, specified as:

• 'TaylorSeries' — Medium gravity precision
• 'CloseApprox' — Close gravity precision
• 'Exact' — Exact gravity precision

For more information, see “Limitations” on page 4-539.
Data Types: double

noatm — Earth atmosphere
false (default) | true

Exclude or include Earth atmosphere, specified as true or false:

• false — Include the mass of the atmosphere in the value for the Earth gravitational field.
• true — Exclude the mass of the atmosphere in the value for the Earth gravitational field.

Only use this input when you specify method as 'CloseApprox' or 'Exact'.
Data Types: logical

nocent — Atmosphere
false (default) | true

Remove or include centrifugal effects, specified as:

• false — Calculate gravity including the centrifugal force resulting from the Earth angular
velocity; the centrifugal contribution is included.

• true — Calculate gravity based on pure attraction resulting from the normal gravitational
potential; the centrifugal contribution is excluded.
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Only use this input when you specify method as 'CloseApprox' or 'Exact'.
Data Types: logical

prec — Atmosphere
false (default) | true

Include or exclude a precession reference frame.

• false — Calculate gravity using the angular velocity of the Earth as the value of the standard
Earth rotating at a constant angular velocity.

• true — Calculate gravity using the International Astronomical Union (IAU) value of the Earth
angular velocity and the precession rate in right ascension. For the precession rate in right
ascension, this option calculates Julian centuries from Epoch J2000.0 using the Julian date, jd.

Only use this input when you specify method as 'CloseApprox' or 'Exact'.
Data Types: logical

jd — Julian date
0 (default) | scalar

Julian date, specified as a scalar, to calculate Julian centuries from Epoch J2000.0. The prec option
uses this option to calculate Julian centuries from Epoch J2000.0 for the precession rate in right
ascension.

Only use this input when you specify method as 'CloseApprox' or 'Exact'.
Data Types: double

action — Action
'Warning' (default) | 'Error' | 'None'

Action for out-of-range input, specified as:

• Warning — Displays warning and indicates that the input is out-of-range.
• Error — Displays error and indicates that the input is out-of-range.
• None — Does not display warning or error.

Data Types: char | string

Output Arguments
g — Gravity values normal to Earth surface at specific longitude and latitude
array

Gravity values normal to the Earth surface at specific longitude and latitude, returned as an array of
m gravity values in the direction normal to the Earth surface. A positive value indicates a downward
direction.

gn — Total gravity values normal to Earth surface
array

Total gravity values normal to the Earth surface at a specific lat lon location, returned as an array
of m gravity values. A positive value indicates a downward direction.
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Dependencies

This output is available only with method specified as'Exact'. When method is 'TaylorSeries'
or 'CloseApprox', the function assumes that gn equals g.

gt — Gravity values tangential to Earth surface
array

An array of m gravity values in the direction tangential to the Earth surface at a specific lat lon
location. A positive value indicates a northward direction.

Dependencies

This output is available only with method specified as 'Exact'.

Limitations
• The WGS84 gravity calculations are based on the assumption of a geocentric equipotential

ellipsoid of revolution. Since the gravity potential is assumed to be the same everywhere on the
ellipsoid, there must be a specific theoretical gravity potential that can be uniquely determined
from the four independent constants defining the ellipsoid.

• Limit use of the WGS84 Taylor Series model to low geodetic heights. It is sufficient near the
surface when submicrogal precision is not necessary. At medium and high geodetic heights, it is
less accurate.

• Limit use of the WGS84 Close Approximation model to a geodetic height of 20,000.0 meters
(approximately 65,620.0 feet). Below this height, the function gives results with submicrogal
precision.

• To predict and determine a satellite orbit with high accuracy, instead of the gravitywgs84
function, use the gravitysphericalharmonics function with the EGM96 option and degree and
order 70.

References
[1] National Imagery and Mapping Agency (NIMA). “Department of Defense World Geodetic System

1984: Its Definition, and Relationship with Local Geodetic Systems, TR8350.2, Third Ed.”
Department of Defense, Washington, DC: 1997.

See Also

Introduced in R2006b
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gravityzonal
Implement zonal harmonic representation of planetary gravity

Syntax
[gravityXcoord gravityYcoord,gravityZcoord] = gravityzonal(planetCoord)
[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
action)

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
degreeGravityModel)
[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
planetModel)
[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
planetModel,degreeGravityModel)
[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
planetModel,degreeGravityModel,action)

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
'Custom',Re,planetaryGravitional,zonalHarmonicCoeff)
[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
'Custom',Re,planetaryGravitional,zonalHarmonicCoeff,action)

Description
Default Degree of Harmonic and Planetary Model

[gravityXcoord gravityYcoord,gravityZcoord] = gravityzonal(planetCoord)
implements the mathematical representation of zonal harmonic planetary gravity based on planetary
gravitational potential. The function takes an m-by-3 matrix that contains planet-centered planet-fixed
coordinates from the center of the planet in meters. This function calculates the arrays of m gravity
values in the x-, y-, and z-axes of the planet-centered planet-fixed coordinates.

This function does not include the potential due planet rotation, which excludes the centrifugal
effects of planetary rotation and the effects of a precessing reference frame.

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
action) specifies the action for out-of-range input.
Degree of Harmonic Model and Planetary Model

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
degreeGravityModel) uses the degree of harmonic model.

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
planetModel) uses the planetary model.

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
planetModel,degreeGravityModel) uses the degree of harmonic model and planetary model.

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
planetModel,degreeGravityModel,action) specifies the action for out-of-range input.
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Custom Planetary Model

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
'Custom',Re,planetaryGravitional,zonalHarmonicCoeff) uses the equatorial radius,
planetary gravitational parameter, and zonal harmonic coefficients for the custom planetary model.

[gravityXcoord,gravityYcoord,gravityZcoord] = gravityzonal(planetCoord,
'Custom',Re,planetaryGravitional,zonalHarmonicCoeff,action) specifies the action for
out-of-range input.

Examples

Calculate Gravity in the x-Axis at Equator on the Surface of Earth Using Fourth Degree
Model

Calculate the gravity in x-axis at the equator on surface of Earth using the fourth degree model with
no warning actions.

gx = gravityzonal([-6378.1363e3 0 0])

gx =
    9.8142

Calculate Gravity Using Close Approximation Method at 100 Meters over Geographic South
Pole of Earth

Calculate the gravity using the close approximation method at 100 m over the geographic South Pole
of Earth with error actions.

[gx, gy, gz] = gravityzonal([0 0 -6356.851e3],'Error')

gx =
     0

gy =
     0

gz =
    9.8317

Calculate Gravity at 15,000 Meters over Equator and 11,000 Meters Over Geographic North
Pole and Mars Model

Calculate the gravity at 15,000 m over the equator and 11,000 m over the geographic North Pole
using a second order Mars model with warning actions.

p = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3];
[gx, gy, gz] = gravityzonal(p,'Mars',2,'Warning')

gx =
   -2.6224
         0

 gravityzonal

4-541



gy =
    2.6224
         0

gz =
         0
   -3.7542

Calculate Gravity at 15,000 Meters Over Equator and 11,000 Meters Over Geographic North
Pole with Custom Planetary Model

Calculate the gravity at 15,000 m over the equator and 11,000 m over the geographic North Pole
using a custom planetary model with no actions.

p= [2412.648e3 -2412.648e3 0; 0 0 3376e3];
GM = 42828.371901e9;  % m^3/s^2
Re = 3397e3;          % m
Jvalues = [1.95545367944545e-3 3.14498094262035e-5 ...
-1.53773961526397e-5];
[gx, gy, gz] = gravityzonal(p,'custom',Re,GM, ...
Jvalues,'None')

gx =
   -2.6090
         0

gy =
    2.6090
         0

gz =
    0.0002
   -3.7352

Input Arguments
planetCoord — Planet-centered planet-fixed coordinates
m-by-3 matrix

Planet-centered planet-fixed coordinates from center of planet, specified as an m-by-3 matrix in
meters. If planetModel has a value of 'Earth', this matrix contains Earth-centered Earth-fixed
(ECEF) coordinates.
Data Types: double

planetModel — Planetary model
'Earth' (default) | 'Mercury' | 'Venus' | 'Moon' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus'
| 'Neptune' | 'Custom'

Planetary model, specified as:

• 'Mercury'
• 'Venus'
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• 'Earth'
• 'Moon'
• 'Mars'
• 'Jupiter'
• 'Saturn'
• 'Uranus'
• 'Neptune'
• 'Custom'

'Custom' requires you to specify your own planetary model using the equatorialRadius,
planetaryGravitional, and zonalHarmonicCoeff parameters.
Data Types: double

degreeGravityModel — Degree of harmonic model
scalar

Degree of harmonic model, specified as a scalar of one of these values.

Degree Description Default WhenplanetModel Is
4 Fourth degree, J4 • 'Earth

• 'Jupiter'
• 'Saturn'
• 'Custom'

2 Second degree, J2 • 'Mercury'
• 'Venus'
• 'Moon'
• 'Uranus'
• 'Neptune'

3 Third degree, J3 'Mars'

Data Types: double

Re — Equatorial radius
scalar

Equatorial radius, specified as a scalar in meters.
Data Types: double

planetaryGravitional — Planetary gravitational parameter
scalar

Planetary gravitational parameter, specified as a scalar in meters cubed per second squared.
Data Types: double

zonalHarmonicCoeff — Zonal harmonic coefficients
3-element array
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Zonal harmonic coefficients to calculate zonal harmonics planetary gravity, specified as a 3-element
array.
Data Types: double

action — Action
'None' (default) | 'Error' | 'Warning'

Action for out-of-range input, specified as:

• 'Error' — Displays warning and indicates that the input is out of range.
• 'Warning' — Displays error and indicates that the input is out of range.
• 'None' — Does not display warning or error.

Data Types: char | string

Output Arguments
gravityXcoord — Gravity values in the x-axis
array

Gravity values in the x-axis, returned as an array of m gravity values of the planet-centered planet-
fixed coordinates in meters per second squared.

gravityYcoord — Gravity values in the y-axis
array

Gravity values in the y-axis, returned as an array of m gravity values of the planet-centered planet-
fixed coordinates in meters per second squared.

gravityZcoord — Gravity values in the z-axis
array

Gravity values in the z-axis, returned as an array of m gravity values of the planet-centered planet-
fixed coordinates in meters per second squared.

Algorithms
gravityzonal is implemented using the following planetary parameter values for each planet.

Planet Equatorial Radius
(Re) in Meters

Gravitational Parameter
(GM) in m3/s2

Zonal Harmonic Coefficients
(J Values)

Earth 6378.1363e3 3.986004415e14 [ 0.0010826269 -0.0000025323
-0.0000016204 ]

Jupiter 71492.e3 1.268e17 [0.01475 0 -0.00058]
Mars 3397.2e3 4.305e13 [ 0.001964 0.000036 ]
Mercury 2439.0e3 2.2032e13 0.00006
Moon 1738.0e3 4902.799e9 0.0002027
Neptune 24764e3 6.809e15 0.004
Saturn 60268.e3 3.794e16 [0.01645 0 -0.001]
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Planet Equatorial Radius
(Re) in Meters

Gravitational Parameter
(GM) in m3/s2

Zonal Harmonic Coefficients
(J Values)

Uranus 25559.e3 5.794e15 0.012
Venus 6052.0e3 3.257e14 0.000027

References
[1] Vallado, David A. Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.

[2] Fortescue, Peter, Graham Swinerd, and John Stark, eds. Spacecraft Systems Engineering, 3rd ed.
West Sussex: Wiley & Sons, 2003.

[3] Tewari, Ashish. Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB
and Simulink. Boston. Birkhäuser, 2007.

See Also
gravitywgs84 | geoidheight

Introduced in R2009b
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greenwichsrt
Greenwich mean and apparent sidereal times

Note greenwichsrt is not recommended. For replacement functionality, see the siderealTime
function.

Syntax
[thGMST,thGAST] = greenwichSRT(utcJD)
[thGMST,thGAST] = greenwichSRT(utcJD,dUT1,dAT)

Description
[thGMST,thGAST] = greenwichSRT(utcJD) calculates Greenwich mean and apparent sidereal
times at a specific Universal Coordinated Time (UTC). Mean sidereal time accounts only for secular
motion (precession). Apparent sidereal time includes secular and periodic contributions.

[thGMST,thGAST] = greenwichSRT(utcJD,dUT1,dAT)calculates Greenwich mean and apparent
sidereal times at a higher precision using Earth orientation parameters.

Examples

Calculate Greenwich Sidereal Times

Calculate Greenwich sidereal times at 12:00 on January 4, 2019.

jd = juliandate([2019 1 4 12 0 0]);
[thGMST, thGAST] = greenwichSRT(jd)

thGMST =
  283.8103

thGAST =
  283.8065

Input Arguments
utcJD — UTC as Julian date
scalar

Universal Coordinated Time (UTC) as a Julian date, specified as a scalar.

Tip To calculate the Julian date for a particular date, use the juliandate function.

Data Types: double
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dUT1 — Difference between CUT and UT1
0 (default) | scalar

Difference between the Coordinated Universal Time (UTC) and Universal Time (UT1), specified as a
scalar, in seconds.

dAT — Difference between TAI and UTC
0 (default) | scalar

Difference between International Atomic Time (TAI) and Coordinated Universal Time (UTC), specified
as a scalar, in seconds.

Output Arguments
thGMST — Greenwich mean sidereal time
scalar

Greenwich mean sidereal time, specified as a scalar, in seconds.

thGAST — Greenwich apparent sidereal time
scalar

Greenwich apparent sidereal time, specified as a scalar, in seconds.

Limitations
This function requires the Mapping Toolbox™ license.

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. alg. 1 and eqs. 1-63. New York:

McGraw-Hill, 1997.

See Also
ecef2eci | eci2ecef | dcmeci2ecef | CubeSat Vehicle

Introduced in R2019a
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groundStation
Package: matlabshared.satellitescenario

Add ground station to satellite scenario

Syntax
groundStation(scenario)
groundStation(scenario,lat,lon)
groundStation( ___ ,Name,Value)
gs = groundStation( ___ )

Description
groundStation(scenario) adds a default GroundStation object to the specified satellite
scenario.

groundStation(scenario,lat,lon) sets the Latitude and Longitude properties of the ground
station to lat and lon, respectively. lat and lon must be of the same length. This length specifies
the number of ground stations that the function adds to the input scenario. Together, lat and lon
indicate the locations of the ground stations.

groundStation( ___ ,Name,Value) sets options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
'MinElevationAngle',10 specifies a minimum elevation angle of 10 degrees.

gs = groundStation( ___ ) returns a vector of handles to the added ground stations. Specify any
input argument combination from previous syntaxes.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10; 
rightAscensionOfAscendingNode = 0; 
argumentOfPeriapsis = 0; 
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trueAnomaly = 0; 
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
        rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
       Source              Target          IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _____________    __________________    ______________    ____________________    ____________________    ________    __________    ________

    "Satellite 2"    "Ground station 1"          1           01-May-2020 11:36:00    01-May-2020 12:04:00      1680          1            1    
    "Satellite 2"    "Ground station 1"          2           01-May-2020 14:20:00    01-May-2020 15:11:00      3060          1            2    
    "Satellite 2"    "Ground station 1"          3           01-May-2020 17:27:00    01-May-2020 18:18:00      3060          3            3    
    "Satellite 2"    "Ground station 1"          4           01-May-2020 20:34:00    01-May-2020 21:25:00      3060          4            4    
    "Satellite 2"    "Ground station 1"          5           01-May-2020 23:41:00    02-May-2020 00:32:00      3060          5            5    
    "Satellite 2"    "Ground station 1"          6           02-May-2020 02:50:00    02-May-2020 03:39:00      2940          6            6    
    "Satellite 2"    "Ground station 1"          7           02-May-2020 05:59:00    02-May-2020 06:47:00      2880          7            7    
    "Satellite 2"    "Ground station 1"          8           02-May-2020 09:06:00    02-May-2020 09:56:00      3000          8            9    

Play the scenario to visualize the ground stations.

play(sc)
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Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

lat, lon — Latitude and longitude
real-valued scalar | real-valued vector

Latitude and longitude of the ground station, specified as a real-valued scalar or real-valued vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'MinElevationAngle',10 specifies a minimum elevation angle of 10 degrees.

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

Name — groundStation name
"groundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

groundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one groundStation is added, specify Name as a string scalar or a character vector.
• If multiple groundStations are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the groundStation added by the groundStation object
function. If another groundStation of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

Latitude — Geodetic latitude of ground stations
42.3001 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

• If you add only one ground station, specify Latitude as a scalar double.
• If you add multiple ground stations, specify Latitude as a vector double whose length is equal to

the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].
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• If you add only one ground station, specify longitude as a scalar.
• If you add multiple ground stations, specify longitude as a vector whose length is equal to the

number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to groundStation, longitude specified
as a name-value argument takes precedence.
Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Altitude of ground stations, specified as a scalar or a vector.

• If you specify Altitude as a scalar, the value is assigned to each ground station in the
groundStation.

• If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the groundStation.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [–90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

• If you specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
groundStation.

• If you specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the groundStation.

Data Types: double

Output Arguments
gs — Ground station in scenario
GroundStation object

Ground station in the scenario, returned as a GroundStation object belonging to the satellite
scenario specified by the input scenario.

You can modify the GroundStation object by changing its property values. The name-value
arguments used when calling this function correspond to property names.
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See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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GroundStation
Ground station object belonging to satellite scenario

Description
The GroundStation object defines a ground station object belonging to a satellite scenario.

Creation
You can create GroundStation object using the groundStation object function of the
satelliteScenario object.

Properties
Name — GroundStation name
"GroundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

GroundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one GroundStation is added, specify Name as a string scalar or a character vector.
• If multiple GroundStations are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the GroundStation added by the GroundStation object
function. If another GroundStation of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — GroundStation ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

GroundStation ID assigned by the simulator, specified as a positive scalar.

Latitude — Geodetic latitude of ground stations
42.3001 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].
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• If you add only one ground station, specify Latitude as a scalar double.
• If you add multiple ground stations, specify Latitude as a vector double whose length is equal to

the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified
as a name-value argument takes precedence.
Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].

• If you add only one ground station, specify longitude as a scalar.
• If you add multiple ground stations, specify longitude as a vector whose length is equal to the

number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to GroundStation, longitude
specified as a name-value argument takes precedence.
Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Altitude of ground stations, specified as a scalar or a vector.

• If you specify Altitude as a scalar, the value is assigned to each ground station in the
GroundStation.

• If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the GroundStation.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified
as a name-value argument takes precedence.
Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [–90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

• If you specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
GroundStation.
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• If you specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the GroundStation.

Data Types: double

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Access analysis objects, specified as a row vector of Access objects.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the GroundStation, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the GroundStation, specified as the comma-separated pair consisting of
'Gimbals' and a row vector of Gimbal objects.

MarkerColor — Color of marker
[1 0 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of GroundStation label visibility
true or 1 (default) | false or 0

State of GroundStation label visibility, specified as a comma-separated pair consisting of
'ShowLabel' and numerical or logical value of 1 (true) or 0 (false).
Data Types: logical

LabelFontSize — Font size of GroundStation label
15 (default) | positive scalar less than 30

Font size of the GroundStation label, specified as a comma-separated pair consisting of
'LabelFontSize' and a positive scalar less than 30.

LabelFontColor — Font color of GroundStation label
[1,0,0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Font color of the GroundStationlabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.
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For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Object Functions
access Add access analysis objects to satellite scenario
conicalSensor Add conical sensor to satellite scenario
gimbal Add gimbal to satellite or ground station
show Show object in satellite scenario viewer
aer Calculate azimuth angle, elevation angle, and range in NED frame from another

satellite or ground station
hide Hides satellite scenario entity from viewer
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Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10; 
rightAscensionOfAscendingNode = 0; 
argumentOfPeriapsis = 0; 
trueAnomaly = 0; 
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
        rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
       Source              Target          IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _____________    __________________    ______________    ____________________    ____________________    ________    __________    ________

    "Satellite 2"    "Ground station 1"          1           01-May-2020 11:36:00    01-May-2020 12:04:00      1680          1            1    
    "Satellite 2"    "Ground station 1"          2           01-May-2020 14:20:00    01-May-2020 15:11:00      3060          1            2    
    "Satellite 2"    "Ground station 1"          3           01-May-2020 17:27:00    01-May-2020 18:18:00      3060          3            3    
    "Satellite 2"    "Ground station 1"          4           01-May-2020 20:34:00    01-May-2020 21:25:00      3060          4            4    
    "Satellite 2"    "Ground station 1"          5           01-May-2020 23:41:00    02-May-2020 00:32:00      3060          5            5    
    "Satellite 2"    "Ground station 1"          6           02-May-2020 02:50:00    02-May-2020 03:39:00      2940          6            6    
    "Satellite 2"    "Ground station 1"          7           02-May-2020 05:59:00    02-May-2020 06:47:00      2880          7            7    
    "Satellite 2"    "Ground station 1"          8           02-May-2020 09:06:00    02-May-2020 09:56:00      3000          8            9    

Play the scenario to visualize the ground stations.

play(sc)
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See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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groundTrack
Package: matlabshared.satellitescenario

Add ground track object to satellite in scenario

Syntax
groundTrack(sat)
groundTrack( ___ ,Name,Value)

Description
groundTrack(sat) adds ground track visualization for each satellite in sat based on their current
positions. The ground track begins at the scenario StartTime, and ends at the StopTime. The spacing
between samples that make up the ground track visualization is determined by the scenario
SampleTime. If no viewer is open, a new viewer is launched, and the ground track is displayed. If a
viewer is already open, the ground track is added to that viewer. By default, ground tracks will be
displayed in 2-D.

groundTrack( ___ ,Name,Value) adds a groundTrack object by using one or more name-value
pairs. Enclose each property name in quotes.

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);
stopTime = startTime + days(5);
sampleTime = 60;                                       % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.

earthAngularVelocity = 0.0000729211585530;                                             % rad/s
orbitalPeriod = 2*pi/earthAngularVelocity;                                             % seconds
earthStandardGravitationalParameter = 398600.4418e9;                                   % m^3/s^2
semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))^2))^(1/3);

Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;
inclination = 60;                  % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0;           % degrees
trueAnomaly = 0;                   % degrees

Add the geosynchronous satellite to the scenario.
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sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
        argumentOfPeriapsis,trueAnomaly,"OrbitPropagator","two-body-keplerian","Name","GEO Sat");

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600;                                          % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime",leadTime,"TrailTime",trailTime)

gt = 
  GroundTrack with properties:

          LeadTime: 172800
         TrailTime: 172800
         LineWidth: 1
     LeadLineColor: [1 0 1]
    TrailLineColor: [1 0.5000 0]
    VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around
Japan during one half of the day and Australia during the other half.

play(sc);
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Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LeadTime',3600 sets the lead time of the ground track to 3600 seconds upon creation.

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

LeadTime — Period of future ground track to be visualized
StartTime to StopTime (default) | real positive scalar

Period of future ground track to be visualized in Viewer, specified as a comma-separated pair
consisting of 'LeadTime' and a real positive scalar in seconds.
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TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | real positive scalar

Period of ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar

Visual width of ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0,10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TrailLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.
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Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | groundStation | access | hide | satellite

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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GroundTrack
Ground track object belonging to satellite in scenario

Description
The GroundTrack object defines a ground track object belonging to a satellite in a scenario.

Creation
You can create a GroundTrack object using the groundTrack object function of the Satellite
object.

Properties
LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].
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• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TrailLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.
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• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of ground track
'inherit' (default) | 'manual'

Visibility mode of the ground track, specified as either one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent
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• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);
stopTime = startTime + days(5);
sampleTime = 60;                                       % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.

earthAngularVelocity = 0.0000729211585530;                                             % rad/s
orbitalPeriod = 2*pi/earthAngularVelocity;                                             % seconds
earthStandardGravitationalParameter = 398600.4418e9;                                   % m^3/s^2
semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))^2))^(1/3);

Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;
inclination = 60;                  % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0;           % degrees
trueAnomaly = 0;                   % degrees

Add the geosynchronous satellite to the scenario.

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
        argumentOfPeriapsis,trueAnomaly,"OrbitPropagator","two-body-keplerian","Name","GEO Sat");

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
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Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600;                                          % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime",leadTime,"TrailTime",trailTime)

gt = 
  GroundTrack with properties:

          LeadTime: 172800
         TrailTime: 172800
         LineWidth: 1
     LeadLineColor: [1 0 1]
    TrailLineColor: [1 0.5000 0]
    VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around
Japan during one half of the day and Australia during the other half.

play(sc);
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See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | groundStation | access | hide | satellite

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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HeadingIndicator Properties
Control heading indicator appearance and behavior

Description
Heading indicators are components that represent a heading indicator. Properties control the
appearance and behavior of a heading indicator. Use dot notation to refer to a particular object and
property:

f = uifigure;
heading = uiaeroheading(f);
heading.Value = 100;

The heading indicator displays measurements for aircraft heading in degrees.

The heading indicator represents values between 0 and 360 degrees.

Properties
Heading Indicator

Heading — Location of aircraft heading
0 (default) | finite, real, and scalar numeric

Location of the aircraft heading, specified as any finite and scalar numeric, in degrees.

• Changing the value changes the direction of the heading. It displays the exact value.

Example: 60

Dependencies

Specifying this value changes the value of Value.
Data Types: double

Value — Location of aircraft heading
0 (default) | finite, real, and scalar numeric

Location of the aircraft heading, specified as any finite and scalar numeric, in degrees.

• Changing the value changes the direction of the heading.

Example: 60

Dependencies

Specifying this value changes the value of Heading.
Data Types: double
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Interactivity

Visible — Visibility of heading indicator
'on' (default) | on/off logical value

Visibility of the heading indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the heading
indicator, is displayed on the screen. If the Visible property is set to 'off', then the entire heading
indicator is hidden, but you can still specify and access its properties.

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.

Enable — Operational state of header indicator
'on' (default) | on/off logical value

Operational state of header indicator, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the appearance of the header indicator indicates that the
header indicator is operational.

• If you set this property to 'off', then the appearance of the header indicator appears dimmed,
indicating that the header indicator is not operational.

Position

Position — Location and size of header indicator
[100 100 120 120] (default) | [left bottom width height]

Location and size of the header indicator relative to the parent container, specified as the vector,
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the header
indicator

bottom Distance from the inner bottom edge of the parent container to the
outer bottom edge of an imaginary box surrounding the header
indicator

width Distance between the right and left outer edges of the header
indicator

height Distance between the top and bottom outer edges of the header
indicator

All measurements are in pixel units.
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The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of heading indicator
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the heading indicator, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.

OuterPosition — Outer location and size of heading indicator
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the heading indicator returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an heading indicator in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
gauge = uiaeroheading(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the heading indicator span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this heading indicator spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.

 HeadingIndicator Properties

4-575



• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates
this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.
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MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:
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• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.

Identifiers

Type — Type of graphics object
'uiaeroheading'

This property is read-only.
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Type of graphics object, returned as 'uiaeroheading'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

See Also
uiaeroheading

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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hide
Package: matlabshared.satellitescenario

Hides satellite scenario entity from viewer

Syntax
hide(item)
hide(item,v)

Description
hide(item) hides item from all open satellite scenario viewers.

hide(item,v) hides the specified satellite scenario entity on the satellite scenario viewer specified
by v.

Input Arguments
item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, or Access object.
These objects must belong to the same satelliteScenario, object.

v — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects.

See Also
Objects
satellite | satelliteScenarioViewer

Functions
play | show | satelliteScenario | access | groundStation | hideAll | showAll

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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hide
Class: Aero.Animation
Package: Aero

Hide animation figure

Syntax
hide(h)
h.hide

Description
hide(h) and h.hide hide (close) the figure for the animation object h. Use show to redisplay the
animation object figure.

Input Arguments
h Animation object.

Examples
Hide the animation object figure that the show method displays.

h=Aero.Animation;
h.show;
h.hide;
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hideAll
Package: matlabshared.satellitescenario

Hide all graphics in satellite scenario viewer

Syntax
hideAll(viewer)

Description
hideAll(viewer) hides all graphics in the specified satellite scenario viewer.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.8

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget |
access | groundStation | conicalSensor | showAll

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a

8. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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igrfmagm
Calculate Earth magnetic field and secular variation using International Geomagnetic Reference Field

Syntax
[XYZ,H,D,I,F,DXDYDZ,DH,DD,DI,DF] = igrfmagm(height,latitude,longitude,
decimalYear)
[XYZ,H,D,I,F,DXDYDZ,DH,DD,DI,DF] = igrfmagm(height,latitude,longitude,
decimalYear,generation)

Description
[XYZ,H,D,I,F,DXDYDZ,DH,DD,DI,DF] = igrfmagm(height,latitude,longitude,
decimalYear) calculates the Earth magnetic field and the secular variation at a specific location
and time using the International Geomagnetic Reference Field generation 13 (IGRF-13).

[XYZ,H,D,I,F,DXDYDZ,DH,DD,DI,DF] = igrfmagm(height,latitude,longitude,
decimalYear,generation) optionally uses different generations of the International Geomagnetic
Reference Field (IGRF-13, IGRF-12, and IGRF-11).

Examples

Calculate the Magnetic Model

Calculate the magnetic model 1000 meters over Natick, Massachusetts on July 4, 2015 using
IGRF-13.

[XYZ,H,D,I,F] ...
= igrfmagm(1000,42.283,-71.35,decyear(2015,7,4),13)

XYZ =
   1.0e+04 *

    1.9471   -0.5086    4.8177

H =
   2.0124e+04

D =
  -14.6381

I =
   67.3295

F =
   5.2212e+04
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Calculate the Magnetic Model with Matrix inputs

Calculate the magnetic model at 0 and 10000 km over Lawrence, Kansas on May 15, 2018 using
IGRF-13.

h = [0,10000000]
lat = [38.957114,38.957114]
lon = [-95.253997,-95.253997]
dyear = [decyear(2018,5,14), decyear(2018,5,14)]
[XYZ,H,D,I,F] = igrfmagm(h,lat,lon,dyear,13)

h =
           0    10000000

lat =
   38.9571   38.9571

lon =
  -95.2540  -95.2540

dyear =
   1.0e+03 *
    2.0184    2.0184

XYZ =
   1.0e+04 *

    2.0655    0.0783    4.7990
    0.1192    0.0046    0.2571

H =
   1.0e+04 *

    2.0670
    0.1193

D =
    2.1714
    2.1968

I =
   66.6981
   65.1016

F =
   1.0e+04 *

    5.2252
    0.2834

Input Arguments
height — Distance
matrix | scalar | vector

Distance from the surface of the Earth, specified as a matrix, scalar, or vector, in meters.
Data Types: double
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latitude — Geodetic latitude
scalar | vector | matrix

Geodetic latitude, specified as a matrix, scalar, or vector, in degrees. North latitude is positive and
south latitude is negative.

This function accepts latitude values greater than 90 and less than -90.
Data Types: double

longitude — Geodetic longitude
matrix | scalar | vector

Geodetic longitude specified as a matrix, scalar, or vector, in degrees. East longitude is positive and
west longitude is negative. This function accepts ranges greater than 180 and less than -180.
Data Types: double

decimalYear — Year
matrix | scalar | vector

Year, in decimal format, specified as a matrix. This value can have any fraction of the year that has
already passed.
Data Types: double

generation — Generation version of International Geomagnetic Reference Field
13 (default) | 12 | 11 | scalar numeric

Generation version of the International Geomagnetic Reference Field, specified as 13, 12, or 11.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Output Arguments
XYZ — Magnetic field vector
vector | matrix

Magnetic field vector, in nanotesla (nT), returned as a vector or matrix the same size as the input
matrix with an additional dimension, the last dimension. The last dimension of the matrix is of size 3,
specifying the X, Y, and Z components of the magnetic field. Z is the vertical component (+ve down).
The components of this vector are in the north-east-down (NED) reference frame.
Data Types: double

H — Horizontal intensity
scalar | vector | matrix

Horizontal intensity, returned as a scalar, vector, or matrix, in nanotesla (nT), the same size as the
input matrix.
Data Types: double

D — Declination
scalar | vector | matrix
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Declination, returned as a scalar, in degrees (+ve east), the same size as the input matrix.
Data Types: double

I — Inclination
scalar | vector | matrix

Inclination, returned as a scalar, in degrees (+ve down), the same size as the input matrix.
Data Types: double

F — Total intensity
scalar | vector | matrix

Total intensity, returned as a scalar, in nanotesla (nT), the same size as the input matrix.
Data Types: double

DXDYDZ — Secular variation in magnetic field vector
vector | matrix

Secular variation in magnetic field vector, returned as a vector or matrix, in nT/year, the same size
ans the input matrix with an additional dimension, the last dimension. The last dimension of the
matrix is of size 3, specifying the X, Y, and Z components of the magnetic field. Z is the vertical
component (+ve down).
Data Types: double

DH — Secular variation in horizontal intensity
scalar | vector | matrix

Secular variation in horizontal intensity, in nT/year, returned as a scalar, the same size as the input
matrix.
Data Types: double

DD — Secular variation in declination
scalar | vector | matrix

Secular variation in declination, in minutes/year (+ve east), returned as a scalar, the same size as the
input matrix.
Data Types: double

DI — Secular variation in inclination
scalar | vector | matrix

Secular variation in inclination, in minutes/year (+ve down), returned as a scalar, the same size as the
input matrix.
Data Types: double

DF — Secular variation in total intensity
scalar | vector | matrix

Secular variation in total intensity, in nT/year, returned as a scalar, the same size as the input matrix.
Data Types: double
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Limitation
• This function is valid for these year ranges:

• IGRF-13 model — 1900 and 2025
• IGRF-12 model — 1900 and 2020
• IGRF-11 model — 1900 and 2015

• This function is valid between the heights of -1000 m and 5.6 Earth radii (35,717,567.2 m).
• The height, latitude, longitude, and decimalYear arguments must all be the same size

(matrix, scalar, and so forth).

This function has the limitations of the International Geomagnetic Reference Field (IGRF). For more
information, see the IGRF website, https://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html.

References
[1] Blakely, R. J. Potential Theory in Gravity & Magnetic Applications. Cambridge, UK: Cambridge

University Press, 1996.

[2] Lowes, F. J. “The International Geomagnetic Reference Field: A 'Health' Warning.” January, 2010.
https://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html.

See Also
decyear | wrldmagm

External Websites
https://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html

Introduced in R2015b
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ijk2keplerian
Keplerian orbit elements using position and velocity vectors

Syntax
[a,ecc,incl,RAAN,argp,nu,truelon,arglat,lonper] = ijk2keplerian(r_ijk, v_ijk)

Description
[a,ecc,incl,RAAN,argp,nu,truelon,arglat,lonper] = ijk2keplerian(r_ijk, v_ijk)
calculates Keplerian orbit elements for given position and velocity vectors in the geocentric
equatorial coordinate system.

Examples

Convert IJK Position and Velocity

Convert the geocentric equatorial coordinate system (IJK) position and velocity to Keplerian orbital
elements.

r_ijk = [-2981784 5207055 3161595];
  v_ijk = [-3384 -4887 4843];
  [a, ecc, incl, RAAN, argp, nu, truelon, arglat, lonper] =...
   ijk2keplerian(r_ijk, v_ijk)

a =
   6.7845e+06

ecc =
   9.1950e-04

incl =
   51.7528

RAAN =
   95.2570

argp =
  106.4005

nu =
  290.0096

truelon =
   NaN

arglat =
   NaN
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lonper =
   NaN

Input Arguments
r_ijk — Position component
0 (default) | 3-by-1 array

Geocentric equatorial position components, specified as a 3-by-1 array, in meters.
Data Types: double

v_ijk — Velocity component
0 (default) | 3-by-1 array

Geocentric equatorial velocity components, specified as a 3-by-1 array, in m/s.
Data Types: double

Output Arguments
a — Semi-major axis
scalar

Semimajor axis (half of the longest diameter) of the orbit, returned as a scalar, in meters.
Data Types: double

ecc — Orbit eccentricity
scalar value greater than or equal to 0

Orbit eccentricity (deviation of orbital curve from circular), returned as a scalar.
Data Types: double

incl — Inclination
scalar value from 0 to 180

Inclination (tilt angle) of the orbit, in degrees.
Data Types: double

RAAN — Right ascension of ascending node
scalar value from 0 to 360

Angle in the equatorial plane from the x-axis to the location of the ascending node (point at which the
satellite crosses the equator from south to north), in degrees.
Data Types: double

argp — Angle between CubeSat ascending node and periapsis
scalar value from 0 to 360

Angle between the CubeSat ascending node and periapsis (closest point of orbit to Earth), in degrees.
Data Types: double
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nu — Angle between periapsis and current position of CubeSat
scalar value from 0 to 360

Angle between periapsis and current position of CubeSat, in degrees.
Data Types: double

truelon — Angle between x-axis and CubeSat position vector
scalar value from 0 to 360

Angle between the x-axis and CubeSat position vector, in degrees.
Data Types: double

arglat — Angle between ascending node and CubeSat position vector
scalar value from 0 to 360

Angle between the ascending node and the CubeSat position vector, in degrees.
Data Types: double

lonper — Angle between x-axis and eccentricity vector
scalar value from 0 to 360

Angle between the x-axis and the eccentricity vector, in degrees.
Data Types: double

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. alg. 5. McGraw-Hill, 1997.

See Also
ecef2eci | eci2ecef | dcmeci2ecef | aeroReadIERSData | deltaCIP | polarMotion |
deltaUT1 | keplerian2ijk | siderealTime | CubeSat Vehicle

Introduced in R2019a
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initialize
Class: Aero.Animation
Package: Aero

Create animation object figure and axes and build patches for bodies

Syntax
initialize(h)
h.initialize

Description
initialize(h) and h.initialize create a figure and axes for the animation object h, and builds
patches for the bodies associated with the animation object. If there is an existing figure, this
function

1 Clears out the old figure and its patches.
2 Creates a new figure and axes with default values.
3 Repopulates the axes with new patches using the surface to patch data from each body.

Input Arguments
h Animation object.

Examples
Initialize the animation object, h.

h = Aero.Animation;
h.initialize();

 initialize
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initialize (Aero.FlightGearAnimation)
Set up FlightGear animation object

Syntax
initialize(h)
h.initialize

Description
initialize(h) and h.initialize set up the FlightGear version, IP address, and socket for the
FlightGear animation object h.

Examples
Initialize the animation object, h.

h = Aero.FlightGearAnimation;
h.initialize();

See Also
delete | play | GenerateRunScript | update

Introduced in R2007a
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initialize (Aero.VirtualRealityAnimation)
Create and populate virtual reality animation object

Syntax
initialize(h)
h.initialize

Description
initialize(h) and h.initialize create a virtual reality animation world and populate the
virtual reality animation object h. If a previously initialized virtual reality animation object exists, and
that object has user-specified data, this function saves the previous object to be reset after the
initialization.

Examples
Initialize the virtual reality animation object, h.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();

See Also
delete | play

Introduced in R2007b
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initIfNeeded
Class: Aero.Animation
Package: Aero

Initialize animation graphics if needed

Syntax
initIfNeeded(h)
h.initIfNeeded

Description
initIfNeeded(h) and h.initIfNeeded initialize animation object graphics if necessary.

Input Arguments
h Animation object.

Examples
Initialize the animation object graphics of h as needed.

h=Aero.Animation;
h.initIfNeeded;

4 Functions

4-594



juliandate
Julian date calculator

Syntax
jd = juliandate(dateVector)
jd = juliandate(dateCharacterVector,format)

jd = juliandate(year,month,day)
dy = juliandate([year,month,day])
jd = juliandate(year,month,day,hour,minute,second)
dy = juliandate([year,month,day,hour,minute,second])

Description
jd = juliandate(dateVector) converts one or more date vectors, dateVector, to Julian date,
jd.

jd = juliandate(dateCharacterVector,format) converts one or more date character
vectors, dateCharacterVector, to Julian date, jd, using format format.

jd = juliandate(year,month,day) and dy = juliandate([year,month,day]) return the
Julian date for corresponding elements of the year,month,day arrays.

jd = juliandate(year,month,day,hour,minute,second) and dy = juliandate([year,
month,day,hour,minute,second]) return the Julian date for corresponding elements of the
year,month,day,hour,minute,second arrays. Specify the six arguments as one-dimensional
arrays of the same length or scalar values.

Examples

Calculate Julian Date Using Date Character Version and dd-mm-yyyy Format

Calculate Julian date for May 24, 2005 using date character version and dd-mm-yyyy format:

jd = juliandate('24-May-2005','dd-mmm-yyyy')

jd =
   2.4535e+06

Calculate Julian Date Using Year, Month, and Day Inputs

Calculate Julian date for December 19, 2006 from year, month, and day inputs:

jd = juliandate(2006,12,19)
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jd =
   2.4541e+06

Calculate Julian Date from Year, Month, Day, Hour, Minute, and Second Inputs

Calculate Julian date for October 10, 2004, at 12:21:00 p.m. from year, month, day, hour, month, and
second inputs:

jd = juliandate(2004,10,10,12,21,0)

jd =
  2.4533e+006

Input Arguments
dateVector — Full or partial date vector
m-by-6 matrix | m-by-3 matrix | positive double-precision number

Full or partial date vector, specified as an m-by-6 or m-by-3 matrix containing m full or partial date
vectors, respectively:

• Full date vector — Contains six elements specifying the year, month, day, hour, minute, and second
• Partial date vector — Contains three elements specifying the year, month, and day

Data Types: double

dateCharacterVector — Date character vector
character array | one-dimensional cell array of character vectors

Date character vector, specified as a character array, where each row corresponds to one date, or a
one-dimensional cell array of character vectors.
Data Types: char | string

format — Date format
-1 (default) | character vector | string scalar | integer

Date format, specified as a character vector, string scalar, or integer. All dates in
dateCharacterVector must have the same format and use the same date format symbols as the
datenum function.

juliandate does not accept formats containing the letter Q.

If the format does not contain enough information to compute a date number, then:

• Hours, minutes, and seconds default to 0.
• Days default to 1.
• Months default to January.
• Years default to the current year.

Data Types: char | string
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year — Year
current year (default) | scalar | one-dimensional array

Year, specified as a scalar or one-dimensional array.

Dates with two character years are interpreted to be within 100 years of the current year.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: char | string

month — Month
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | one-dimensional array

Month, specified as a scalar or one-dimensional array from 1 to 12.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

day — Day
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | one-dimensional array

Day, specified as a scalar or one-dimensional array from 1 to 31.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

hour — Date format
0 (default) | double, whole number, 0 to 24

Hour, specified as a scalar from 0 to 24.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

minute — Minute
0 (default) | double, whole number, 0 to 60

Minute, specified as a double, whole number from 0 to 60.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
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Data Types: double

second — Second
0 (default) | double, whole number, 0 to 60

Second, specified as a double, whole number from 0 to 60.

Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

Output Arguments
jd — Julian date
m-by-6 column vector | m-by-3 column vector

Julian date, returned as a column vector of m Julian dates, which are the number of days and
fractions since noon Universal Time on January 1, 4713 BCE.

• m-by-6 column vector — Contains six elements specifying the year, month, day, hour, minute, and
second

• m-by-3 column vector — Contains three elements specifying the year, month, and day

Dependencies

The output format depends on the input format:

Input Syntax dy Format
jd = juliandate(dateVector) m-by-6 column vector or m-by-3 column vector of

m Julian dates.
jd =
juliandate(dateCharacterVector,format)

Column vector of m Julian dates, where m is the
number of character vectors in
dateCharacterVector.

Limitations
The calculation of Julian date does not take into account leap seconds.

See Also
decyear | leapyear | mjuliandate | datenum | datestr

Introduced in R2006b
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keplerian2ijk
Position and velocity vectors in geocentric equatorial coordinate system using Keplerian orbit
elements

Syntax
[r_ijk,v_ijk] = keplerian2ijk(a,ecc,incl,RAAN,argp,nu)
[r_ijk,v_ijk] = keplerian2ijk( ___ ,Name,Value)

Description
[r_ijk,v_ijk] = keplerian2ijk(a,ecc,incl,RAAN,argp,nu) calculates the position and
velocity vectors in the geocentric equatorial coordinate system (IJK) for given Keplerian orbit
elements of noncircular, inclined orbits.

[r_ijk,v_ijk] = keplerian2ijk( ___ ,Name,Value) specifies orbit element properties using
one or more name-value pair arguments. For example, 'truelon','17' specifies the angle between
the x-axis and CubeSat position vector. Specify name-value pair arguments after all other input
arguments.

Examples

Convert Keplerian Orbital Elements

Convert Keplerian orbital elements to geocentric equatorial coordinate system (IJK) position and
velocity.

a = 6786230;
ecc = .01;
incl = 52;
RAAN = 95;
argp = 93;
nu = 300;
[r_ijk, v_ijk] = keplerian2ijk(a, ecc, incl, RAAN, argp, nu)

r_ijk =
   1.0e+06 *
   -2.7489
    5.4437
    2.8977

v_ijk =
   1.0e+03 *
   -3.5694
   -4.5794
    5.0621
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Convert Keplerian Orbital Elements for Equatorial Orbit

Convert Keplerian orbital elements to geocentric equatorial coordinate system (IJK) position and
velocity for equatorial orbit.

a = 6786230;
ecc = .1;
incl = 0;
RAAN = 95;
argp = 93;
nu = 300;
lonper = 45;
[r_ijk, v_ijk] = keplerian2ijk(a, ecc, incl, RAAN, argp, nu, 'lonper', lonper)

r_ijk =

   1.0e+06 *
    6.1804
   -1.6560
         0

v_ijk =

   1.0e+03 *
    1.4489
    7.9848
         0

Input Arguments
a — Semi-major axis
scalar

Semimajor axis (half of the longest diameter) of the orbit, specified as a scalar, in meters.
Data Types: double

ecc — Orbit eccentricity
0 (default) | scalar value greater than or equal to 0

Orbit eccentricity (deviation of orbital curve from circular), specified as a scalar.
Data Types: double

incl — Inclination
0 (default) | scalar value from 0 to 180

Inclination (tilt angle) of the orbit, in degrees.
Data Types: double

RAAN — Right ascension of ascending node
0 (default) | scalar value from 0 to 360

Angle in the equatorial plane from the x-axis to the location of the ascending node, point at which the
satellite crosses the equator from south to north, in degrees. The function does not use this value for
equatorial orbits.
Data Types: double
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argp — Angle between CubeSat ascending node and periapsis
0 (default) | scalar value from 0 to 360

Angle between the CubeSat ascending node and the periapsis (closest point of orbit to Earth), in
degrees. The function does not use this value for circular and equatorial orbits.
Data Types: double

nu — Angle between periapsis and current position of CubeSat
0 (default) | scalar value from 0 to 360

Angle between the periapsis and the current position of CubeSat, in degrees. The function does not
use this value for circular orbits.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 45

truelon — Angle between x-axis and CubeSat position vector
0 (default) | scalar value from 0 to 360

Angle between the x-axis and the CubeSat position vector, in degrees. The function uses this value
only for circular equatorial orbits (where eccentricity and inclination are zero).
Data Types: double

arglat — Angle between ascending node and CubeSat position vector
0 (default) | scalar value from 0 to 360

Angle between the ascending node and the CubeSat position vector, in degrees. The function uses
this value only for circular inclined orbits (where eccentricity is zero and inclination is nonzero).
Data Types: double

lonper — Angle between x-axis and eccentricity vector
0 | scalar value from 0 to 360

Angle between the x-axis and the eccentricity vector, in degrees. The function uses this value only for
noncircular equatorial orbits (where eccentricity is nonzero and inclination is zero).
Data Types: double

Output Arguments
r_ijk — Position component
3-by-1 array

Geocentric equatorial position components, returned as a 3-by-1 array, in meters.

v_ijk — Velocity component
3-by-1 array
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Geocentric equatorial velocity components, returned as a 3-by-1 array, in m/s.

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. alg. 5. McGraw-Hill, 1997.

See Also
ecef2eci | eci2ecef | dcmeci2ecef | aeroReadIERSData | deltaCIP | polarMotion |
deltaUT1 | ijk2keplerian | keplerian2ijk | siderealTime | CubeSat Vehicle

Introduced in R2019a
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leapyear
Determine leap year

Syntax
leapyear = leapyear(year)

Description
leapyear = leapyear(year) determines whether one or more years are leap years.

Examples

Determine if 2005 is Leap Year

Determine whether 2005 is a leap year.

ly = leapyear(2005)

ly =
  logical

   0

Determine if Array of Years are Leap Years

Determine if 2000, 2005, and 2020 are leap years.

ly = leapyear([2000 2005 2020])

ly =
  1×3 logical array

   1   0   1

Input Arguments
year — Year
scalar | array | numeric

Year to be evaluated, specified as an array or scalar. The function floors non-integer values to the
nearest integer value.
Data Types: double
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Output Arguments
leapyear — Leap year determination
scalar | array | logical value

Leap year determination, returned as a scalar or array as a logical value.

Limitations
The determination of leap years is done by Gregorian calendar rules.

See Also
decyear | juliandate | mjuliandate | tdbjuliandate

Introduced in R2006b
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linearize
Class: Aero.FixedWing
Package: Aero

Return linear state-space model

Syntax
linsys = linearize(aircraft,state)
linsys = linearize( ___ ,Name,Value)

Description
linsys = linearize(aircraft,state) returns a linear state-space representation of a fixed-
wing aircraft linearized around a point given by state.

linsys = linearize( ___ ,Name,Value) returns the linear system using additional options
specified by one or more Name,Value pair arguments.

Input Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, specified as a scalar.

state — Aero.FixedWing.State object
scalar

Aero.FixedWing.State object, specified as a scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RelativePerturbation','1e-5'

RelativePerturbation — Relative perturbation
1e-5 (default) | scalar numeric

Relative perturbation of the system, specified as a scalar numeric. This perturbation takes the form
of:

Perturbation Type Definition
System State perturbation statePert = RelativePerturbation

+1e-3*RelativePerturbation*|baseValue|
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Perturbation Type Definition
System input perturbation ctrlPert = RelativePerturbation

+1e-3*RelativePerturbation*|baseValue|

To calculate the Jacobian of the system, linearize uses the result of these equations in conjunction
with the DifferentialMethod property.
Example: 'RelativePerturbation',1e-5
Data Types: double

DifferentialMethod — Direction while perturbing model
'Forward' (default) | 'Backward' | 'Ceentral'

Direction while perturbing model, specified as:

Direction Description
'Forward' Forward difference method that adds statePert

and ctrlPert to the base states and inputs,
respectively.

'Backward' Backward difference method that adds
statePert and ctrlPert to the base states an
inputs, respectively.

'Central' Central difference method that adds and
subtracts statePert and ctrlPert to and from
the base states and inputs, respectively.

Example: 'DifferentialMethod','Backward'
Data Types: char | string

Output Arguments
linsys — Linear state-space model
scalar

Linear state-space model, returned as a scalar. The inputs and outputs of the state-space model
depend on the degrees of freedom of the fixed-wing model and the number of control states on the
model.

Examples

Calculate Linear State-Space Model

Calculate the linear state-space model of a Cessna 182 during cruise.

[C182, CruiseState] = astC182();
linSys = linearize(C182, CruiseState)

linSys =
 
  A = 
                       XN          XE          XD           U           V           W
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   XN                   0           0           0           1           0           0
   XE                   0           0           0           0           1           0
   XD                   0           0           0           0           0           1
   U                    0           0           0    -0.02574  -6.661e-10     0.08865
   V                    0           0           0           0     -0.1873           0
   W                    0           0           0     -0.2926  -7.183e-09      -2.115
   P                    0           0           0           0     -0.1375           0
   Q                    0           0           0     0.01265   3.331e-10    -0.07866
   R                    0           0           0           0     0.04268           0
   RollAngle            0           0           0           0           0           0
   PitchAngle           0           0           0           0           0           0
   YawAngle             0           0           0           0           0           0
 
                        P           Q           R   RollAngle  PitchAngle    YawAngle
   XN                   0           0           0           0     -0.0011     -0.0011
   XE                   0           0           0           0           0       220.1
   XD                   0           0           0           0      -220.1           0
   U                    0           0           0           0       -32.2           0
   V               -7.867           0      -197.7        32.2           0           0
   W                    0        -189           0   -0.000161   -0.000161           0
   P               -158.7           0       26.16           0           0           0
   Q                    0        -388           0           0           0           0
   R                -4.37           0      -14.87           0           0           0
   RollAngle            1           0           0           0           0           0
   PitchAngle           0           1           0           0           0           0
   YawAngle             0           0           1           0           0           0
 
  B = 
                 Aileron   Elevator     Rudder  Propeller
   XN                  0          0          0          0
   XE                  0          0          0          0
   XD                  0          0          0          0
   U                   0          0          0       2215
   V                   0      19.62          0          0
   W                   0          0     -45.11          0
   P               75.07      4.819          0          0
   Q                   0          0     -42.84          0
   R              -7.963     -12.78          0          0
   RollAngle           0          0          0          0
   PitchAngle          0          0          0          0
   YawAngle            0          0          0          0
 
  C = 
                       XN          XE          XD           U           V           W
   XN                   1           0           0           0           0           0
   XE                   0           1           0           0           0           0
   XD                   0           0           1           0           0           0
   U                    0           0           0           1           0           0
   V                    0           0           0           0           1           0
   W                    0           0           0           0           0           1
   P                    0           0           0           0           0           0
   Q                    0           0           0           0           0           0
   R                    0           0           0           0           0           0
   RollAngle            0           0           0           0           0           0
   PitchAngle           0           0           0           0           0           0
   YawAngle             0           0           0           0           0           0
 
                        P           Q           R   RollAngle  PitchAngle    YawAngle
   XN                   0           0           0           0           0           0
   XE                   0           0           0           0           0           0
   XD                   0           0           0           0           0           0
   U                    0           0           0           0           0           0
   V                    0           0           0           0           0           0
   W                    0           0           0           0           0           0
   P                    1           0           0           0           0           0
   Q                    0           1           0           0           0           0
   R                    0           0           1           0           0           0
   RollAngle            0           0           0           1           0           0
   PitchAngle           0           0           0           0           1           0
   YawAngle             0           0           0           0           0           1
 
  D = 
                 Aileron   Elevator     Rudder  Propeller
   XN                  0          0          0          0
   XE                  0          0          0          0
   XD                  0          0          0          0
   U                   0          0          0          0
   V                   0          0          0          0
   W                   0          0          0          0
   P                   0          0          0          0
   Q                   0          0          0          0
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   R                   0          0          0          0
   RollAngle           0          0          0          0
   PitchAngle          0          0          0          0
   YawAngle            0          0          0          0
 
Continuous-time state-space model.

See Also
Aero.FixedWing | forcesAndMoments | nonlinearDynamics | staticStability

Introduced in R2021a
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lla2ecef
Convert geodetic coordinates to Earth-centered Earth-fixed (ECEF) coordinates

Syntax
ecef = lla2ecef(lla)
ecef = lla2ecef(lla,model)
ecef = lla2ecef(lla,f,Re)

Description
ecef = lla2ecef(lla) converts an m-by-3 array of geodetic coordinates (latitude, longitude and
altitude), lla, to an m-by-3 array of ECEF coordinates, ecef.

ecef = lla2ecef(lla,model) converts the coordinates for a specific ellipsoid planet.

ecef = lla2ecef(lla,f,Re) converts the coordinates for a custom ellipsoid planet defined by
flattening, f, and the equatorial radius, Re, in meters.

Examples

Determine ECEF Coordinates at Latitude, Longitude, and Altitude

Determine ECEF coordinates at a latitude, longitude, and altitude:

p = lla2ecef([0 45 1000])

p =
   1.0e+06 *

    4.5107    4.5107         0

Determine ECEF Coordinates at Multiple Latitudes, Longitudes, and Altitudes with WGS84
Ellipsoid Model

Determine ECEF coordinates at multiple latitudes, longitudes, and altitudes using the WGS84
ellipsoid model:

p = lla2ecef([0 45 1000; 45 90 2000], 'WGS84')

p =
   1.0e+06 *

    4.5107    4.5107         0
         0    4.5190    4.4888
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Determine ECEF Coordinates at Multiple Latitudes, Longitudes, and Altitudes with Custom
Ellipsoid Model

Determine ECEF coordinates at multiple latitudes, longitudes, and altitudes using the custom
ellipsoid model:

f = 1/196.877360;
Re = 3397000;
p = lla2ecef([0 45 1000; 45 90 2000], f, Re)

p =
   1.0e+06 *

    2.4027    2.4027         0
         0    2.4096    2.3852

Input Arguments
lla — Geodetic coordinates
m-by-3 array

Geodetic coordinates (latitude, longitude and altitude), specified as an m-by-3 array in [degrees
degrees meters]. Latitude and longitude values can be any value. However, latitude values of +90 and
-90 may return unexpected values because of singularity at the poles. Altitude is above the planetary
ellipsoid.
Data Types: double

model — Ellipsoid planet model
'WGS84' (default)

Ellipsoid planet model, specified as 'WGS84'.
Data Types: char | string

f — Flattening
scalar

Flattening at each pole, specified as a scalar.
Data Types: double

Re — Planetary equatorial radius
scalar

Equatorial radius, specified as a scalar, in meters.
Data Types: double

Output Arguments
ecef — ECEF coordinates
m-by-3 array | vector

ECEF coordinates, returned as an m-by-3 array of ECEF coordinates.
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See Also
ecef2lla | geoc2geod | geod2geoc

Introduced in R2006b
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lla2eci
Convert geodetic latitude, longitude, altitude (LLA) coordinates to Earth-centered inertial (ECI)
coordinates

Syntax
position = lla2eci(lla,utc)

position = lla2eci(lla,utc,reduction)
position = lla2eci(lla,utc,reduction,deltaAT)
position = lla2eci(lla,utc,reduction,deltaAT,deltaUT1)
position = lla2eci(lla,utc,reduction,deltaAT,deltaUT1,polarmotion)
position = lla2eci(lla,utc,reduction,deltaAT,deltaUT1,polarmotion,Name,Value)

Description
position = lla2eci(lla,utc) converts geodetic latitude, longitude, altitude (LLA) coordinates
to Earth-centered inertial (ECI) position coordinates as an M-by-3 array. The conversion is based on
the Universal Coordinated Time (UTC) you specify.

position = lla2eci(lla,utc,reduction) converts geodetic latitude, longitude, altitude (LLA)
coordinates to Earth-centered inertial (ECI) position coordinates as an M-by-3 array. The conversion
is based on the specified reduction method and the Universal Coordinated Time (UTC) you specify.

position = lla2eci(lla,utc,reduction,deltaAT) uses the difference between International
Atomic Time and UTC that you specify as deltaAT to calculate the ECI coordinates.

position = lla2eci(lla,utc,reduction,deltaAT,deltaUT1) uses the difference between
UTC and Universal Time (UT1), which you specify as deltaUT1, in the calculation.

position = lla2eci(lla,utc,reduction,deltaAT,deltaUT1,polarmotion) uses the polar
displacement, polarmotion, in the calculation.

position = lla2eci(lla,utc,reduction,deltaAT,deltaUT1,polarmotion,Name,Value)
uses additional options specified by one or more Name,Value pair arguments.

Examples

Convert Position to ECI Coordinates Using UTC

Convert the position to ECI coordinates from LLA coordinates 6 degrees north, 75 degrees west, and
1000 meters altitude at 01/17/2010 10:20:36 UTC.

position = lla2eci([6 -75 1000],[2010 1 17 10 20 36])

position=

   1.0e+06 *
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   -6.0744   -1.8289    0.6685

Convert Position to ECI coordinates Using UTC and Reduction Method IAU-76/FK5

Convert the position to ECI coordinates from LLA coordinates 55 deg south, 75 deg west, and 500
meters altitude at 01/12/2000 4:52:12.4 UTC. Specify all arguments, including optional ones such as
polar motion.

position = lla2eci([-55 -75 500],[2000 1 12 4 52 12.4],...
'IAU-76/FK5',32,0.234,[-0.0682e-5 0.1616e-5],...
'dNutation',[-0.2530e-6 -0.0188e-6],...
'flattening',1/290,'RE',60000)

position=

   1.0e+04 *

   -1.1358    3.2875   -4.9333

Input Arguments
lla — Latitude, longitude, altitude (LLA) coordinates
M-by-3 array

Latitude, longitude, altitude (LLA) coordinates as M-by-3 array of geodetic coordinates, in degrees,
degrees, and meters, respectively. Latitude and longitude values can be any value. However, latitude
values of +90 and -90 may return unexpected values because of singularity at the poles.

utc — Universal Coordinated Time
1-by-6 array | M-by-6 matrix

Universal Coordinated Time (UTC), in the order year, month, day, hour, minutes, and seconds, for
which the function calculates the conversion, specified as one of the following.

• For the year value, enter a double value that is a whole number greater than 1, such as 2013.
• For the month value, enter a double value that is a whole number greater than 0, within the range

1 to 12.
• For the hour value, enter a double value that is a whole number greater than 0, within the range 1

to 24.
• For the hour value, enter a double value that is a whole number greater than 0, within the range 1

to 60.
• For the minute and second values, enter a double value that is a whole number greater than 0,

within the range 1 to 60.

Specify these values in one of the following formats:

• 1-by-6 array

Specify a 1-row-by-6-column array of UTC values.
• M-by-6 matrix
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Specify an M-by-6 array of UTC values, where M is the number of transformation matrices to
calculate. Each row corresponds to one set of UTC values.

This is a one row-by-6 column array of UTC values.
Example: [2000 1 12 4 52 12.4]

This is an M-by-6 array of UTC values, where M is 2.
Example: [2000 1 12 4 52 12.4;2010 6 5 7 22 0]
Data Types: double

reduction — Reduction method
'IAU-2000/2006' (default) | 'IAU-76/FK5'

Reduction method to calculate the coordinate conversion, specified as one of the following:

• 'IAU-76/FK5'

Reduce the calculation using the International Astronomical Union (IAU)-76/Fifth Fundamental
Catalogue (FK5) (IAU-76/FK5) reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5. You can use the 'dNutation' Name,Value pair with
this reduction.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, lla2eci performs a coordinate conversion that is not orthogonal
because of the polar motion approximation.

• 'IAU-2000/2006'

Reduce the calculation using the International Astronomical Union (IAU)-2000/2005 reference
system. Choose this reduction method if the reference coordinate system for the conversion is
IAU-2000. This reduction method uses the P03 precession model to reduce the calculation. You
can use the 'dCIP' Name,Value pair with this reduction.

deltaAT — Difference between International Atomic Time and UTC
M-by-1 array of zeroes (default) | scalar | one-dimensional array

Difference between International Atomic Time (IAT) and UTC, in seconds, for which the function
calculates the coordinate conversion.

• scalar

Specify one difference-time value to calculate one direction cosine or transformation matrix.
• one-dimensional array

Specify a one-dimensional array with M elements, where M is the number of ECI coordinates.
Each row corresponds to one set of ECI coordinates.

Specify 32 seconds as the difference between IAT and UTC.
Example: 32
Data Types: double
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deltaUT1 — Difference between UTC and Universal Time (UT1)
M-by-1 array of zeroes (default) | scalar | one-dimensional array

Difference between UTC and Universal Time (UT1), in seconds, for which the function calculates the
coordinate conversion.

• scalar

Specify one difference-time value to calculate ECI coordinates.
• one-dimensional array

Specify a one-dimensional array with M elements of difference time values, where M is the
number of ECI coordinates. Each row corresponds to one set of ECI coordinates.

Specify 0.234 seconds as the difference between UTC and UT1.
Example: 0.234
Data Types: double

polarmotion — Polar displacement
M-by-2 array of zeroes (default) | 1-by-2 array | M-by-2 array

Polar displacement of the Earth, in radians, from the motion of the Earth crust, along the x- and y-
axes.

• 1-by-2 array

Specify a 1-by-2 array of the polar displacement values to convert one ECI coordinate.
• M-by-2 array

Specify an M-by-2 array of polar displacement values, where M is the number of ECI coordinates
to convert. Each row corresponds to one set of UTC values.

Example: [-0.0682e-5 0.1616e-5]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'dNutation',[-0.2530e-6 -0.0188e-6]

dNutation — Adjustment to longitude (dDeltaPsi) and obliquity (dDeltaEpsilon)
M-by-2 array of zeroes (default) | M-by-2 array

Adjustment to the longitude (dDeltaPsi) and obliquity (dDeltaEpsilon), specified in radians, as the
comma-separated pair consisting of dNutation and an M-by-2 array. You can use this Name,Value
pair with the IAU-76/FK5 reduction.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.
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• M-by-2 array

Specify M-by-2 array of adjustment values, where M is the number of LLA coordinates to be
converted. Each row corresponds to one set of longitude and obliquity values.

Data Types: double

dCIP — Adjustment to the location of the celestial intermediate pole (CIP)
M-by-2 array of zeroes (default) | M-by-2 array

Adjustment to the location of the Celestial Intermediate Pole (CIP), in radians, specified as the
comma-separated pair consisting of dCIP and an M-by-2 array. This location (dDeltaX, dDeltaY) is
along the x- and y- axes. You can use this argument with the IAU-200/2006 reduction. By default, this
function assumes an M-by-2 array of zeroes.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of location adjustment values, where M is the number of LLA coordinates to
be converted. Each row corresponds to one set of dDeltaX and dDeltaY values.

Example: 'dcip',[-0.2530e-6 -0.0188e-6]
Data Types: double

flattening — Custom ellipsoid planet
1-by-1 array

Custom ellipsoid planet defined by flattening.
Example: 1/290
Data Types: double

re — Custom planet ellipsoid radius
1-by-1 array

Custom planet ellipsoid radius, in meters.
Example: 60000
Data Types: double

See Also
dcmeci2ecef | ecef2lla | eci2lla | geoc2geod | geod2geoc | lla2ecef

Introduced in R2014a
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lla2flat
Convert from geodetic latitude, longitude, and altitude to flat Earth position

Syntax
flatearth_pos = lla2flat(lla,llo,psio,href)
flatearth_pos = lla2flat(lla,llo,psio,href,ellipsoidModel)
flatearth_pos = lla2flat(lla,llo,psio,href,flattening,equatorialRadius)

Description
flatearth_pos = lla2flat(lla,llo,psio,href) estimates an array of flat Earth coordinates,
flatearth_pos, from an array of geodetic coordinates, lla. This function estimates the
flatearth_pos value with respect to a reference location that you define with llo, psio, and
href.

flatearth_pos = lla2flat(lla,llo,psio,href,ellipsoidModel) estimates the
coordinates for a specific ellipsoid planet.

flatearth_pos = lla2flat(lla,llo,psio,href,flattening,equatorialRadius)
estimates the coordinates for a custom ellipsoid planet defined by flattening and
equatorialRadius.

Examples

Estimate Coordinates at Latitude, Longitude, and Altitude

Estimate the coordinates at a latitude, longitude, and altitude:

p = lla2flat( [ 0.1 44.95 1000 ], [0 45], 5, -100 )

p =
   1.0e+04 *

    1.0530   -0.6509   -0.0900

Estimate Coordinates at Multiple Latitudes, Longitudes, and Altitudes with the WGS84
Ellipsoid Model

Estimate coordinates at multiple latitudes, longitudes, and altitudes with the WGS84 ellipsoid model:

p = lla2flat( [ 0.1 44.95 1000; -0.05 45.3 2000 ], [0 45], 5, -100, 'WGS84' )

p =
   1.0e+04 *
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    1.0530   -0.6509   -0.0900
   -0.2597    3.3751   -0.1900

Estimate Coordinates at Multiple Latitudes, Longitudes, and Altitudes with a Custom
Ellipsoid Model

Estimate coordinates at multiple latitudes, longitudes, and altitudes using a custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
p = lla2flat( [ 0.1 44.95 1000; -0.05 45.3 2000 ], [0 45], 5, -100,  f, Re )

p =
   1.0e+04 *

    0.5588   -0.3465   -0.0900
   -0.1373    1.7975   -0.1900

Input Arguments
lla — Geodetic coordinates
m-by-3 array

Geodetic coordinates (latitude, longitude, and altitude), specified as an m-by-3 array in [degrees
degrees meters]. Latitude and longitude values can be any value. However, latitude values of +90 and
-90 may return unexpected values because of singularity at the poles.
Data Types: double

llo — Reference location
m-by-2 array

Reference location of latitude and longitude, specified as an m-by-2 array, in degrees, for the origin of
the estimation and the origin of the flat Earth coordinate system.
Data Types: double

psio — Angular direction of flat Earth
scalar

Angular direction of the flat Earth x-axis, specified as a scalar. The angular direction is the degrees
clockwise from north, which is the angle in degrees used for converting flat Earth x and y coordinates
to the north and east coordinates.
Data Types: double

href — Reference height
scalar

Reference height from the surface of the Earth to the flat Earth frame with regard to the flat Earth
frame, specified as a scalar, in meters.
Data Types: double

ellipsoidModel — Ellipsoid planet model
'WGS84' (default)
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Ellipsoid planet model, specified as 'WGS84'.
Data Types: char | string

flattening — Flattening
scalar

Flattening at each pole, specified as a scalar.
Data Types: double

equatorialRadius — Planetary equatorial radius
scalar

Planetary equatorial radius, specified as a scalar, in meters.
Data Types: double

Output Arguments
flatearth_pos — Flat Earth position coordinates
3-element vector

Flat Earth position coordinates, specified as 3-element vector, in meters.

Tips
• This function assumes that the flight path and bank angle are zero.
• This function assumes that the flat Earth z-axis is normal to the Earth only at the initial geodetic

latitude and longitude. This function has higher accuracy over small distances from the initial
geodetic latitude and longitude. It also has higher accuracy at distances closer to the equator. The
function calculates a longitude with higher accuracy when the variations in latitude are smaller.
Additionally, longitude is singular at the poles.

Algorithms
The function begins by finding the small changes in latitude and longitude from the output latitude
and longitude minus the initial latitude and longitude:

dμ = μ− μ0
dι = ι− ι0 .

To convert geodetic latitude and longitude to the north and east coordinates, the function uses the
radius of curvature in the prime vertical (RN) and the radius of curvature in the meridian (RM). RN and
RM are defined by the following relationships:

RN = R
1− (2f − f 2)sin2μ0

,

where (R) is the equatorial radius of the planet and f  is the flattening of the planet.

Small changes in the north (dN) and east (dE) positions are approximated from small changes in the
north and east positions by
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dN = dμ
atan 1

RM

,

and

dE = dι
atan 1

RNcosμ0

.

With the conversion of the North and East coordinates to the flat Earth x and y coordinates, the
transformation has the form of

px
py

=
cosψ sinψ
−sinψ cosψ

N
E

,

where

ψ

is the angle in degrees clockwise between the x-axis and north.

The flat Earth z-axis value is the negative altitude minus the reference height (href):

pz = − h− href .

References
[1] Etkin, B., Dynamics of Atmospheric Flight. New York: John Wiley & Sons, 1972.

See Also
Topics
flat2lla

Introduced in R2011a
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load (Aero.Body)
Get geometry data from source

Syntax
load(h, bodyDataSrc)
h.load(bodyDataSrc)
load(h, bodyDataSrc, geometrysource)
h.load(bodyDataSrc, geometrysource)

Description
load(h, bodyDataSrc) and h.load(bodyDataSrc) load the graphics data from the body
graphics file. This command assumes a default geometry source type set to Auto.

load(h, bodyDataSrc, geometrysource) and h.load(bodyDataSrc, geometrysource)
load the graphics data from the body graphics file, bodyDataSrc, into the face, vertex, and color
data of the animation body object h. Then, when axes ax is available, you can use this data to
generate patches with generatePatches. geometrysource is the geometry source type for the
body.

By default geometrysource is set to Auto, which recognizes .mat extensions as MAT-files, .ac
extensions as Ac3d files, and structures containing fields of name, faces, vertices, and cdata as
MATLAB variables. If you want to use alternate file extensions or file types, enter one of the
following:

• Auto
• Variable
• MatFile
• Ac3d
• Custom

Examples
Load the graphic data from the graphic data file, pa24-250_orange.ac, into b.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d'); 

See Also
generatePatches | move | update

Introduced in R2007a
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machnumber
Compute Mach number using velocity and speed of sound

Syntax
mach = machnumber(velocities,speed_of_sound)

Description
mach = machnumber(velocities,speed_of_sound) computes Mach numbers, mach, from an
m-by-3 array of Cartesian velocity vectors, velocities, and an array of m speeds of sound,
speed_of_sound.

Examples

Determine Mach Number for Velocity and Speed of Sound in Feet per Second

Determine the Mach number for velocity and speed of sound in feet per second:

mach = machnumber([84.3905 33.7562 10.1269], 1116.4505)

mach =

    0.0819

Determine Mach Number for Velocity and Speed of Sound in Meters per Second

Determine the Mach number for velocity and speed of sound in meters per second:

mach = machnumber([25.7222 10.2889 3.0867], [340.2941 295.0696])

mach =

    0.0819    0.0945

Determine Mach Number for Velocity and Speed of Sound in Knots

Determine the Mach number for velocity and speed of sound in knots:

mach = machnumber([50 20 6; 5 0.5 2], [661.4789 573.5694])

mach =
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    0.0819
    0.0094

Input Arguments
velocities — Cartesian velocity vectors
m-by-3 array | vector

Cartesian velocity vectors, specified as an m-by-3 array. velocities and speed_of_sound must
have the same length.
Data Types: double

speed_of_sound — Speed of sound
array

Speed of sound, specified as an array of m speeds of sound. velocities and speed_of_sound must
have the same length.
Data Types: double

Output Arguments
mach — Mach numbers
scalar | array

Mach numbers, returned as a scalar or array of m Mach numbers.

See Also
airspeed | alphabeta | dpressure

Introduced in R2006b
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mjuliandate
Modified Julian date calculator

Syntax
mjd = mjuliandate(dateVector)
mjd = mjuliandate(dateCharacterVector,format)
mjd = mjuliandate(year,month,day)
dy = mjuliandate([year,month,day])
mjd = mjuliandate(year,month,day,hour,minute,second)
dy = mjuliandate([year,month,day,hour,minute,second])

Description
mjd = mjuliandate(dateVector) converts one or more date vectors, dateVector, to modified
Julian date, mjd. Modified Julian dates begin at midnight rather than noon, and the first two digits of
its corresponding Julian date are removed.

mjd = mjuliandate(dateCharacterVector,format) converts one or more date character
vectors, dateCharacterVector, to modified Julian date, mjd, using format format.

mjd = mjuliandate(year,month,day) and dy = mjuliandate([year,month,day]) return
the modified Julian date for corresponding elements of the year,month,day arrays.

mjd = mjuliandate(year,month,day,hour,minute,second) and dy = mjuliandate([
year,month,day,hour,minute,second]) return the modified Julian date for corresponding
elements of the year,month,day,hour,minute,second arrays. Specify the six arguments as one-
dimensional arrays of the same length or scalar values.

Examples

Calculate Modified Julian Date Using Date Character Version and dd-mm-yyyy Format

Calculate the modified Julian date for May 24, 2005 using date character version and dd-mm-yyyy
format:

mjd = mjuliandate('24-May-2005','dd-mmm-yyyy')

mjd =
       53514

Calculate Modified Julian Date Using Year, Month, and Day Inputs

Calculate modified Julian date for December 19, 2006 from year, month, and day inputs:

mjd = mjuliandate(2006,12,19)
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mjd =
       54088

Calculate Modified Julian Date Using Year, Month, Day, Hour, Minute, and Second Inputs

Calculate the modified Julian date for October 10, 2004, at 12:21:00 p.m. using year, month, day,
hour, month, and second inputs:

mjd = mjuliandate(2004,10,10,12,21,0)

mjd =
  5.3289e+004

Input Arguments
dateVector — Full or partial date vector
m-by-6 matrix | m-by-3 matrix | positive double-precision number

Full or partial date vector, specified as an m-by-6 or m-by-3 matrix containing m full or partial date
vectors, respectively:

• Full date vector — Contains six elements specifying the year, month, day, hour, minute, and second
• Partial date vector — Contains three elements specifying the year, month, and day

Data Types: double

dateCharacterVector — Date character vector
character array | one-dimensional cell array of character vectors

Date character vector, specified as a character array, where each row corresponds to one date, or a
one-dimensional cell array of character vectors.
Data Types: char | string

format — Date format
-1 (default) | character vector | string scalar | integer

Date format, specified as a character vector, string scalar, or integer. All dates in
dateCharacterVector must have the same format and use the same date format symbols as the
datenum function.

mjuliandate does not accept formats containing the letter Q.

If the format does not contain enough information to compute a date number, then:

• Hours, minutes, and seconds default to 0.
• Days default to 1.
• Months default to January.
• Years default to the current year.

Data Types: char | string
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year — Year
current year (default) | scalar | one-dimensional array

Year, specified as a scalar or one-dimensional array.

Dates with two character years are interpreted to be within 100 years of the current year.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: char | string

month — Month
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | one-dimensional array

Month, specified as a scalar or one-dimensional array from 1 to 12.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

day — Day
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | one-dimensional array

Day, specified as a scalar or one-dimensional array from 1 to 31.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

hour — Date format
0 (default) | double, whole number, 0 to 24

Hour, specified as a scalar from 0 to 24.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

minute — Minute
0 (default) | double, whole number, 0 to 60

Minute, specified as a double, whole number from 0 to 60.
Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
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Data Types: double

second — Second
0 (default) | double, whole number, 0 to 60

Second, specified as a double, whole number from 0 to 60.

Dependencies

Depending on the syntax, specify year, month, and day or year, month, day, hour, minute, and
second as one-dimensional arrays of the same length or scalar values.
Data Types: double

Output Arguments
mjd — Modified Julian date
m-by-6 column vector | m-by-3 column vector

Modified Julian date, returned as a column vector of m modified Julian dates, which are the number of
days and fractions since noon Universal Time on January 1, 4713 BCE.

• m-by-6 column vector — Contains six elements specifying the year, month, day, hour, minute, and
second

• m-by-3 column vector — Contains three elements specifying the year, month, and day

Dependencies

The output format depends on the input format:

Input Syntax dy Format
mjd = mjuliandate(dateVector) m-by-6 column vector or m-by-3 column vector of

m modified Julian dates.
mjd =
mjuliandate(dateCharacterVector,format
)

Column vector of m modified Julian dates, where
m is the number of character vectors in
dateCharacterVector.

Limitations
The calculation of modified Julian date does not take into account leap seconds.

See Also
decyear | juliandate | leapyear | datenum | datestr

Introduced in R2006b
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moonLibration
Moon librations

Syntax
angles = moonLibration(ephemerisTime)
angles = moonLibration(ephemerisTime,ephemerisModel)
angles = moonLibration(ephemerisTime,ephemerisModel,action)

[angles,rates] = moonLibration( ___ )

Description
Implement Moon Libration Angles

angles = moonLibration(ephemerisTime) implements the Moon libration angles for
ephemerisTime, expressed in Julian days.

The function uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory provides.

This function requires that you download ephemeris data with the Add-On Explorer. For more
information, see aeroDataPackage.

angles = moonLibration(ephemerisTime,ephemerisModel) uses the ephemerisModel
coefficients to implement these values.

angles = moonLibration(ephemerisTime,ephemerisModel,action) uses action to
determine error reporting.

Implement Moon Libration Angles and Rates

[angles,rates] = moonLibration( ___ ) implements the Moon libration angles and rates using
any combination of the input arguments in the previous syntaxes.

Examples

Implement Libration Angles of Moon

Implement libration angles of the Moon for December 1, 1990 with DE405. Use the juliandate
function to calculate the input Julian date value.

angles = moonLibration(juliandate(1990,12,1))

angles =
   1.0e+03 *
    0.0001    0.0004    1.8010
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Implement Libration Angles and Rates for Moon

Specify the ephemerides (DE421) and use the juliandate function for the date (January 1, 2000) to
calculate both the Moon libration angles and rates.

[angles,rates] = moonLibration([2451544.5 0.5],'421')

angles =
   1.0e+03 *
   -0.0001    0.0004    2.5643

rates =
   -0.0001    0.0000    0.2301

Input Arguments
ephemerisTime — Julian dates
scalar | 2-element vector | column vector | M-by-2 matrix

Julian dates for which the positions are calculated, specified as one of the following:

• Scalar — Specify one fixed Julian date.
• 2-element vector — Specify the Julian date in multiple parts. The first element is the Julian date

for a specific epoch that is the most recent midnight at or before the interpolation epoch. The
second element is the fractional part of a day elapsed between the first element and epoch. The
second element must be positive. The value of the first element plus the second element cannot
exceed the maximum Julian date.

• Column vector — Specify a column vector with M elements, where M is the number of Julian
dates.

• M-by-2 matrix — Specify a matrix, where M is the number of Julian dates and the second column
contains the elapsed days (Julian epoch date/elapsed day pairs).

Data Types: double

ephemerisModel — Ephemerides coefficients
'405' (default) | '421' | '423' | '430' | '432t'

Ephemerides coefficients, specified as one of these ephemerides defined by the Jet Propulsion
Laboratory:

• '405' — Released in 1998. This ephemerides takes into account the Julian date range
2305424.50 (December 9, 1599 ) to 2525008.50 (February 20, 2201).

This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 1.0, adopted in 1998.

• '421' — Released in 2008. This ephemerides takes into account the Julian date range 2414992.5
(December 4, 1899) to 2469808.5 (January 2, 2050).

This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 1.0, adopted in 1998.

• '423' — Released in 2010. This ephemerides takes into account the Julian date range 2378480.5
(December 16, 1799) to 2524624.5 (February 1, 2200).
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This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

• '430' — Released in 2013. This ephemerides takes into account the Julian date range 2287184.5
(December 21, 1549) to 2688976.5 (January 25, 2650).

This function implements these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

• '432t' — Released in April 2014. This ephemerides takes into account the Julian date range
2287184.5, (December 21, 1549 ) to 2688976.5, (January 25, 2650).

This function implements these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

Data Types: double

action — Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range, specified as one of these values, specified as one of
these values.

Value Description
'None' No action.
'Warning' Warning in the MATLAB Command Window and model simulation

continues.
'Error' MATLAB returns an exception and model simulation stops.

Data Types: char | string

Output Arguments
angles — Moon libration angles
M-by-3 numeric array

Moon libration angles, returned as an M-by-3 numeric array. M is the number of Julian dates, in rows.
The columns contain the Euler angles (φ θ ψ) for Moon attitude, in radians.

If the input arguments include multiple Julian dates or epochs, this array has the same number of
rows as the ephemerisTime input.

rates — Moon libration angular rates
M-by-3 numeric array

Moon libration angular rates, returned as an M-by-3 numeric array. M is the number of Julian dates,
in rows. The columns contain the Moon libration Euler angular rates (ω), in radians/day.

If the input arguments include multiple Julian dates or epochs, this array has the same number of
rows as the ephemerisTime input.

See Also
juliandate | earthNutation | planetEphemeris
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External Websites
https://ssd.jpl.nasa.gov/?planet_eph_export

Introduced in R2013a
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move (Aero.Body)
Change animation body position and orientation

Syntax
move(h, translation, rotation)
h.move(translation,rotation)

Description
move(h, translation, rotation) and h.move(translation,rotation) set a new position
and orientation for the body object h. translation is a 1-by-3 matrix in the aerospace body x-y-z
coordinate system. rotation is a 1-by-3 matrix, in radians, that specifies the rotations about the
right-hand x-y-z sequence of coordinate axes. The order of application of the rotation is z-y-x (r-
q-p).

Examples
Change animation body position to newpos and newrot.

h = Aero.Body;
h.load('ac3d_xyzisrgb.ac','Ac3d');
newpos = h.Position + 1.00;
newrot = h.Rotation + 0.01;
h.move(newpos,newrot);

See Also
load

Introduced in R2007a
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move (Aero.Node)
Change node translation and rotation

Syntax
move(h,translation,rotation)
h.move(translation,rotation)

Description
move(h,translation,rotation) and h.move(translation,rotation) set a new position and
orientation for the node object h. translation is a 1-by-3 matrix in the aerospace body x-y-z
coordinate system or another coordinate system. In the latter case, you can use the
CoordTransformFcn function to move it into an aerospace body. The defined aerospace body
coordinate system is defined relative to the screen as x-left, y-in, z-down.

rotation is a 1-by-3 matrix, in radians, that specifies the rotations about the right-hand x-y-z
sequence of coordinate axes. The order of application of the rotation is z-y-x (r-q-p). This function
uses the CoordTransformFcn to apply the translation and rotation from the input coordinate system
to the aerospace body. The function then moves the translation and rotation from the aerospace body
to the VRML x-y-z coordinates. The defined VRML coordinate system is defined relative to the
screen as x-right, y-up, z-out.

Examples
Move the Lynx body. This example uses the Simulink 3D Animation vrnode/getfield function to
retrieve the translation and rotation. These coordinates are those used in the Simulink 3D Animation
software.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
newtrans = getfield(h.Nodes{4}.VRNode,'translation') + 1.0;
newrot = getfield(h.Nodes{4}.VRNode,'rotation') + [.2 0.01 0.01 0.01];
h.Nodes{4}.move(newtrans,newrot);

Limitations
This function cannot get the node position in aerospace body coordinates; it needs to use the
CoordTransformFcn to do so.

This function cannot set a viewpoint position or orientation (see addViewpoint).

See Also
addNode

Introduced in R2007b

 move (Aero.Node)

4-633



moveBody
Class: Aero.Animation
Package: Aero

Move body in animation object

Syntax
moveBody(h,idx,translation,rotation)
h.moveBody(idx,translation,rotation)

Description
moveBody(h,idx,translation,rotation) and h.moveBody(idx,translation,rotation)
set a new position and attitude for the body specified with the index idx in the animation object h.
translation is a 1-by-3 matrix in the aerospace body coordinate system. rotation is a 1-by-3
matrix, in radians, that specifies the rotations about the right-hand x-y-z sequence of coordinate
axes. The order of application of the rotation is z-y-x (R-Q-P).

Input Arguments
h Animation object.
translation 1-by-3 matrix in the aerospace body coordinate system.
rotation 1-by-3 matrix, in radians, that specifies the rotations about the right-hand x-

y-z sequence of coordinate axes.
idx Body specified with this index.

Examples
Move the body with the index 1 to position offset from the original by + [0 0 -3] and rotation,
rot1.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
pos1 = h.Bodies{1}.Position;
rot1 = h.Bodies{1}.Rotation;
h.moveBody(1,pos1 + [0 0 -3],rot1);
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Node (Aero.Node)
Create node object for use with virtual reality animation

Syntax
h = Aero.Node

Description
h = Aero.Node creates a node object for use with virtual reality animation.

See Aero.Node for further details.

See Also
Aero.Node

Introduced in R2007b
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nodeInfo (Aero.VirtualRealityAnimation)
Create list of nodes associated with virtual reality animation object

Syntax
nodeInfo(h)
h.nodeInfo
n = nodeInfo(h)
n = h.nodeInfo

Description
nodeInfo(h) and h.nodeInfo create a list of nodes associated with the virtual reality animation
object, h.

n = nodeInfo(h) and n = h.nodeInfo create a cell array (n) that contains the node information.
The function stores the information in a cell array as follows:

N{1,n} = Node Index
N{2,n} = Node Name
N{3,n} = Node Type

where n is the number of nodes. You might want to use this function to find an existing node by name
and then perform a certain action on it using the node index.

Examples
Create list of nodes associated with virtual reality animation object, h.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
h.initialize();
h.nodeInfo;

See Also
addNode

Introduced in R2007b
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nonlinearDynamics
Class: Aero.FixedWing
Package: Aero

Calculate dynamics of fixed-wing aircraft

Syntax
state_derivatives = nonlinearDynamics(aircraft,state)

Description
state_derivatives = nonlinearDynamics(aircraft,state) returns the column vector of
state_derivatives of the fixed-wing aircraft aircraft from the initial state state.

Input Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, specified as a scalar.

state — Aero.FixedWing.State object
scalar

Aero.FixedWing.State specified as a scalar.

Output Arguments
state_derivatives — State derivatives
vector

State derivatives with respect to time, returned as a vector. The rate vector size depends on the
degrees of freedom, and is defined in the following form:

4th order point mass:
  DYDT(1) = dXN/dt
  DYDT(2) = dXD/dt
  DYDT(3) = dU/dt
  DYDT(4) = dW/dt
 
6th order point mass:
  DYDT(1) = dXN/dt
  DYDT(2) = dXE/dt
  DYDT(3) = dXD/dt
  DYDT(4) = dU/dt
  DYDT(5) = dV/dt
  DYDT(6) = dW/dt
 
3 DOF:
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  DYDT(1) = dXN/dt
  DYDT(2) = dXD/dt
  DYDT(3) = dU/dt
  DYDT(4) = dW/dt
  DYDT(5) = dQ/dt
  DYDT(6) = dTheta/dt
 
6 DOF:
  DYDT(1) = dXN/dt
  DYDT(2) = dXE/dt
  DYDT(3) = dXD/dt
  DYDT(4) = dU/dt
  DYDT(5) = dV/dt
  DYDT(6) = dW/dt
  DYDT(7) = dP/dt
  DYDT(8) = dQ/dt
  DYDT(9) = dR/dt
  DYDT(10) = dPhi/dt
  DYDT(11) = dTheta/dt
  DYDT(12) = dPsi/dt

Examples

Calculate Dynamics of a Cessna 182:

Calculate the dynamics of Cessna 182.

[C182, CruiseState] = astC182();
dydt = nonlinearDynamics(C182, CruiseState)

dydt =

  220.1000
         0
         0
   -2.8323
         0
   -0.0040
         0
    1.3922
         0
         0
         0
         0

Limitations
When used with Simulink.LookupTable objects, this method requires a Simulink license.

See Also
Aero.FixedWing | forcesAndMoments | linearize

Introduced in R2021a
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orbitalElements
Package: matlabshared.satellitescenario

Orbital elements of satellites in scenario

Syntax
elements = orbitalElements(sat)

Description
elements = orbitalElements(sat) returns the orbital elements of the specified satellite sat.

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

Output Arguments
elements — Orbital elements
structure

Orbital elements of input sat, returned as a structure. The fields of the structure depend on the orbit
propagator chosen using the OrbitPropagator property of the satelliteScenario object.

Two Body Keplerian

The two-body-keplerian orbit propagator has these fields:

• SemiMajorAxis
• Eccentricity
• Inclination
• RightAscensionOfAscendingNode
• ArgumentOfPeriapsis
• TrueAnomaly
• Period

SGP4 and SDP4

The sgp4 and sdp4 orbit propagators have these fields:

• Eccentricity
• Inclination
• RightAscensionOfAscendingNode
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• ArgumentOfPeriapsis
• MeanAnomaly
• MeanMotion
• Epoch
• BStar
• Period

The orbital elements represent the mean values at Epoch.

Ephemeris

The ephemeris propagator has these fields:

• EphemerisStartTime
• EphemerisStopTime
• PositionTimeTable
• VelocityTimeTable

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | conicalSensor | show | play | satellite

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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planetEphemeris
Position and velocity of astronomical objects

Syntax
position = planetEphemeris(ephemerisTime,center,target)
position = planetEphemeris(ephemerisTime,center,target,ephemerisModel)
position = planetEphemeris(ephemerisTime,center,target,ephemerisModel,units)
position = planetEphemeris(ephemerisTime,center,target,ephemerisModel,units,
action)

[position,velocity] = planetEphemeris( ___ )

Description
Implement Planet Ephemeris Position

position = planetEphemeris(ephemerisTime,center,target) implements the position of
the target object relative to the specified center object for a given Julian date ephemerisTime. By
default, the function implements the position based on the DE405 ephemerides in units of km.

The function uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory provides.

This function requires that you download ephemeris data with the Add-On Explorer. For more
information, see aeroDataPackage.

position = planetEphemeris(ephemerisTime,center,target,ephemerisModel) uses the
ephemerisModel coefficients to implement these values.

position = planetEphemeris(ephemerisTime,center,target,ephemerisModel,units)
specifies the units for these values.

position = planetEphemeris(ephemerisTime,center,target,ephemerisModel,units,
action) uses action to determine error reporting.

Implement Planet Ephemeris Position and Velocity

[position,velocity] = planetEphemeris( ___ ) implements the position and velocity of the
target object relative to the specified center for a given Julian date ephemerisTime using any of the
input arguments in the previous syntaxes.

Examples

Implement Position of Moon

Implement the position of the Moon with respect to the Earth for December 1, 1990 with DE405.

position = planetEphemeris(juliandate(1990,12,1),'Earth','Moon')
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position =
   1.0e+05 *
    2.3112    2.3817    1.3595

Implement Position and Velocity for Saturn

Implement the position and velocity for Saturn with respect to the Solar System barycenter for noon
on January 1, 2000 using DE421 and AU units.

[position,velocity] = planetEphemeris([2451544.5 0.5],...
'SolarSystem','Saturn','421','AU')

position =
    6.3993    6.1720    2.2738
velocity =
   -0.0043    0.0035    0.0016

Input Arguments
ephemerisTime — Julian date
scalar | 2-element vector | column vector | M-by-2 matrix

Julian date for which positions are calculated, specified as one of these values:

• Scalar — Specify one fixed Julian date.
• 2-element vector — Specify the Julian date in multiple parts. The first element is the Julian date

for a specific epoch that is the most recent midnight at or before the interpolation epoch. The
second element is the fractional part of a day elapsed between the first element and epoch. The
second element must be positive. The value of the first element plus the second element cannot
exceed the maximum Julian date.

• Column vector — Specify a column vector with M elements, where M is the number of fixed Julian
dates.

• M-by-2 matrix — Specify a matrix, where M is the number of Julian dates (Julian epoch date) and
the second column contains the elapsed days (elapsed day pairs).

Data Types: double

center — Reference body (astronomical object) or point of reference
'Sun' | 'Mercury' | 'Venus' | 'Earth' | 'Moon' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus' |
'Neptune' | 'Pluto' | 'SolarSystem' | 'EarthMoon'

Reference body (astronomical object) or point of reference from which to measure the target position
and velocity, specified as 'Sun', 'Mercury', 'Venus', 'Earth', 'Moon', 'Mars', 'Jupiter',
'Saturn', 'Uranus', 'Neptune', 'Pluto''SolarSystem', or 'EarthMoon'.
Data Types: char

target — Target body (astronomical object) or point of reference
'Sun' | 'Mercury' | 'Venus' | 'Earth' | 'Moon' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus' |
'Neptune' | 'Pluto' | 'SolarSystem' | 'EarthMoon'
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Target body (astronomical object) or point of reference of the position and velocity measurement,
specified as 'Sun', 'Mercury', 'Venus', 'Earth', 'Moon', 'Mars', 'Jupiter', 'Saturn',
'Uranus', 'Neptune', 'Pluto''SolarSystem', or 'EarthMoon'.
Data Types: char

ephemerisModel — Ephemerides coefficients
'405' (default) | '421' | '423' | '430' | '432t'

Ephemerides coefficients, specified as one of these ephemerides defined by the Jet Propulsion
Laboratory:

• '405' — Released in 1998. This ephemerides takes into account the Julian date range
2305424.50 (December 9, 1599 ) to 2525008.50 (February 20, 2201).

This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 1.0, adopted in 1998.

• '421' — Released in 2008. This ephemerides takes into account the Julian date range 2414992.5
(December 4, 1899) to 2469808.5 (January 2, 2050).

This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 1.0, adopted in 1998.

• '423' — Released in 2010. This ephemerides takes into account the Julian date range 2378480.5
(December 16, 1799) to 2524624.5 (February 1, 2200).

This function calculates these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

• '430' — Released in 2013. This ephemerides takes into account the Julian date range 2287184.5
(December 21, 1549) to 2688976.5 (January 25, 2650).

This function implements these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

• '432t'

Released in April 2014. This ephemerides takes into account the Julian date range 2287184.5,
(December 21, 1549 ) to 2688976.5, (January 25, 2650).

This function implements these ephemerides with respect to the International Celestial Reference
Frame version 2.0, adopted in 2010.

Data Types: char

units — Output units
'km' (default) | 'AU'

Output units for position and velocity, specified as 'km' for km and km/s or 'AU' for astronomical
units or AU/day.
Data Types: char

action — Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range, specified as one of these values.
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Value Description
'None' No action.
'Warning' Warning in the MATLAB Command Window and model simulation

continues.
'Error' MATLAB returns an exception and model simulation stops.

Data Types: char

Output Arguments
position — Position of target
M-by-3 vector

Position of the target object relative to the center object, returned as an M-by-3 vector, where M is
the number of Julian dates. The 3 columns contain the x, y, and z of the position along the
International Celestial Reference Frame (ICRF). Units are km or astronomical units (AU). If input
arguments include multiple Julian dates or epochs, this vector has the same number of rows as the
ephemerisTime input.

velocity — Velocity of target
M-by-3 vector

Velocity of the target object relative to the center object, returned as an M-by-3 vector, where M is
the number of Julian dates. The 3 vector contains the velocity in the x, y, and z directions along the
ICRF. Velocity of the Units are km or astronomical units (AU). If the input includes multiple Julian
dates or epochs, this vector has the same number of rows as the ephemerisTime input.

References
[1] Folkner, W. M., J. G. Williams, and D. H. Boggs. "The Planetary and Lunar Ephemeris DE 421." JPL

Interplanetary Network Progress Report 24-178, 2009.

[2] Ma, C. et al., “The International Celestial Reference Frame as Realized by Very Long Baseline
Interferometry,” Astronomical Journal, Vol. 116 (1998): 516–546.

[3] Vallado, David A., Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill,
1997.

See Also
juliandate | moonLibration | earthNutation

Topics
“Estimate Sun Analemma Using Planetary Ephemerides and ECI to AER Transformation” on page 5-
107
“Marine Navigation Using Planetary Ephemerides” on page 5-98

External Websites
https://ssd.jpl.nasa.gov/?planet_eph_export

Introduced in R2013a
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play
Class: Aero.Animation
Package: Aero

Animate Aero.Animation object given position/angle time series

Syntax
play(h)
h.play

Description
play(h) and h.play animate the loaded geometry in h for the current TimeseriesDataSource at
the specified rate given by the 'TimeScaling' property (in seconds of animation data per second of
wall-clock time) and animated at a certain number of frames per second using the
'FramesPerSecond' property.

The time series data is interpreted according to the 'TimeseriesSourceType' property, which can
be one of:

'Timeseries' MATLAB time series data with six values per time:

x y z phi theta psi

The values are resampled.
'Simulink.Timeseries' Simulink.Timeseries (Simulink signal logging):

• First data item

x y z
• Second data item

phi theta psi
'StructureWithTime' Simulink struct with time (for example, Simulink root outport logging

'Structure with time'):

• signals(1).values: x y z
• signals(2).values: phi theta psi

Signals are linearly interpolated vs. time using interp1.
'Array6DoF' A double-precision array in n rows and 7 columns for 6-DoF data:

time x y z phi theta psi. If a double-precision array of 8 or
more columns is in 'TimeseriesSource', the first 7 columns are
used as 6-DoF data.
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'Array3DoF' A double-precision array in n rows and 4 columns for 3-DoF data:
time x z theta. If a double-precision array of 5 or more columns
is in 'TimeseriesSource', the first 4 columns are used as 3-DoF
data.

'Custom' Position and angle data is retrieved from 'TimeseriesSource' by
the currently registered 'TimeseriesReadFcn'.

The following are limitations for the TStart and TFinal values:

• TStart and TFinal must be numeric.
• TStart and TFinal cannot be Inf or NaN.
• TFinal must be greater than or equal to TStart.
• TFinal cannot be greater than the maximum Timeseries time.
• TStart cannot be less than the minimum Timeseries time.

The time advancement algorithm used by play is based on animation frames counted by ticks:

ticks = ticks + 1;
time  = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data per second of wall-clock time.
FramesPerSecond Specify the number of frames per second used to animate the

'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is the last time value.

Time is in seconds, position values are in the same units as the geometry data loaded into the
animation object, and all angles are in radians.

Note If there is a 15% difference between the expected time advance and the actual time advance,
this method will generate the following warning:
TimerPeriod has been set to <value>. You may wish to modify the animation 
TimeScaling and FramesPerSecond properties to compensate for the 
millisecond limit of the TimerPeriod.  See documentation for details.

Input Arguments
h Animation object.

Examples
Animate the body, idx1, for the duration of the time series data.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
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load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
h.show();
h.play();
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play (Aero.FlightGearAnimation)
Animate FlightGear flight simulator using given position/angle time series

Syntax
play(h)
h.play

Description
play(h) and h.play animate FlightGear flight simulator using specified time series data in h. The
time series data can be set in h by using the property 'TimeseriesSource'.

The time series data, stored in the property 'TimeseriesSource', is interpreted according to the
'TimeseriesSourceType' property, which can be one of:

'Timeseries' MATLAB time series data with six values per time:

latitude longitude altitude phi theta psi

The values are resampled.
'StructureWithTime' Simulink struct with time (for example, Simulink root outport logging

'Structure with time'):

• signals(1).values: latitude longitude altitude
• signals(2).values: phi theta psi

Signals are linearly interpolated vs. time using interp1.
'Array6DoF' A double-precision array in n rows and 7 columns for 6-DoF data:

time latitude longitude altitude phi theta psi. If a
double-precision array of 8 or more columns is in
'TimeseriesSource', the first 7 columns are used as 6-DoF data.

'Array3DoF' A double-precision array in n rows and 4 columns for 3-DoF data:
time latitude altitude theta. If a double-precision array of 5
or more columns is in 'TimeseriesSource', the first 4 columns
are used as 3-DoF data.

'Custom' Position and angle data is retrieved from 'TimeseriesSource' by
the currently registered 'TimeseriesReadFcn'.

The time advancement algorithm used by play is based on animation frames counted by ticks:

ticks = ticks + 1;
time  = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data per second of wall-clock time.
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FramesPerSecond Specify the number of frames per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is the last time value.

Time is in seconds, position values are in the same units as the geometry model to be used by
FlightGear (see the property 'GeometryModelName'), and all angles are in radians. A possible
result of using incorrect units is the early termination of the FlightGear flight simulator.

Note If there is a 15% difference between the expected time advance and the actual time advance,
this method will generate the following warning:
TimerPeriod has been set to <value>. You may wish to modify the animation
TimeScaling and FramesPerSecond properties to compensate for the 
millisecond limit of the TimerPeriod.  See documentation for details.

The play method supports FlightGear animation objects with custom timers.

Limitations
The following are limitations for the TStart and TFinal values:

• TStart and TFinal must be numeric.
• TStart and TFinal cannot be Inf or NaN.
• TFinal must be greater than or equal to TStart.
• TFinal cannot be greater than the maximum Timeseries time.
• TStart cannot be less than the minimum Timeseries time.

Examples
Animate FlightGear flight simulator using the given 'Array3DoF' position/angle time series data:
data = [86.2667 -2.13757034184404 7050.896596 -0.135186746141248;...
        87.2833 -2.13753906554384 6872.545051 -0.117321084678936;...
        88.2583 -2.13751089592972 6719.405713 -0.145815609299676;...
        89.275  -2.13747984652232 6550.117118 -0.150635248762596;...
        90.2667 -2.13744993157894 6385.05883  -0.143124782831999;...
        91.275  -2.13742019116849 6220.358163 -0.147946202530756;...
        92.275  -2.13739055547779 6056.906647 -0.167529704309343;...
        93.2667 -2.13736104196014 5892.356118 -0.152547361677911;...
        94.2583 -2.13733161570895 5728.201718 -0.161979312941906;...
        95.2583 -2.13730231163081 5562.923808 -0.122276929636682;...
        96.2583 -2.13727405475022 5406.736322 -0.160421658944379;...
        97.2667 -2.1372440001805  5239.138477 -0.150591353731908;...
        98.2583 -2.13721598764601 5082.78798  -0.147737722951605];
h = fganimation
h.TimeseriesSource = data
h.TimeseriesSourceType = 'Array3DoF'
play(h)

Animate FlightGear flight simulator using the custom timer, MyFGTimer.

h.play('MyFGTimer')
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See Also
GenerateRunScript | initialize | update

Introduced in R2007a

4 Functions

4-650



play (Aero.VirtualRealityAnimation)
Animate virtual reality world for given position and angle in time series data

Syntax
play(h)
h.play

Description
play(h) and h.play animate the virtual reality world in h for the current TimeseriesDataSource
at the specified rate given by the 'TimeScaling' property (in seconds of animation data per second
of wall-clock time) and animated at a certain number of frames per second using the
'FramesPerSecond' property.

The time series data is interpreted according to the 'TimeseriesSourceType' property, which can
be one of:

'timeseries' MATLAB time series data with six values per time:

x y z phi theta psi

The values are resampled.
'Simulink.Timeseries' Simulink.Timeseries (Simulink signal logging):

• First data item

x y z
• Second data item

phi theta psi
'StructureWithTime' Simulink struct with time (for example, Simulink root outport logging

'Structure with time'):

• signals(1).values: x y z
• signals(2).values: phi theta psi

Signals are linearly interpolated vs. time using interp1.
'Array6DoF' A double-precision array in n rows and 7 columns for 6-DoF data:

time x y z phi theta psi. If a double-precision array of 8 or
more columns is in 'TimeseriesSource', the first 7 columns are
used as 6-DoF data.

'Array3DoF' A double-precision array in n rows and 4 columns for 3-DoF data:
time x z theta. If a double-precision array of 5 or more columns
is in 'TimeseriesSource', the first 4 columns are used as 3-DoF
data.
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'Custom' Position and angle data is retrieved from 'TimeseriesSource' by
the currently registered 'TimeseriesReadFcn'.

The time advancement algorithm used by play is based on animation frames counted by ticks:

ticks = ticks + 1;
time  = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data per second of wall-clock time.
FramesPerSecond Specify the number of frames per second used to animate the

'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is the last time value.

Time is in seconds, position values are in the same units as the geometry data loaded into the
animation object, and all angles are in radians.

Examples
Animate virtual reality world, asttkoff.
h = Aero.VirtualRealityAnimation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';
h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;
h.play();

See Also
initialize

Introduced in R2007b
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play
Package: matlabshared.satellitescenario

Play satellite scenario simulation results on viewer

Syntax
play(scenario)
play(v)
play(scenario,Name,Value)

Description
play(scenario) plays simulation results of the satellite scenario, scenario, from its start time
(StartTime property) to its stop time (StopTime property) using a step size specified by the
SampleTime property. The function plays the results in a satellite scenario viewer.

play(v) plays the satellite scenario simulation on the Satellite Scenario Viewer specified by v.

play(scenario,Name,Value) specifies additional options using one or more name-value
arguments. For example, you can set the speed of animation to 40 times the real time speed, using
'PlaybackSpeedMultiplier',40.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
    rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat = 
  1×2 Satellite array with properties:

    Name
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    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    GroundTrack
    Orbit
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontSize
    LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
  1×2 GroundTrack array with properties:

    LeadTime
    TrailTime
    LineWidth
    TrailLineColor
    LeadLineColor
    VisibilityMode

play(sc)
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Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

v — Viewer
scalar satelliteScenarioViewer object

Viewer, specified as a scalar satelliteScenarioViewer object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PlaybackSpeedMultiplier',30 plays the animation 30 times faster than real time.
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Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of animation relative to real time, specified as a positive scalar.

See Also
Objects
satelliteScenario

Functions
hide | show | satellite | access | groundStation

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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pointAt
Package: matlabshared.satellitescenario

Target at which entity must be pointed

Syntax
pointAt(sat,coordinates)
pointAt(sat,target)
pointAt(sat,'nadir')

pointAt(gim,'none')
pointAt(gim,coordinates)
pointAt(gim,target)
pointAt(gim,'nadir')

Description
Satellite Object

pointAt(sat,coordinates) sets the attitude of the satellite sat such that its yaw (body z axis)
tracks the geographical coordinates [latitude; longitude; altitude] specified by coordinates. The
function constantly adjusts the attitude of the satellite so that its yaw (body z) axis points at the
desired target. Its roll (body x) axis is aligned with the inertial velocity vector by minimizing the angle
between them (exact alignment can be geometrically impossible).

pointAt(sat,target) sets the attitude of the satellite sat such that its yaw axis tracks the
specified target.The input target can be another satellite or ground station.

pointAt(sat,'nadir') sets the attitude of the satellite sat such that its yaw axis points in the
nadir direction.

Gimbal Object

pointAt(gim,'none') sets the steering angles (gimbal azimuth and gimbal elevation) of the
gimbal gim to zero.

pointAt(gim,coordinates) steers gim independent of the parent such that its body z- axis tracks
the geographical coordinates [latitude; longitude; altitude] specified by coordinates.

The desired orientation is achieved by rotating the gimbal about its body z-axis (gimbal azimuth) and
secondly rotating the gimbal about its body y-axis (gimbal elevation). The function continuously
steers the gimbal for the duration of the simulation so that the gimbal points at the desired target.

pointAt(gim,target) steers gim such that its body z-axis tracks the specifiedtarget. target
can be another satellite or ground station.

pointAt(gim,'nadir') steers gim such that its body z-axis points in the nadir direction of the
parent, namely, the parent's latitude, longitude, and 0 m altitude.
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Input Arguments
sat — Satellite
Satellite object

Satellite, specified as a Satellite object.

gim — Gimbal
Gimbal object

Gimbal, specified as a Gimbal object.

coordinates — Geographical coordinates of the satellite target
three-element row vector

Geographical coordinates of the satellite or gimbals' target, specified as a three-element row vector.
The latitude and longitude are specified in degrees, and the altitude is specified as the height above
the surface of the Earth in meters.

target — Target
Satellite object | GroundStation object

Target at which input sat or gim is pointed, specified as a Satellite or GroundStation object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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polarMotion
Calculate Earth polar motion

Syntax
polarmotion=polarMotion(utc)
[polarmotion,polarmotionError]=polarMotion(utc)

polarmotion=polarMotion(utc,Name,Value)
[polarmotion,polarmotionError]=polarMotion(utc,Name,Value)

Description
polarmotion=polarMotion(utc) calculates the movement of the rotation axis with respect to the
crust of the Earth for a specific Universal Coordinated Time (UTC), specified as a modified Julian
date. By default, this function uses a prepopulated list of IAU 2000A Earth orientation (IERS) data.
This list contains measured and calculated (predicted) data supplied by the IERS. The IERS measures
and calculates this data for a set of predetermined dates.

[polarmotion,polarmotionError]=polarMotion(utc) calculates the error for the movement
of the rotation axis with respect to the crust of the Earth.

polarmotion=polarMotion(utc,Name,Value) calculates the movement of the rotation axis with
respect to the crust of the Earth using additional options specified by one or more Name,Value pair
arguments.

[polarmotion,polarmotionError]=polarMotion(utc,Name,Value) calculates the error for
the movement of the rotation axis with respect to the crust of the Earth.

Examples

Calculate Polar Motion

Calculate the polar motion for December 28, 2015.

mjd = mjuliandate(2015,12,28)
polarmotion = polarMotion(mjd)

mjd =
       57384

polarmotion =
   1.0e-05 *
    0.0289    0.1233
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Calculate Polar Motion and Error Using IERS Data

Calculate the polar motion and polar motion error for December 28, 2015 and January 10, 2016 using
the aeroiersdata.mat file. Use the mjuliandate function to calculate the date as a modified
Julian date.

mjd = mjuliandate([2015 12 28;2016 1 10])
[polarmotion,polarmotionErr] = polarMotion(mjd,'Source','aeroiersdata.mat')

mjd =
       57384
       57397

polarmotion =
   1.0e-05 *
    0.0289    0.1233
    0.0174    0.1304

Input Arguments
utc — Principal Universal Time (UT1) for UTC
M-by-1 array

Array of UTC dates, specified as an M-by-1 array, represented as modified Julian dates. Use the
mjuliandate function to convert the UTC date to a modified Julian date.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Source','aeroiersdata.mat'

Source — Custom list of Earth orientation data
aeroiersdata.mat (default) | MAT-file

Custom list of Earth orientation data, specified in a MAT-file.

action — Out-of-range action
Warning (default) | action

Out-of-range action, specified as a string.

Action to take in case of out-of-range or predicted value dates, specified as a string:

• Warning — Displays warning and indicates that the dates were out-of-range or predicted values.
• Error — Displays error and indicates that the dates were out-of-range or predicted values.
• None — Does not display warning or error.

Data Types: string
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Output Arguments
polarmotion — Movement of the rotation axis with respect to the crust of the Earth
M-by-2 array

Movement of the rotation axis with respect to the crust of the Earth, M-by-2 array, in radians.

polarmotionError — Error for movement of the rotation axis with respect to the crust of
the Earth
M-by-2 array

Error for movement of the rotation axis with respect to the crust of the Earth, specified as an M-by-2
array, in radians.

Compatibility Considerations
Updated aeroiersdata.mat file
Behavior changed in R2020b

The contents of the aeroiersdata.mat file have been updated. Correspondingly, the output of this
function will have different results when using the default value ('aeroiersdata.mat') as the
value of Source. The results reflect more accurate external data from the International Earth
Rotation and Reference Systems Service (IERS).

See Also
aeroReadIERSData | dcmeci2ecef | lla2eci | eci2lla | eci2aer | mjuliandate | deltaCIP |
deltaUT1

Topics
“Estimate Sun Analemma Using Planetary Ephemerides and ECI to AER Transformation” on page 5-
107

Introduced in R2018b
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quat2angle
Convert quaternion to rotation angles

Syntax
[rotationAng1 rotationAng2 rotationAng3] = quat2angle(q)
[rotationAng1 rotationAng2 rotationAng3] = quat2angle(q,s)

Description
[rotationAng1 rotationAng2 rotationAng3] = quat2angle(q) calculates the set of
rotation angles, rotationAng1, rotationAng2, rotationAng3, for a given quaternion, q. The
rotation used in this function is a passive transformation between two coordinate systems.

[rotationAng1 rotationAng2 rotationAng3] = quat2angle(q,s) calculates the set of
rotation angles rotationAng1, rotationAng2, rotationAng3 for a given quaternion, q, and a
specified rotation sequence, s.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention. This function
normalizes all quaternion inputs.

Examples

Determine Rotation Angles from Quaternion

Determine the rotation angles from q = [1 0 1 0].

[yaw, pitch, roll] = quat2angle([1 0 1 0])

yaw =
     0

pitch =
    1.5708

roll =
     0

Determine Rotation Angles from Multiple Quaternions and Rotation Order

Determine the rotation angles from multiple quaternions.

q = [1 0 1 0; 1 0.5 0.3 0.1];
 [pitch, roll, yaw] = quat2angle(q, 'YXZ')

pitch =
    1.5708
    0.8073
roll =
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         0
    0.7702
yaw =
         0
    0.5422

Input Arguments
q — Quaternion
m-by-4 matrix | each element of q must be real number

Quaternion, specified as an m-by-4 matrix containing m quaternions. q has its scalar number as the
first column.
Data Types: double

s — Rotation order
ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Rotation order for three rotation angles, where Z is in the z-axis, Y is in the y-axis, and X is in the x-
axis.
Data Types: char | string

Output Arguments
rotationAng1 — First rotation angles
m-array

First rotation angles, returned as an m-array, in radians.

rotationAng2 — Second rotation angles
m-array

Second rotation angles, returned as an m-array, in radians.

rotationAng3 — Third rotation angles
m-array

Third rotation angles, returned as an m-array, in radians.

Limitations
• The 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate a

rotationAng2 angle that lies between ±90 degrees, and rotationAng1 and rotationAng3
angles that lie between ±180 degrees.

• The 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate a
rotationAng2 angle that lies between 0 and 180 degrees, and rotationAng1 and
rotationAng3 angles that lie between ±180 degrees.

See Also
angle2dcm | angle2quat | dcm2angle | dcm2quat | quat2dcm
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Introduced in R2007b
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quat2dcm
Convert quaternion to direction cosine matrix

Syntax
n = quat2dcm(q)

Description
n = quat2dcm(q) calculates the direction cosine matrix, n, for a given quaternion, q. Input q is an
m-by-4 matrix containing m quaternions. n returns a 3-by-3-by-m matrix of direction cosine matrices.
The direction cosine matrix performs the coordinate transformation of a vector in inertial axes to a
vector in body axes. Each element of q must be a real number.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention. This function
normalizes all quaternion inputs.

Examples
Determine the direction cosine matrix from q = [1 0 1 0]:

dcm = quat2dcm([1 0 1 0])

dcm =

         0         0   -1.0000
         0    1.0000         0
    1.0000         0         0

Determine the direction cosine matrices from multiple quaternions:

q = [1 0 1 0; 1 0.5 0.3 0.1]; 
dcm = quat2dcm(q)

dcm(:,:,1) =

         0         0   -1.0000
         0    1.0000         0
    1.0000         0         0

dcm(:,:,2) =

    0.8519    0.3704   -0.3704
    0.0741    0.6148    0.7852
    0.5185   -0.6963    0.4963

See Also
angle2dcm | dcm2angle | dcm2quat | angle2quat | quat2angle | quatrotate
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quat2rod
Convert quaternion to Euler-Rodrigues vector

Syntax
rod=quat2rod(quat)

Description
rod=quat2rod(quat) function calculates the Euler-Rodrigues vector, rod, for a given quaternion
quat.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention. This function
normalizes all quaternion inputs.

Examples

Determine Euler-Rodrigues Vector from Quaternion

Determine the Euler-Rodrigues vector from the quaternion.

q = [-0.7071 0 0.7071 0]
r = quat2rod( q )

q =

   -0.7071         0    0.7071         0
r =

         0   -1.0000         0

Input Arguments
quat — Quaternion
M-by-4 array

M-by-4 array of quaternions. quat has its scalar number as the first column.
Data Types: double

Output Arguments
rod — Euler-Rodrigues vector
M-by-3 matrix

M-by-3 matrix containing M Euler-Rodrigues vectors.
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Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

See Also
angle2rod | dcm2rod | rod2quat | rod2angle | rod2dcm

Introduced in R2017a
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quatconj
Calculate conjugate of quaternion

Syntax
n = quatconj(q)

Description
n = quatconj(q) calculates the conjugate, n, for a given quaternion, q. Input q is an m-by-4 matrix
containing m quaternions. n returns an m-by-4 matrix of conjugates. Each element of q must be a real
number.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

The quaternion has the form of

q = q0 + iq1 + jq2 + kq3

The quaternion conjugate has the form of

q′ = q0− iq1− jq2− kq3

Examples
Determine the conjugate of q = [1 0 1 0]:

conj = quatconj([1 0 1 0])

conj =

     1     0    -1     0

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley–Interscience, 2nd

Edition.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for this function requires the Aerospace Blockset software.
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See Also
quatdivide | quatinv | quatmod | quatmultiply | quatnorm | quatnormalize | quatrotate

Introduced in R2006b
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quatdivide
Divide quaternion by another quaternion

Syntax
n = quatdivide(q,r)

Description
n = quatdivide(q,r) calculates the result of quaternion division, n, for two given quaternions, q
and r. Inputs q and r can each be either an m-by-4 matrix containing m quaternions, or a single 1-by-4
quaternion. n returns an m-by-4 matrix of quaternion quotients. Each element of q and r must be a
real number.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

The quaternions have the form of

q = q0 + iq1 + jq2 + kq3

and

r = r0 + ir1 + jr2 + kr3

The resulting quaternion from the division has the form of

t = q
r = t0 + it1 + jt2 + kt3

where

t0 =
(r0q0 + r1q1 + r2q2 + r3q3)

r0
2 + r1

2 + r2
2 + r3

2

t1 =
(r0q1− r1q0− r2q3 + r3q2)

r0
2 + r1

2 + r2
2 + r3

2

t2 =
(r0q2 + r1q3− r2q0− r3q1)

r0
2 + r1

2 + r2
2 + r3

2

t3 =
(r0q3− r1q2 + r2q1− r3q0)

r0
2 + r1

2 + r2
2 + r3

2

Examples
Determine the division of two 1-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)
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d =

    0.7273    0.1212    0.2424   -0.6061

Determine the division of a 2-by-4 quaternion by a 1-by-4 quaternion:

q = [1 0 1 0; 2 1 0.1 0.1];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)

d =

    0.7273    0.1212    0.2424   -0.6061
    1.2727    0.0121   -0.7758   -0.4606

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley–Interscience, 2nd

Edition.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for this function requires the Aerospace Blockset software.

See Also
quatconj | quatinv | quatmod | quatmultiply | quatnorm | quatnormalize | quatrotate

Introduced in R2006b
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quatexp
Exponential of quaternion

Syntax
qe=quatexp(q)

Description
qe=quatexp(q) calculates the exponential, qe, for the specified quaternion, q.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

Examples

Calculate the Exponential of Quaternion

Calculate the exponentials of quaternion matrix [0 0 0.7854 0].

qe = quatexp([0 0 0.7854 0])

qe =
    0.7071         0    0.7071         0

Input Arguments
q — Quaternions
M-by-4 matrix

Quaternions for which to calculate exponentials, specified as an M-by-4 matrix containing M
quaternions.
Data Types: double

Output Arguments
qe — Exponential of quaternion
M-by-4 matrix

Exponential of quaternion.

References
[1] Dam, Erik B., Martin Koch, Martin Lillholm. "Quaternions, Interpolation, and Animation."

University of Copenhagen, København, Denmark, 1998.
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See Also
quatinterp | quatlog | quatpower | quatconj | quatdivide | quatinv | quatmod |
quatmultiply | quatnormalize | quatrotate

Introduced in R2016a
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quatinterp
Quaternion interpolation between two quaternions

Syntax
qi=quatinterp(p,q,f,method)

Description
qi=quatinterp(p,q,f,method) calculates the quaternion interpolation between two normalized
quaternions p and q by interval fraction f.

p and q are the two extremes between which the function calculates the quaternion.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

Examples

Quaternion Interpolation Between Two Quaternions

Use interpolation to calculate quaternion between two quaternions p=[1.0 0 1.0 0] and q=[-1.0
0 1.0 0] using the SLERP method. This example uses the quatnormalize function to first-
normalize the two quaternions to pn and qn.

pn = quatnormalize([1.0 0 1.0 0])
qn = quatnormalize([-1.0 0 1.0 0])
qi = quatinterp(pn,qn,0.5,'slerp')

pn =

    0.7071         0    0.7071         0

qn =

   -0.7071         0    0.7071         0

qi =

     0     0     1     0

Input Arguments
p — First-normalized quaternion
M-by-4 matrix

First normalized quaternion for which to calculate the interpolation, specified as an M-by-4 matrix
containing M quaternions. This quaternion must be a normalized quaternion.
Data Types: double

 quatinterp

4-675



q — Quaternions
M-by-4 matrix

Second normalized quaternion for which to calculate the interpolation, specified as an M-by-4 matrix
containing M quaternions. This quaternion must be a normalized quaternion.
Data Types: double

f — Interval fraction
M-by-1 matrix

Interval fraction by which to calculate the quaternion interpolation, specified as an M-by-1 matrix
containing M fractions (scalar). f varies between 0 and 1. It represents the intermediate rotation of
the quaternion to be calculated.

qi=(qp,qn,qf), where:

• If f equals 0, qi equals qp.
• If f is between 0 and 1, qi equals method.
• If f equals 1, qi equals qn.

Data Types: double

method — Quaternion interpolation method
'slerp' (default) | 'lerp' | 'nlerp'

Quaternion interpolation method to calculate the quaternion interpolation. These methods have
different rotational velocities, depending on the interval fraction. For more information on interval
fractions, see [1].

• slerp

Quaternion slerp. Spherical linear quaternion interpolation method. This method is most accurate,
but also most computation intense.

Slerp(p, q, h) = p(p*q)h with h ∈ [0, 1] .
• lerp

Quaternion lerp. Linear quaternion interpolation method. This method is the quickest, but is also
least accurate. The method does not always generate normalized output.

LERP(p, q, h) = p(1− h) + qh with h ∈ [0, 1] .
• nlerp

Normalized quaternion linear interpolation method.

With r = LERP(p, q, h), NLERP(p, q, h) = r
r .

Data Types: char
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Output Arguments
qi — Interpolation of quaternion
M-by-4 matrix

Interpolation of quaternion.

References
[1] Dam, Erik B., Martin Koch, Martin Lillholm. "Quaternions, Interpolation, and Animation."

University of Copenhagen, København, Denmark, 1998.

See Also
quatlog | quatexp | quatpower | quatconj | quatdivide | quatinv | quatmod | quatmultiply
| quatnormalize | quatrotate

Introduced in R2016a
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quatinv
Calculate inverse of quaternion

Syntax
n = quatinv(q)

Description
n = quatinv(q) calculates the inverse, n, for a given quaternion, q.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention. For more
information on quaternion forms, see “Algorithms” on page 4-678.

Examples

Determine Inverse

Determine the inverse of q = [1 0 1 0]:

qinv = quatinv([1 0 1 0])

qinv =

    0.5000         0   -0.5000         0

Input Arguments
q — Quaternion
m-by-4 matrix | real number

Quaternion, specified as an m-by-4 matrix containing m quaternions.
Data Types: double

Output Arguments
n — Inverse of quaternion
m-by-4 matrix

Inverse of quaternion, returned as an m-by-4 matrix.

Algorithms
The quaternion has the form of

q = q0 + iq1 + jq2 + kq3 .

The quaternion inverse has the form of
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q−1 =
q0− iq1− jq2− kq3

q0
2 + q1

2 + q2
2 + q3

2 .

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley–Interscience, 2nd

Edition.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for this function requires the Aerospace Blockset software.

See Also
quatdivide | quatconj | quatmod | quatmultiply | quatnorm | quatrotate | quatnormalize

Introduced in R2006b
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quatlog
Natural logarithm of quaternion

Syntax
ql=quatlog(q)

Description
ql=quatlog(q) calculates the natural logarithm, ql, for a normalized quaternion, q.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

This function uses the relationships.

For q = [cos(θ), sin(θ)v], with log(q) = [0, θv] .

Examples

Calculate the Natural Logarithm of Quaternion

Calculate the natural logarithm of quaternion matrix q=[1.0 0 1.0 0].

qlog = quatlog(quatnormalize([1.0 0 1.0 0]))

qlog =

         0         0    0.7854         0

Input Arguments
q — Quaternions
M-by-4 matrix

Quaternions for which to calculate the natural logarithm, specified as an M-by-4 matrix containing M
quaternions. This quaternion must be a normalized quaternion.
Data Types: double

Output Arguments
ql — Natural logarithm of quaternion
M-by-4 matrix

Natural logarithm of quaternion.
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References
[1] Dam, Erik B., Martin Koch, Martin Lillholm. "Quaternions, Interpolation, and Animation."

University of Copenhagen, København, Denmark, 1998.

See Also
quatinterp | quatexp | quatpower | quatconj | quatdivide | quatinv | quatmod |
quatmultiply | quatnormalize | quatrotate

Introduced in R2016a

 quatlog

4-681



quatmod
Calculate modulus of quaternion

Syntax
n = quatmod(q)

Description
n = quatmod(q) calculates the modulus, n, for a given quaternion, q. Input q is an m-by-4 matrix
containing m quaternions. n returns a column vector of m moduli. Each element of q must be a real
number.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

The quaternion has the form of

q = q0 + iq1 + jq2 + kq3

The quaternion modulus has the form of

q = q0
2 + q1

2 + q2
2 + q3

2

Examples
Determine the modulus of q = [1 0 0 0]:

mod = quatmod([1 0 0 0])

mod =

     1

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley–Interscience, 2nd

Edition.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for this function requires the Aerospace Blockset software.
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See Also
quatconj | quatdivide | quatinv | quatmultiply | quatnorm | quatnormalize | quatrotate

Introduced in R2006b
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quatmultiply
Calculate product of two quaternions

Syntax
quatprod = quatmultiply(q,r)

Description
quatprod = quatmultiply(q,r) calculates the quaternion product, quatprod, for two
quaternions, q and r.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

Note Quaternion multiplication is not commutative.

Examples

Determine the Product of Two Quaternions

This example shows how to determine the product of two 1-by-4 quaternions.

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
mult = quatmultiply(q, r)

mult = 1×4

    0.5000    1.2500    1.5000    0.2500

Determine Product of a Quaternion with Itself

This example shows how to determine the product of a 1-by-4 quaternion with itself.

q = [1 0 1 0];
mult = quatmultiply(q)

mult = 1×4

     0     0     2     0
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Determine the Product of Two Different Quaternions

This example shows how to determine the product of 1-by-4 with two 1-by-4 quaternions.

q = [1 0 1 0];
r = [1 0.5 0.5 0.75; 2 1 0.1 0.1];
mult = quatmultiply(q, r)

mult = 2×4

    0.5000    1.2500    1.5000    0.2500
    1.9000    1.1000    2.1000   -0.9000

Input Arguments
q — First quaternion
m-by-4 matrix | 1-by-4 quaternion | real

First quaternion or set of quaternions, specified as an m-by-4 matrix or 1-by-4 quaternion. Each
element must be real.

q must have its scalar number as the first column.
Data Types: double | single

r — Second quaternion
m-by-4 matrix | 1-by-4 quaternion | real

Second quaternionor set of quaternions, specified as an m-by-4 matrix or 1-by-4 quaternion. Each
element must be real.

r must have its scalar number as the first column.
Data Types: double | single

Output Arguments
quatprod — Output quaternion product
m-by-4 matrix

Output quaternion product, returned as a m-by-4 matrix.

More About
q and r

Input quaternions q and r have the form:

q = q0 + iq1 + jq2 + kq3

and

r = r0 + ir1 + jr2 + kr3
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quatprod

Output quaternion product quatprod has the form of

n = q × r = n0 + in1 + jn2 + kn3

where

n0 = (r0q0− r1q1− r2q2− r3q3)
n1 = (r0q1 + r1q0− r2q3 + r3q2)
n2 = (r0q2 + r1q3 + r2q0− r3q1)
n3 = (r0q3− r1q2 + r2q1 + r3q0)

References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, 2nd Edition. Hoboken, NJ: John

Wiley & Sons, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for this function requires the Aerospace Blockset software.

See Also
quatconj | quatdivide | quatinv | quatmod | quatnorm | quatnormalize | quatrotate

Introduced in R2006b
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quatnorm
Calculate norm of quaternion

Syntax
n = quatnorm(q)

Description
n = quatnorm(q) calculates the norm, n, for a given quaternion, q. Input q is an m-by-4 matrix
containing m quaternions. n returns a column vector of m norms. Each element of q must be a real
number.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

The quaternion has the form of

q = q0 + iq1 + jq2 + kq3

The quaternion norm has the form of

norm(q) = q0
2 + q1

2 + q2
2 + q3

2

Examples
Determine the norm of q = [1 0 0 0]:

norm=quatnorm([.5 -.5 .5 0])

norm =

    0.7500

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley–Interscience, 2nd

Edition.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for this function requires the Aerospace Blockset software.

See Also
quatconj | quatdivide | quatinv | quatmod | quatmultiply | quatnormalize | quatrotate
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quatnormalize
Normalize quaternion

Syntax
n = quatnormalize(q)

Description
n = quatnormalize(q) calculates the normalized quaternion, n, for a given quaternion, q. Input q
is an m-by-4 matrix containing m quaternions. n returns an m-by-4 matrix of normalized quaternions.
Each element of q must be a real number.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

The quaternion has the form of

q = q0 + iq1 + jq2 + kq3

The normalized quaternion has the form of

normal(q) =
q0 + iq1 + jq2 + kq3

q0
2 + q1

2 + q2
2 + q3

2

Examples
Normalize q = [1 0 1 0]:

normal = quatnormalize([1 0 1 0])

normal =

    0.7071         0    0.7071         0

References
[1] Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley–Interscience, 2nd

Edition.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation for this function requires the Aerospace Blockset software.
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See Also
quatconj | quatdivide | quatinv | quatmod | quatmultiply | quatnorm | quatrotate

Introduced in R2006b
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quatpower
Power of quaternion

Syntax
qp=quatpower(q,pow)

Description
qp=quatpower(q,pow) calculates q to the power of pow for a normalized quaternion, q.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

qt = exp(t ⋅ log(q)), with t ∈ R .

Examples

Calculate the Power of Quaternion

Calculate the power of 2 of quaternion q = [1.0 0 1.0 0].

qp = quatpower(quatnormalize([1.0 0 1.0 0]),2)

qp =

   -0.0000         0    1.0000         0

Input Arguments
q — Quaternions
M-by-4 matrix

Quaternions for which to calculate exponentials, specified as an M-by-4 matrix containing M
quaternions.
Data Types: double

pow — Power
M-by-1 vector

Power to which to calculate quaternion power, specified as an M-by-1 vector containing M power
scalars.
Data Types: double

Output Arguments
qp — Power of quaternion
M-by-4 matrix
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Power of quaternion.

References
[1] Dam, Erik B., Martin Koch, Martin Lillholm. "Quaternions, Interpolation, and Animation."

University of Copenhagen, København, Denmark, 1998.

See Also
quatexp | quatinterp | quatlog | quatconj | quatdivide | quatinv | quatmod |
quatmultiply | quatnormalize | quatrotate

Introduced in R2016a
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quatrotate
Rotate vector by quaternion

Syntax
n = quatrotate(q,r)

Description
n = quatrotate(q,r) calculates the rotated vector, n, for a quaternion, q, and a vector, r. If
quaternions are not yet normalized, the function normalizes them.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention. This function
normalizes all quaternion inputs.

Examples

Rotate a 1-by-3 Vector

This example shows how to rotate a 1-by-3 vector by a 1-by-4 quaternion.

q = [1 0 1 0];
r = [1 1 1];
n = quatrotate(q, r)

n = 1×3

   -1.0000    1.0000    1.0000

Rotate Two 1-by-3 Vectors by a 1-by-4 Quaternion

This example shows how to rotate two 1-by-3 vectors by a 1-by-4 quaternion.

q = [1 0 1 0];
r = [1 1 1; 2 3 4];
n = quatrotate(q, r)

n = 2×3

   -1.0000    1.0000    1.0000
   -4.0000    3.0000    2.0000
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Rotate a 1-by-3 Vector by Two 1-by-4 Quaternions

This example shows how to rotate a 1-by-3 vector by two 1-by-4 quaternions.

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1];
n = quatrotate(q, r)

n = 2×3

   -1.0000    1.0000    1.0000
    0.8519    1.4741    0.3185

Rotate Multiple Vectors by Multiple Quaternions

This example shows how to rotate multiple vectors by multiple quaternions.

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1; 2 3 4];
n = quatrotate(q, r)

n = 2×3

   -1.0000    1.0000    1.0000
    1.3333    5.1333    0.9333

Input Arguments
q — Quaternion
m-by-4 matrix | 1-by-4 array

Quaternion or set of quaternions, specified as an m-by-4 matrix containing m quaternions, or a single
1-by-4 quaternion. Each element must be real.

q must have its scalar number as the first column.
Data Types: double | single

r — Vector
m-by-3 matrix | 1-by-3 array

Vector or set of vectors to be rotated, specified as an m-by-3 matrix, containing m vectors, or a single
1-by-3 array. Each element must be real.
Data Types: double | single

Output Arguments
n — Rotated vector
m-by-3 matrix

4 Functions

4-694



Rotated vector, returned as an m-by-3 matrix.

More About
q

Quaternion q has the form:

q = q0 + iq1 + jq2 + kq3

r

Vector r has the form:

v = iv1 + jv2 + kv3

n

Rotated vector n has the form:

v′ =
v1′
v2′
v3′

=

(1− 2q2
2− 2q3

2) 2(q1q2 + q0q3) 2(q1q3− q0q2)

2(q1q2− q0q3) (1− 2q1
2− 2q3

2) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3− q0q1) (1− 2q1
2− 2q2

2)

v1
v2
v3

The direction cosine matrix for this equation expects a normalized quaternion.

References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, 2nd Edition. Hoboken, NJ: John

Wiley & Sons, 2003.

[2] Diebel, James. "Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors."
Stanford University, Stanford, California, 2006.

See Also
quatconj | quatinv | quatmod | quatmultiply | quatnorm | quatnormalize

Introduced in R2006b
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read (Aero.Geometry)
Read geometry data using current reader

Syntax
read(h, source)

Description
read(h, source) reads the geometry data of the geometry object h. source can be:

• 'Auto'

Selects default reader.
• 'Variable'

Selects MATLAB variable of type structure structures that contains the fieldsname, faces,
vertices, and cdata that define the geometry in the Handle Graphics patches.

• 'MatFile'

Selects MAT-file reader.
• 'Ac3dFile'

Selects Ac3d file reader.
• 'Custom'

Selects a custom reader.

Examples
Read geometry data from Ac3d file, pa24-250_orange.ac.

g = Aero.Geometry;
g.Source = 'Ac3d';
g.read('pa24-250_orange.ac');

Introduced in R2007a

4 Functions

4-696



removeBody
Class: Aero.Animation
Package: Aero

Remove one body from animation

Syntax
h = removeBody(h,idx)
h = h.removeBody(idx)

Description
h = removeBody(h,idx) and h = h.removeBody(idx) remove the body specified by the index
idx from the animation object h.

Input Arguments
h Animation object.
idx Body specified with this index.

Examples
Remove the body identified by the index, 1.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
h = removeBody(h,1)
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removeNode (Aero.VirtualRealityAnimation)
Remove node from virtual reality animation object

Syntax
removeNode(h,node)
h.removeNode(node)

Description
removeNode(h,node) and h.removeNode(node) remove the node specified by node from the
virtual reality animation object h. node can be either the node name or the node index. This function
can remove only one node at a time.

Note  You can use only this function to remove a node added by addNode. If you need to remove a
node from a previously defined .wrl file, use a VRML editor.

Examples
Remove the node, Lynx1.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
h.addNode('Lynx1',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);
h.removeNode('Lynx1');

See Also
addNode

Introduced in R2007b
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removeViewpoint (Aero.VirtualRealityAnimation)
Remove viewpoint node from virtual reality animation

Syntax
removeViewpoint(h,viewpoint)
h.removeViewpoint(viewpoint)

Description
removeViewpoint(h,viewpoint) and h.removeViewpoint(viewpoint) remove the viewpoint
specified by viewpoint from the virtual reality animation object h. viewpoint can be either the
viewpoint name or the viewpoint index. This function can remove only one viewpoint at a time.

Note  You can use this function to remove a viewpoint added by addViewpoint. If you need to
remove a viewpoint from a previously defined .wrl file, use a VRML editor.

Examples
Remove the node, Lynx1.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
h.addViewpoint(h.Nodes{2}.VRNode,'children','chaseView','View From Helicopter');
h.removeViewpoint('chaseView');

See Also
addViewpoint

Introduced in R2007b
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rod2angle
Convert Euler-Rodrigues vector to rotation angles

Syntax
[R1 R2 R3]=rod2angle(rod)
[R1 R2 R3]=rod2angle(rod,S)

Description
[R1 R2 R3]=rod2angle(rod) function calculates the set of rotation angles, R1, R2, and R3, for a
given Euler-Rodrigues (also known as Rodrigues) vector, rod. The rotation used in this function is a
passive transformation between two coordinate systems.

[R1 R2 R3]=rod2angle(rod,S) function calculates the set of rotation angles for a given
Rodrigues vector and a specified rotation sequence, S.

Examples

Determine Rotation Angles from One Vector

Determine rotation angles from vector, [.1 .2 -.1].

r = [.1 .2 -.1];
[yaw, pitch, roll] = rod2angle(r)

yaw =

   -0.1651

pitch =

    0.4074

roll =

    0.1651

Input Arguments
rod — Rodrigues vector
M-by-3 matrix

M-by-3 matrix containing M Rodrigues vector.
Data Types: double

S — Rotation sequence
ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX
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Rotation angles, in radians, from which to determine Rodrigues vector. For the default rotation
sequence, ZYX, the rotation angle order is:

• R1 — z-axis rotation
• R2 — y-axis rotation
• R3 — x-axis rotation

Data Types: char | string

Output Arguments
R1 — First rotation angles
M-by-1 array

M-by-1 array of first rotation angles, in radians.

R2 — Second rotation angles
M-by-1 array

M-by-1 array of second rotation angles, in radians.

R3 — Third rotation angles
M-by-1 array

M-by-1 array of third rotation angles, in radians.

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.
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See Also
angle2rod | dcm2rod | quat2rod | rod2dcm | rod2quat

Introduced in R2017a
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rod2dcm
Convert Euler-Rodrigues vector to direction cosine matrix

Syntax
dcm=rod2dcm(R)

Description
dcm=rod2dcm(R) function calculates the direction cosine matrix, for a given Euler-Rodrigues (also
known as Rodrigues) vector, R.

Examples

Determine Direction Cosine Matrix from Euler-Rodrigues Vector

Determine the direction cosine matrix from the Euler-Rodrigues vector.

r = [.1 .2 -.1];
DCM = rod2dcm(r)

DCM =

    0.9057   -0.1509   -0.3962
    0.2264    0.9623    0.1509
    0.3585   -0.2264    0.9057

Input Arguments
R — Rodrigues vector
M-by-3 matrix

M-by-3 matrix containing M Rodrigues vectors.
Data Types: double

Output Arguments
dcm — Direction cosine matrix
3-by-3-by-M matrix

3-by-3-by-M containing M direction cosine matrices.

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:
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b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

See Also
angle2rod | dcm2rod | quat2rod | rod2angle | rod2quat

Introduced in R2017a
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rod2quat
Convert Euler-Rodrigues vector to quaternion

Syntax
quat=rod2quat(R)

Description
quat=rod2quat(R) function calculates the quaternion, quat, for a given Euler-Rodrigues (also
known as Rodrigues) vector, R.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

Examples

Determine Quaternion from Rodrigues Vector

Determine the quaternion from Rodrigues vector.

r = [.1 .2 -.1];
q = rod2quat(r)

q =

    0.9713    0.0971    0.1943   -0.0971

Input Arguments
R — Rodrigues vector
M-by-1 matrix

M-by-1 array of Rodrigues vectors.
Data Types: double

Output Arguments
quat — Rodrigues vector
M-by-4 matrix

M-by-4 matrix of M quaternions. quat has its scalar number as the first column.

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:
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b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

See Also
angle2rod | dcm2rod | quat2rod | rod2angle | rod2dcm

Introduced in R2017a

4 Functions

4-706



RPMIndicator Properties
Control revolutions per minute (RPM) indicator appearance and behavior

Description
RPM indicators are components that represent an RPM indicator. Properties control the appearance
and behavior of an RMP indicator. Use dot notation to refer to a particular object and property:

f = uifigure;
rpm = uiaerorpm(f);
rpm.Value = 100;

The RPM indicator displays measurements for engine revolutions per minute in percentage of RPM.

The range of values for RPM goes from 0 to 110%. Minor ticks represent increments of 5% RPM and
major ticks represent increments of 10% RPM.

Properties
RMP Indicator

Limits — Minimum and maximum indicator scale values
two-element finite, real, and scalar numeric array | read-only

Minimum and maximum indicator scale values, specified as a two-element numeric array. This value
is read-only.

RPM — Location of RPM indicator needle
0 (default) | finite, real, and scalar numeric

Location of the RPM indicator needle, specified a finite and scalar numeric rev/min.

• Changing the value changes the location of the to align with the corresponding value on the
indicator.

Example: 60

Dependencies

Specifying this value changes the value of Value.
Data Types: double

ScaleColors — Scale colors
[ ] (default) | 1-by-n string array | 1-by-n cell array | n-by-3 array of RGB triplets | hexadecimal color
code | ...

Scale colors, specified as one of the following arrays:

• A 1-by-n string array of color options, such as ["blue" "green" "red"].
• An n-by-3 array of RGB triplets, such as [0 0 1;1 1 0].

 RPMIndicator Properties

4-707



• A 1-by-n cell array containing RGB triplets, hexadecimal color codes, or named color options. For
example, {'#EDB120','#7E2F8E','#77AC30'}.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Each color of the ScaleColors array corresponds to a colored section of the gauge. Set the
ScaleColorLimits property to map the colors to specific sections of the gauge.

If you do not set the ScaleColorLimits property, MATLAB distributes the colors equally over the
range of the gauge.

ScaleColorLimits — Scale color limits
[ ] (default) | n-by-2 array
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Scale color limits, specified as an n-by-2 array of numeric values. For every row in the array, the first
element must be less than the second element.

When applying colors to the gauge, MATLAB applies the colors starting with the first color in the
ScaleColors array. Therefore, if two rows in ScaleColorLimits array overlap, then the color
applied later takes precedence.

The gauge does not display any portion of the ScaleColorLimits that falls outside of the Limits
property.

If the ScaleColors and ScaleColorLimits property values are different sizes, then the gauge
shows only the colors that have matching limits. For example, if the ScaleColors array has three
colors, but the ScaleColorLimits has only two rows, then the gauge displays the first two color/
limit pairs only.

Value — Location of RPM indicator needle
0 (default) | finite, real, and scalar numeric

Location of the RPM indicator needle, specified a finite and scalar numeric rev/min.

• Changing the value changes the location of the to align with the corresponding value on the
indicator.

Example: 60

Dependencies

Specifying this value changes the value of RPM.
Data Types: double

Interactivity

Visible — Visibility of RPM indicator
'on' (default) | on/off logical value

Visibility of the RPM indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the RPM indicator
is displayed on the screen. If the Visible property is set to 'off', then the entire RPM indicator is
hidden, but you can still specify and access its properties.

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.

Enable — Operational state of RPM indicator
'on' (default) | on/off logical value

Operational state of RPM indicator, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.
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• If you set this property to 'on', then the appearance of the RPM indicator indicates that the RPM
indicator is operational.

• If you set this property to 'off', then the appearance of the RPM indicator appears dimmed,
indicating that the RPM indicator is not operational.

Position

Position — Location and size of RPM indicator
[100 100 120 120] (default) | [left bottom width height]

Location and size of the RPM indicator relative to the parent container, specified as the vector, [left
bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the RPM indicator
bottom Distance from the inner bottom edge of the parent container to the

outer bottom edge of an imaginary box surrounding the RPM
indicator

width Distance between the right and left outer edges of the RPM
indicator

height Distance between the top and bottom outer edges of the RPM
indicator

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of RPM indicator
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the RPM indicator, specified as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

OuterPosition — Outer location and size of RPM indicator
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the RPM indicator returned as [left bottom width height]. Position
values are relative to the parent container. All measurements are in pixel units. This property value is
identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
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container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an RPM indicator in the third row and second column of its parent grid.

g = uigridlayout([4 3]);
gauge = uiaerorpm(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the RPM indicator span multiple rows or columns, specify the Row or Column property as a
two-element vector. For example, this RPM indicator spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.
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For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.
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Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Parent/Child

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.
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HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

Identifiers

Type — Type of graphics object
'uiaerorpm'

This property is read-only.

Type of graphics object, returned as 'uiaerorpm'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

See Also
uiaerorpm

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110
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Introduced in R2018b
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rrdelta
Compute relative pressure ratio

Syntax
d = rrdelta(p0, mach, g)

Description
d = rrdelta(p0, mach, g) computes m pressure relative ratios, d, from m static pressures, p0, m
Mach numbers, mach, and m specific heat ratios, g. p0 must be in pascals.

Examples
Determine the relative pressure ratio for three pressures:

delta = rrdelta([101325 22632.0672 4328.1393], 0.5, 1.4)

delta =

    1.1862    0.2650    0.0507

Determine the relative pressure ratio for three pressures and three different heat ratios:
delta = rrdelta([101325 22632.0672 4328.1393], 0.5, [1.4 1.35 1.4])

delta =

    1.1862    0.2635    0.0507

Determine the relative pressure ratio for three pressures at three different conditions:
delta = rrdelta([101325 22632.0672 4328.1393], [0.5 1 2], [1.4 1.35 1.4])

delta =

    1.1862    0.4161    0.3342

Assumptions and Limitations
For cases in which total pressure ratio is desired (Mach number is nonzero), the total pressures are
calculated assuming perfect gas (with constant molecular weight, constant pressure specific heat,
and constant specific heat ratio) and dry air.

References
Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, August, 1986

See Also
rrsigma | rrtheta
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Introduced in R2006b
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rrsigma
Compute relative density ratio

Syntax
s = rrsigma(rho, mach, g)

Description
s = rrsigma(rho, mach, g) computes m density relative ratios, s, from m static densities, rho, m
Mach numbers, mach, and m specific heat ratios, g. rho must be in kilograms per meter cubed.

Examples
Determine the relative density ratio for three densities:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, 1.4)

sigma =

    1.1297    0.3356    0.0879

Determine the relative density ratio for three densities and three different heat ratios:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, [1.4 1.35 1.4])

sigma =

    1.1297    0.3357    0.0879

Determine the relative density ratio for three densities at three different conditions:
sigma = rrsigma([1.225 0.3639 0.0953], [0.5 1 2], [1.4 1.35 1.4])

sigma =

    1.1297    0.4709    0.3382

Assumptions and Limitations
For cases in which total density ratio is desired (Mach number is nonzero), the total density is
calculated assuming perfect gas (with constant molecular weight, constant pressure specific heat,
and constant specific heat ratio) and dry air.

References
Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, August, 1986
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See Also
rrdelta | rrtheta

Introduced in R2006b
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rrtheta
Compute relative temperature ratio

Syntax
th = rrtheta(t0, mach, g)

Description
th = rrtheta(t0, mach, g) computes m temperature relative ratios, th, from m static
temperatures, t0, m Mach numbers, mach, and m specific heat ratios, g. t0 must be in kelvin.

Examples
Determine the relative temperature ratio for three temperatures:

th = rrtheta([273.15 310.9278 373.15], 0.5, 1.4)

th =

    0.9953    1.1330    1.3597

Determine the relative temperature ratio for three temperatures and three different heat ratios:

th = rrtheta([273.15 310.9278 373.15], 0.5, [1.4 1.35 1.4])

th =

    0.9953    1.1263    1.3597

Determine the relative temperature ratio for three temperatures at three different conditions:
th = rrtheta([273.15 310.9278 373.15], [0.5 1 2], [1.4 1.35 1.4])

th =

    0.9953    1.2679    2.3310

Assumptions and Limitations
For cases in which total temperature ratio is desired (Mach number is nonzero), the total
temperature is calculated assuming perfect gas (with constant molecular weight, constant pressure
specific heat, and constant specific heat ratio) and dry air.

References
Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, August, 1986
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See Also
rrdelta | rrsigma

Introduced in R2006b
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Satellite
Satellite object belonging to satellite scenario

Description
Satellite defines a satellite object belonging to a satellite scenario.

Creation
You can create Satellite objects using the satellite method of satelliteScenario.

Properties
Orbit — Orbit graphic
Orbit object

Orbit object parameters for a satellite, specified as an orbit object. Only these object properties are
relevant for this function.

LineColor — Color of orbit
[1,0,0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Color of the orbit, specified as an RGB triplet, hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineWidth — Visual width of orbit
1 (default) | scalar in the range (0, 10)

Visual width of orbit in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

VisibilityMode — Visibility mode of orbit graphic
'inherit' (default) | 'manual'

Visibility mode of orbit graphic, specified as one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent
• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Data Types: char | string

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling Satellite. After you call Satellite, this property is read-
only.

Access analysis objects, specified as a row vector of Access objects.
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MarkerColor — Color of marker
[1 0 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerSize — Size of marker
10 (default) | positive scalar less than 30
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Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of Satellite label visibility
true or 1 (default) | false or 0

State of Satellite label visibility, specified as a comma-separated pair consisting of 'ShowLabel' and
numerical or logical value of 1 (true) or 0 (false).
Data Types: logical

LabelFontSize — Font size of Satellite label
15 (default) | positive scalar less than 30

Font size of the Satellite label, specified as a comma-separated pair consisting of 'LabelFontSize'
and a positive scalar less than 30.

LabelFontColor — Font color of Satellite label
[1,0,0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Font color of the Satellitelabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.
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RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Name — Satellite name
"Satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling Satellite. After you call Satellite, this property is read-
only.

Satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Satellite is added, specify Name as a string scalar or a character vector.
• If multiple Satellites are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the Satellite added by the Satellite object function. If
another Satellite of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — Satellite ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Satellite ID assigned by the simulator, specified as a positive scalar.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Satellite, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the Satellite, specified as the comma-separated pair consisting of 'Gimbals'
and a row vector of Gimbal objects.
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OrbitPropagator — Name of orbit propagator
"sgp4" (default) | "two-body-keplerian" | "sdp4" | "ephemeris"

You can set this property when calling satellite only. After you call satellite, this property is
read-only.

Name of the orbit propagator used for propagating satellite position and velocity, specified as the
comma-separated pair consisting of 'OrbitPropagator' and either "two-body-keplerian",
"sgp4", "sdp4", or "ephemeris".

Dependencies

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite ignores this name-value pair.
Data Types: string | char

Object Functions
access Add access analysis objects to satellite scenario
states Position and velocity of satellite
conicalSensor Add conical sensor to satellite scenario
pointAt Target at which entity must be pointed
gimbal Add gimbal to satellite or ground station
show Show object in satellite scenario viewer
aer Calculate azimuth angle, elevation angle, and range in NED frame from another

satellite or ground station
hide Hides satellite scenario entity from viewer
groundTrack Add ground track object to satellite in scenario
orbitalElements Orbital elements of satellites in scenario

Examples

Visualize Line of Sight Between Two Satellites

Create a satelliteScenario object.

startTime = datetime(2020,5,5,0,0,0);
stopTime = startTime + days(1);
sampleTime = 60;                                      %seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite from a TLE file to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat1 = satellite(sc,tleFile,"Name","Sat1")

sat1 = 
  Satellite with properties:

               Name:  Sat1
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
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          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  sdp4
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add a satellite from Keplerian elements to the scenario and specify its orbit propagator to be "two-
body-keplerian".

semiMajorAxis = 6878137;                                                                    %m
eccentricity = 0;
inclination = 20;                                                                           %degrees
rightAscensionOfAscendingNode = 0;                                                          %degrees
argumentOfPeriapsis = 0;                                                                    %degrees
trueAnomaly = 0;                                                                            %degrees
sat2 = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,...
    argumentOfPeriapsis,trueAnomaly,"OrbitPropagator","two-body-keplerian","Name","Sat2")

sat2 = 
  Satellite with properties:

               Name:  Sat2
                 ID:  2
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  two-body-keplerian
        MarkerColor:  [1 0 0]
         MarkerSize:  10
          ShowLabel:  true
     LabelFontColor:  [1 0 0]
      LabelFontSize:  15

Add access analysis between the two satellites.

ac = access(sat1,sat2);

Determine the times when there is line of sight between the two satellites.

accessIntervals(ac)

ans=15×8 table
    Source    Target    IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    ______    ______    ______________    ____________________    ____________________    ________    __________    ________

    "Sat1"    "Sat2"           1          05-May-2020 00:09:00    05-May-2020 01:08:00      3540          1            1    
    "Sat1"    "Sat2"           2          05-May-2020 01:50:00    05-May-2020 02:47:00      3420          1            1    
    "Sat1"    "Sat2"           3          05-May-2020 03:45:00    05-May-2020 04:05:00      1200          1            1    
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    "Sat1"    "Sat2"           4          05-May-2020 04:32:00    05-May-2020 05:26:00      3240          1            1    
    "Sat1"    "Sat2"           5          05-May-2020 06:13:00    05-May-2020 07:10:00      3420          1            1    
    "Sat1"    "Sat2"           6          05-May-2020 07:52:00    05-May-2020 08:50:00      3480          1            1    
    "Sat1"    "Sat2"           7          05-May-2020 09:30:00    05-May-2020 10:29:00      3540          1            1    
    "Sat1"    "Sat2"           8          05-May-2020 11:09:00    05-May-2020 12:07:00      3480          1            2    
    "Sat1"    "Sat2"           9          05-May-2020 12:48:00    05-May-2020 13:46:00      3480          2            2    
    "Sat1"    "Sat2"          10          05-May-2020 14:31:00    05-May-2020 15:27:00      3360          2            2    
    "Sat1"    "Sat2"          11          05-May-2020 17:12:00    05-May-2020 18:08:00      3360          2            2    
    "Sat1"    "Sat2"          12          05-May-2020 18:52:00    05-May-2020 19:49:00      3420          2            2    
    "Sat1"    "Sat2"          13          05-May-2020 20:30:00    05-May-2020 21:29:00      3540          2            2    
    "Sat1"    "Sat2"          14          05-May-2020 22:08:00    05-May-2020 23:07:00      3540          2            2    
    "Sat1"    "Sat2"          15          05-May-2020 23:47:00    06-May-2020 00:00:00       780          2            2    

Visualize the line of sight between the satellites.

play(sc);

References
[1] Hoots, Felix R., and Ronald L. Roehrich. Models for propagation of NORAD element sets.

Aerospace Defense Command Peterson AFB CO Office of Astrodynamics, 1980.

See Also
Objects
satelliteScenario | groundStation | access | satelliteScenarioViewer
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Functions
show | play | hide

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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satellite
Add satellites to satellite scenario

Syntax
satellite(scenario,tlefile)
satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly)
satellite(scenario,positiontable)
satellite(scenario,positiontable,velocitytable)
satellite(scenario,positiontimeseries)
satellite(scenario,positiontimeseries,velocitytimeseries)
satellite( ___ ,Name,Value)
sat = satellite( ___ )

Description
sat = satellite(scenario,tlefile) adds a Satellite object from TLE file to the satellite
scenario specified by scenario, specified as a string scalar or character vector. The yaw (z) axes of
the satellites point toward nadir, and the roll (x) axes of the satellites align with their respective
inertial velocity vectors.

satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly) adds a Satellite object from Keplerian elements defined in the
Geocentric Celestial Reference Frame (GCRF) to the satellite scenario.

satellite(scenario,positiontable) adds a Satellite object from position data specified in
positiontable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontable,velocitytable) adds a Satellite object from position
data specified in positiontable (timetable object) and velocity data specified in
velocitytable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries) adds a Satellite object from position data
specified in positiontimeseries (timeseries object). This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries,velocitytimeseries) adds a Satellite object
to the scenario from position (in meters) data specified in positiontimeseries (timeseries
object) and velocity (in meters/second) data specified in velocitytimeseries (timeseries
object). This function creates a Satellite with OrbitPropagator="ephemeris".

satellite( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
('Name','satellite1') specifies the name of the satellite as 'satellite1'. .

sat = satellite( ___ ) returns a vector of handles to the added satellites. Specify any input
argument combination from previous syntaxes.
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Examples

Add Four Satellites from Position Timetable and Visualize Their Trajectories

Add four satellites to the satellite scenario from a position timetable to a satellite scenario and
visualize their trajectories.

Create a default satellite scenario object.

sc = satelliteScenario;

Load a satellite ephemeris timetable, assuming the data is in the GCRF coordinate frame.

load("timetableSatelliteTrajectory.mat","positionTT");

Add the satellites to the scenario.

sat = satellite(sc,positionTT);

Visualize the trajectories of the satellites.

play(sc);

Add Four Satellites from Position and Velocity Timetable and Visualize Their Trajectories

Add four satellites to the satellite scenario from position and velocity timetables in the Earth
Centered Earth Fixed (ECEF) frame and visualize their trajectories.

Create a default satellite scenario object.

sc = satelliteScenario;

Load a satellite ephemeris timetable, assuming the data is in the ECEF coordinate frame.

load("timetableSatelliteTrajectory.mat","positionTT","velocityTT");

Add the satellites to the scenario.

sat = satellite(sc,positionTT,velocityTT,"CoordinateFrame","ecef")

Visualize the trajectories of the satellites.

play(sc);

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];

4 Functions

4-732



lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10; 
rightAscensionOfAscendingNode = 0; 
argumentOfPeriapsis = 0; 
trueAnomaly = 0; 
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
        rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
       Source              Target          IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _____________    __________________    ______________    ____________________    ____________________    ________    __________    ________

    "Satellite 2"    "Ground station 1"          1           01-May-2020 11:36:00    01-May-2020 12:04:00      1680          1            1    
    "Satellite 2"    "Ground station 1"          2           01-May-2020 14:20:00    01-May-2020 15:11:00      3060          1            2    
    "Satellite 2"    "Ground station 1"          3           01-May-2020 17:27:00    01-May-2020 18:18:00      3060          3            3    
    "Satellite 2"    "Ground station 1"          4           01-May-2020 20:34:00    01-May-2020 21:25:00      3060          4            4    
    "Satellite 2"    "Ground station 1"          5           01-May-2020 23:41:00    02-May-2020 00:32:00      3060          5            5    
    "Satellite 2"    "Ground station 1"          6           02-May-2020 02:50:00    02-May-2020 03:39:00      2940          6            6    
    "Satellite 2"    "Ground station 1"          7           02-May-2020 05:59:00    02-May-2020 06:47:00      2880          7            7    
    "Satellite 2"    "Ground station 1"          8           02-May-2020 09:06:00    02-May-2020 09:56:00      3000          8            9    

Play the scenario to visualize the ground stations.

play(sc)
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Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
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argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
    rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat = 
  1×2 Satellite array with properties:

    Name
    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    GroundTrack
    Orbit
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontSize
    LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
  1×2 GroundTrack array with properties:

    LeadTime
    TrailTime
    LineWidth
    TrailLineColor
    LeadLineColor
    VisibilityMode

play(sc)
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Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

tlefile — Name of TLE file
character vector | string scalar

Name of a TLE file, specified as a character vector or a string scalar. The TLE file must exist in the
current directory, exist in a directory on the MATLAB path, or include a full or relative path to a file.

For more information on TLE files, see “Two Line Element (TLE) Files” on page 2-70.
Data Types: char | string
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semimajoraxis, eccentricity, inclination, RAAN, argofperiapsis, trueanomaly —
Keplerian elements defined in GCRF
comma-separated list of vectors

Keplerian elements defined in the GCRF, specified as a comma-separated list of vectors. The
Keplerian elements are:

• semimajoraxis – This vector defines the semimajor axis of the orbit of the satellite. Each value is
equal to half of the longest diameter of the orbit.

• eccentricity – This vector defines the shape of the orbit of the satellite.
• inclination – This vector defines the angle between the orbital plane and the xy-plane of the

GCRF for each satellite.
• RAAN (right ascension of ascending node) – This element defines the angle between the xy-plane of

the GCRF and the direction of the ascending node, as seen from the Earth's center of mass for
each satellite. The ascending node is the location where the orbit crosses the xy-plane of the
GCRF and goes above the plane.

• argofperiapsis (argument of periapsis) – This vector defines the angle between the direction of
the ascending node and the periapsis, as seen from the Earth's center of mass. Periapsis is the
location on the orbit that is closest to the Earth's center of mass for each satellite.

• trueanomaly – This vector defines the angle between the direction of the periapsis and the
current location of the satellite, as seen from the Earth's center of mass for each satellite.

For more information on Keplerian elements, see “Orbital Elements” on page 2-68.

positiontable — Position data
timetable | table

Position data in meters, specified as a timetable created using the timetable function.
positiontable has exactly one monotonically increasing column of rowTimes (datetime or
duration values) and one or more columns of variables, where each column contains an individual
satellite position over time.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of positiontable.
Data Types: table | timetable

velocitytable — Velocity data
timetable | table

Velocity data in meters/second, specified as a timetable created using the timetable function.
velocitytable has exactly one monotonically increasing column of rowTimes (datetime or
duration values) and one or more columns of variables, where each column contains an individual
satellite position over time.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of velocitytable.
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Data Types: table | timetable

positiontimeseries — Position data
timeseries object | tscollection object

Position data in meters, specified as a timeseries object or a tscollection object.

• If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

• If the Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of positiontimeseries.

Data Types: timeseries | tscollection

velocitytimeseries — Velocity data
timeseries object | tscollection object

Velocity data in meters/second, specified as a timeseries object or a tscollection object.

• If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

• If the Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of velocitytimeseries.

Data Types: timeseries | tscollection

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Name','MySatellite' sets the satellite name to 'MySatellite'.

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects
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Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

Name — satellite name
"satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling satellite. After you call satellite, this property is read-only.

satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one satellite is added, specify Name as a string scalar or a character vector.
• If multiple satellites are added, specify Name as a string vector or a cell array of character vectors.

The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the satellite added by the satellite object function. If
another satellite of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

OrbitPropagator — Name of orbit propagator
"sgp4" (default) | "two-body-keplerian" | "sdp4" | "ephemeris"

You can set this property when calling satellite only. After you call satellite, this property is
read-only.

Name of the orbit propagator used for propagating satellite position and velocity, specified as the
comma-separated pair consisting of 'OrbitPropagator' and either "two-body-keplerian",
"sgp4", "sdp4", or "ephemeris".

Dependencies

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite ignores this name-value pair.
Data Types: string | char

CoordinateFrame — Satellite state coordinate frame
"inertial" (default) | "ecef" | "geographic"

Satellite state coordinate frame, specified as the comma-separated pair consisting of
'CoordinateFrame' and one of these values:

• "inertial" — For timeseries or timetable data, specifying this value accepts the position
and velocity in the GCRF frame.

• "ecef" — For timeseries or timetable data, specifying this value accepts the position and
velocity in the ECEF frame.

• "geographic" — For timeseries or timetable data, specifying this value accepts the position
[lat, lon, altitude], where lat and lon are latitude and longitude in degrees, and altitude is the
height above the World Geodetic System 84 (WGS 84) ellipsoid in meters.

Velocity is in the local NED frame.
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Dependencies

To enable this name value argument, ephemeris data inputs (timetable or timeseries).
Data Types: string | char

Output Arguments
sat — Satellite in the scenario
Satellite object

Satellite in the scenario, returned as a Satellite object belonging to the satellite scenario specified
by scenario.

You can modify the Satellite object by changing its property values.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | show | play | hide | orbitalElements

Topics
“Satellite Scenario Key Concepts” on page 2-63
“Satellite Scenario Overview” on page 2-72

Introduced in R2021a
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satelliteScenario
Create satellite scenario object

Description
The satelliteScenario object represents a 3-D arena consisting of satellites, ground stations, and
the interactions between them. Use this object to model satellite constellations, model ground station
networks, perform access analyses between the satellites and the ground stations, and visualize the
results.

Creation
Syntax
sc = satelliteScenario
sc = satelliteScenario(startTime,stopTime,sampleTime)

Description

sc = satelliteScenario creates a default satellite scenario object.

sc = satelliteScenario(startTime,stopTime,sampleTime) sets the StartTime, StopTime,
and SampleTime properties to the values of startTime, stopTime, and sampleTime respectively.

Properties
StartTime — Start time of satellite scenario simulation in UTC
current time or earliest epoch defined in TLE data (default) | datetime scalar

Start time of the satellite scenario simulation in Universal Time Coordinated (UTC), specified as a
datetime scalar. If you specify the StartTime, StopTime, or SampleTime properties, the object no
longer updates StartTime property with further additions of satellites from TLE files.
Example: datetime(2020,5,11,12,35,38);
Data Types: datetime

StopTime — Stop time of satellite scenario simulation in UTC
StartTime + longest orbital period among the satellites in the scenario (default) | datetime scalar

Stop time of the satellite scenario simulation in UTC, specified as a datetime scalar. If you specify
the StartTime, StopTime, or SampleTime properties, the object no longer updates StartTime
property with further additions of satellites from TLE files.
Example: datetime(2020,5,11,12,35,38);
Data Types: datetime

SampleTime — Sample time of satellite scenario simulation
(StopTime - StartTime)/99 (default) | real-valued scalar
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Sample time of the satellite scenario simulation, specified as a real-valued scalar. If you specify the
StartTime, StopTime, or SampleTime properties, the object no longer updates, the SampleTime
property updated with further additions of satellites from TLE files.
Data Types: double

Satellites — Satellites in the scenario
row vector of Satellite objects

This property is read-only.

Satellites in the scenario, returned as a vector of Satellite objects. To create a Satellite object
and add it to the satellite scenario, see the satellite object function.

GroundStations — Ground stations in scenario
row vector of GroundStation objects

This property is read-only.

Ground stations in the scenario, returned as a row vector of GroundStation objects. To create a
GroundStation object and add it to the satellite scenario, see the groundStation object function.

Autoshow — Graphics shown automatically
1 or true (default) | 0 or false

Option to automatically show graphics, specified as a numeric or logical value of 1 (true) or 0
(false). This property determines if entities added to the scenario are automatically shown in an
open satelliteScenarioViewer.

Object Functions
groundStation Add ground station to satellite scenario
satellite Add satellites to satellite scenario
satelliteScenarioViewer Create viewer for satellite scenario
play Play satellite scenario simulation results on viewer

Examples

Create Satellite Scenario with Custom Start and Stop Times

Specify the start time in the current time zone as yesterday. The simulation lasts for half a day.

startTime = datetime("yesterday","TimeZone","local");
stopTime = startTime + days(0.5);

Specify the sample time as 60 seconds. Create a satellite scenario object, specifying the start time,
stop time, and sample time.

sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 31-Aug-2021 04:00:00
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          StopTime: 31-Aug-2021 16:00:00
        SampleTime: 60
           Viewers: [0x0 matlabshared.satellitescenario.Viewer]
        Satellites: [1x0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
    rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat = 
  1×2 Satellite array with properties:

    Name
    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    GroundTrack
    Orbit
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontSize
    LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
  1×2 GroundTrack array with properties:
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    LeadTime
    TrailTime
    LineWidth
    TrailLineColor
    LeadLineColor
    VisibilityMode

play(sc)

Tips
• When saving the satellite scenario, either save the entire workspace containing the scenario

object or save the scenario object itself.
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See Also
Objects
satellite | satelliteScenarioViewer

Functions
play | show | hide | access | groundStation

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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satelliteScenarioViewer
Package: matlabshared.satellitescenario

Create viewer for satellite scenario

Syntax
satelliteScenarioViewer(scenario)
satelliteScenarioViewer(scenario,Name,Value)
v = satelliteScenarioViewer(scenario)

Description
satelliteScenarioViewer(scenario) creates a 3-D or 2-D satellite scenario viewer for the
specified satellite scenario.

Note

• Satellite Scenario Viewer is a 3-D map display and requires hardware graphics support for
WebGL™.

satelliteScenarioViewer(scenario,Name,Value) creates a new viewer using one or more
name-value arguments. For example, 'Basemap', 'topographic' bases the scenario on
Topographic imagery provided by Esri®.

v = satelliteScenarioViewer(scenario) returns the handle to the satellite scenario viewer.

Examples

Create and Visualize Satellite Scenario

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite and ground station to the scenario. Additionally, add an access between the satellite
and the ground station.

sat = satellite(sc,"eccentricOrbitSatellite.tle");
gs = groundStation(sc);
access(sat,gs);

Visualize the scenario at the start time defined in the TLE file by using the Satellite Scenario Viewer.

satelliteScenarioViewer(sc);
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Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Basemap','topographic' bases the scenario on Topographic imagery provided by Esri.

Name — Name of viewer window
'Satellite Scenario Viewer' (default) | string scalar | character vector

Name of the viewer window, specified as a comma-separated pair consisting of 'Name' and either a
string scalar or a character vector.
Data Types: char | string

Position — Viewer window position
center of the screen (default) | row vector of four elements
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Size and location of the satellite scenario window in pixels, specified as a row vector of four elements.
The elements of the vector are [left bottom width height]. In the default case, width and height are
800 and 600 pixels, respectively.

Basemap — Map on which scenario is visualized
'satellite' (default) | 'topographic' | 'streets' | 'streets-light' | 'streets-dark' |
'darkwater' | 'grayland' | 'bluegreen' | 'colorterrain' | 'grayterrain' | 'landcover'

Map on which scenario is visualized, specified as a comma-separated pair consisting of 'Basemap'
and one of the values specified in this table:

'satellite'

Full global basemap
composed of high-
resolution satellite
imagery.

Hosted by Esri.

'streets'

General-purpose road
map that emphasizes
accurate, legible styling
of roads and transit
networks.

Hosted by Esri.

'topographic'

General-purpose map
with styling to depict
topographic features.

Hosted by Esri.

'streets-dark'

Map designed to
provide geographic
context while
highlighting user data
on a dark background.

Hosted by Esri.
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'landcover'

Map that combines
satellite-derived land
cover data, shaded
relief, and ocean-bottom
relief. The light, natural
palette is suitable for
thematic and reference
maps.

Created using Natural
Earth.

'streets-light'

Map designed to
provide geographic
context while
highlighting user data
on a light background.

Hosted by Esri.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green and
arid lowlands are
brown.

Created using Natural
Earth.

'grayterrain'

Terrain map in shades
of gray. Shaded relief
emphasizes both high
mountains and micro-
terrain found in
lowlands.

Created using Natural
Earth.

'bluegreen'

Two-tone, land-ocean
map with light green
land areas and light
blue water areas.

Created using Natural
Earth.

'grayland'

Two-tone, land-ocean
map with gray land
areas and white water
areas.

Created using Natural
Earth.
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'darkwater'

Two-tone, land-ocean
map with light gray land
areas and dark gray
water areas. This
basemap is installed
with MATLAB.

Created using Natural
Earth.

  

All basemaps except 'darkwater' require Internet access. The 'darkwater' basemap is included
with MATLAB and Aerospace Toolbox.

If you do not have consistent access to the Internet, you can download the basemaps created using
Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are
not available for download.

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by The MathWorks®.
Data Types: char | string

Dimension — Dimension of viewer
'3-D' (default) | '2-D'

Dimension of the viewer, specified as a comma-separated pair consisting of 'Dimension' and either
'3-D' or '2-D'.
Data Types: char | string

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of the animation for the input scenario used by the play function, specified as a comma-
separated pair consisting of 'PlaybackSpeedMultiplier' and a positive scalar.

CameraReferenceFrame — Reference frame of camera
'ECEF' (default) | 'Inertial'

Reference frame of the camera, specified as a comma-separated pair consisting of
'CameraReferenceFrame' and one of these values:

• 'ECEF' — Earth-Centered Earth-Fixed camera.
• 'Inertial' — Inertially fixed camera.

When you specify 'Inertial', the globe rotates with respect to the camera. When you specify
'ECEF', the camera rotates with the globe.
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Dependencies

To enable this name-value argument, set to Dimension to '3-D'.

CurrentTime — Current simulation time
StartTime of satelliteScenario (default) | datetime array

Current simulation time of the viewer, specified as a datetime array. This value changes over time
when the animation is playing.
Data Types: datetime

Output Arguments
v — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, returned as a satelliteScenarioViewer object.

To specify, query, or visualize satellite scenario viewer details, use these functions:

campos Set or query camera position.
camheight Set or query camera height.
camheading Set or query camera heading angle.
camroll Set or query camera roll angle.
campitch Set or query camera pitch angle.
camtarget Target an object with the camera.
hideAll Hide all visualizations and animations in the

Satellite Viewer.
showAll Show all visualizations and animations in the

Satellite Viewer.

Tips
• To pan the viewer window without rotation, use Shift + left click + drag.

See Also
Functions
show | play | hide | access | groundStation | satellite

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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saveas (Aero.VirtualRealityAnimation)
Save virtual reality world associated with virtual reality animation object

Syntax
saveas(h, filename)
h.saveas(filename)
saveas(h, filename, '-nothumbnail')
h.saveas(filename, '-nothumbnail')

Description
saveas(h, filename) and h.saveas(filename) save the world associated with the virtual
reality animation object, h, into the .wrl file name specified in the filename variable. After saving,
this function reinitializes the virtual reality animation object from the saved world.

saveas(h, filename, '-nothumbnail') and h.saveas(filename, '-nothumbnail')
suppress creating a thumbnail image used for virtual world preview.

Examples
Save the world associated with h.
h = Aero.VirtualRealityAnimation;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,asttkoff.wrl'];
h.initialize();
h.saveas([tempdir,'my_asttkoff.wrl']);

Introduced in R2007b
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setCoefficient
Class: Aero.FixedWing
Package: Aero

Set coefficient value for Aero.FixedWing object

Syntax
aircraft = setCoefficient(aircraft,stateOutput,stateVariable,value)
aircraft = setCoefficient(__,Name,Value)

Description
aircraft = setCoefficient(aircraft,stateOutput,stateVariable,value) sets the
coefficient value value to the coefficient specified by stateOutput and stateVariable and
returns the modified object aircraft.

aircraft = setCoefficient(__,Name,Value) sets the coefficient value using one or more
Name,Value pair arguments.

Input Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, specified as a scalar.

stateOutput — Valid state output
vector of strings | character array

Valid state output, specified in a vector of strings or character array. For more information, see
Aero.FixedWing.Coefficient.
Data Types: string | char

stateVariable — Valid state output
vector of strings | character array

Valid state variable, specified in a vector of strings or character array. Valid state variables depend on
the coefficients defined on the object. For more information, see Aero.FixedWing.State.
Data Types: string | char

value — Simulink.LookupTable object or numeric constant
vector of cells

Simulink.LookupTable object or numeric constant, specified as a vector of cells where each cell is
a Simulink.LookupTable object or numeric constant. For more information on coefficient values,
see Aero.FixedWing.Coefficient.
Data Types: string | char
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AddVariable','on'

Component — Component name
string

Component name, specified as a string. Valid component names depend on the object properties and
all subcomponents on the object. The default component name is the current object.
Data Types: char | string

AddVariable — Option to add state variable
off (default) | on

Option to add state variable if desired state variable is missing, specified as:

• 'on' — Add a state variable.
• 'off' — Do not add a state variable.

Data Types: logical

Output Arguments
aircraft — Modified Aero.FixedWing object
scalar

Modified Aero.FixedWing object with the modified coefficients at the specified locations, returned
as a scalar.

Examples

Set Coefficient for Aero.FixedWing Object

Set a coefficient on a Aero.FixedWing object.

C182 = astC182();
C182 = setCoefficient(C182, "CD", "Alpha", {5})

C182 = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×3 Aero.FixedWing.Surface]
              Thrusts: [1×1 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
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           UnitSystem: "English (ft/s)"
          AngleSystem: "Radians"
    TemperatureSystem: "Fahrenheit"
           Properties: [1×1 Aero.Aircraft.Properties]

Set Vector of Coefficients for FixedWing.Control Object

Set a vector of coefficients on a FixedWing.Control object.
C182 = astC182();
C182 = setCoefficient(C182, ["CY"; "Cm"], ["Zero"; "Alpha"], {5; Simulink.LookupTable})

C182 = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×3 Aero.FixedWing.Surface]
              Thrusts: [1×1 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           UnitSystem: "English (ft/s)"
          AngleSystem: "Radians"
    TemperatureSystem: "Fahrenheit"
           Properties: [1×1 Aero.Aircraft.Properties]

Set Coefficient on Component in Aero.FixedWing Object

Set a coefficient on a component within an Aero.FixedWing object.

C182 = astC182();
C182 = setCoefficient(C182, "CD", "Elevator", {5}, "Component", "Elevator")

C182 = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×3 Aero.FixedWing.Surface]
              Thrusts: [1×1 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           UnitSystem: "English (ft/s)"
          AngleSystem: "Radians"
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    TemperatureSystem: "Fahrenheit"
           Properties: [1×1 Aero.Aircraft.Properties]

Limitations
When used with Simulink.LookupTable objects, this method requires a Simulink license.

See Also
Aero.FixedWing | getCoefficient | Simulink.LookupTable

Introduced in R2021a
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setCoefficient
Class: Aero.FixedWing.Coefficient
Package: Aero

Set coefficient values for fixed-wing coefficient object

Syntax
fixedWingCoefficient = setCoefficient(fixedWingCoefficient,stateOutput,
stateVariable,value)
fixedWingCoefficient = setCoefficient( ___ ,Name,Value)

Description
fixedWingCoefficient = setCoefficient(fixedWingCoefficient,stateOutput,
stateVariable,value) sets the coefficient value value to the coefficient specified by
stateOutput and stateVariable and returns the modified Aero.FixedWing.Coefficient
object.

fixedWingCoefficient = setCoefficient( ___ ,Name,Value) sets the coefficient value
value to the coefficient specified by stateOutput and stateVariable and returns the modified
object.

Input Arguments
fixedWingCoefficient — Aero.FixedWing.Coefficient object on which to set coefficient
scalar

Aero.FixedWing.Coefficient on which to set coefficient, specified as a scalar.

stateOutput — State output
6-by-1 vector

State output, specified as a 6-by-1 vector where each entry is a valid state output. For more
information on state outputs, see Aero.FixedWing.Coefficient.
Data Types: char | string

stateVariable — State variable
vector

State variable, specified as a vector where each entry is a valid state variable. Valid state variables
depend on the coefficients defined on the object. For more information on fixed-wing states, see
Aero.FixedWing.State.
Data Types: char | string

value — State values
vector of cells
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State values, specified as a vector of cells where each cell is a numeric constant or a
Simulink.LookupTable object. For more information on coefficient values, see
Aero.FixedWing.Coefficient.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AddVariable','on'

Component — Component name
string

Component name, specified as a string. Valid component names depend on the object properties and
all subcomponents on the object. The default component name is the current object.
Data Types: char | string

AddVariable — Option to add state variable
off (default) | on

Add state variable if desired state variable is missing, specified as:

• 'on' — Add a state variable.
• 'off' — Do not add a state variable.

Data Types: logical

Output Arguments
fixedWingCoefficient — Modified fixed-wing coefficient object
Aero.FixedWing.Coefficient

Modified fixed-wing coefficient object on which coefficient is set, returned as
Aero.FixedWing.Coefficient.

Examples

Set Coefficient for Aero.FixedWing Object

Set a coefficient on an Aero.FixedWing object.

C182 = astC182();
C182 = setCoefficient(C182, "CD", "Alpha", {5})

C182 = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
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      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×3 Aero.FixedWing.Surface]
              Thrusts: [1×1 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           UnitSystem: "English (ft/s)"
          AngleSystem: "Radians"
    TemperatureSystem: "Fahrenheit"
           Properties: [1×1 Aero.Aircraft.Properties]

Set Vector of Coefficients for Aero.FixedWing.Control Object

Set a vector of coefficient values on an Aero.FixedWing.Control object.
C182 = astC182();
C182 = setCoefficient(C182, ["CY"; "Cm"], ["Zero"; "Alpha"], {5; Simulink.LookupTable})

C182 = 

  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1×1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1×3 Aero.FixedWing.Surface]
              Thrusts: [1×1 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           UnitSystem: "English (ft/s)"
          AngleSystem: "Radians"
    TemperatureSystem: "Fahrenheit"
           Properties: [1×1 Aero.Aircraft.Properties]

Limitations
The vectors for the stateOutput, stateVariable, and value arguments must be the same length.

See Also
Aero.FixedWing | getCoefficient | setCoefficient

Introduced in R2021a
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shortPeriodCategoryAPlot
Draw MIL-F-8785C short-period category A requirements plot

Syntax
shortPeriodCategoryAPlot(nalpha,omega)
shortPeriodCategoryAPlot(nalpha,omega,LineSpec)
shortPeriodCategoryAPlot(nalpha1,omega1,LineSpec1,...nalphan,omegan,
LineSpecn)

shortPeriodCategoryAPlot(___,Name,Value)
shortPeriodCategoryAPlot(ax,___)

[line,bline] = shortPeriodCategoryAPlot(___)

Description
Basic Syntax and Line Specification

shortPeriodCategoryAPlot(nalpha,omega) plots vector omega versus vector nalpha. If
nalpha or omega is a matrix, then the function plots the vector versus the rows or columns of the
matrix, whichever are aligned. If nalpha is a scalar and omega is a vector, the function creates the
disconnected line objects and plots them as discrete points vertically at nalpha. This function is
based on the MATLAB plot function.

shortPeriodCategoryAPlot(nalpha,omega,LineSpec) plots short-period category A
requirements specified by the line specification LineSpec.

shortPeriodCategoryAPlot(nalpha1,omega1,LineSpec1,...nalphan,omegan,
LineSpecn) combines the plots specified by the nalpha, omega, and linespec. It sets the line
style, marker type, and color for each line. You can mix nalpha, omega, LineSpec triplets with
nalpha, omega arguments, for example,
plot(nalpha1,omega1,nalpha2,omega2,LineSpec2,nalpha3,omega3).
Name-Value Arguments and Axes Specification

shortPeriodCategoryAPlot(___,Name,Value) plots an altitude envelope contour specified by
one or more Name,Value arguments. Specify name-value arguments after all other input arguments.

shortPeriodCategoryAPlot(ax,___) draws an altitude contour plot onto the axes ax. Specify
arguments as previously listed after the ax argument.
Return Line Objects

[line,bline] = shortPeriodCategoryAPlot(___) returns a vector of line objects
lineobjects and a vector of boundaryline objects boundary_lineobjects. Use lineobjects
and boundary_lineobjects to modify properties of a specific plot after it is created. Specify
arguments as previously listed.

Examples
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Plot MIL-F-8785C Short-Period Category A Requirements

Plot the reference MIL-F-8785C short-period category A requirements.

shortPeriodCategoryAPlot([])

Plot nalpha and omega Data Against Level 1 A Requirements

Plot nalpha and omega data against the level 1 short-period category A requirements using diamond
markers.

nalpha = 1:10;
omega = rand(10)+1;
shortPeriodCategoryAPlot(nalpha,omega,"d","Level","1")
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Plot MIL-F-8785C Short-Period Category A Requirements and Return Vectors of Line Objects
and Boundary Line Objects

Plot the reference MIL-F-8785C short-period category A requirements. Return line objects and
boundary line objects in h and b.

[h,b] = shortPeriodCategoryAPlot([])

h = 

  0×1 empty Line array.

b = 

  6×1 BoundaryLine array:

  BoundaryLine    (Level 1)
  BoundaryLine    (Level 1)
  BoundaryLine    (Level 2)
  BoundaryLine    (Level 2)
  BoundaryLine    (Level 3)
  BoundaryLine    (Level 2 & 3)

Input Arguments
nalpha — Load factor per angle of attack
scalar | vector | matrix

Load factor per angle of attack n/α, specified as a scalar, vector, or matrix, in g's/radian.
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Data Types: double

omega — Short-period undamped natural frequency response
scalar | vector | matrix

Short-period undamped natural frequency response ωnSP, specified as a scalar, vector, or matrix, in
radians/second.
Data Types: double

ax — Valid axes
scalar handle

Valid axes, specified as a scalar handle. By default, this function plots to the current axes, obtainable
with the gca function.
Data Types: double

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

Marker Description Resulting Marker
'o' Circle

'+' Plus sign

'*' Asterisk

'.' Point

'x' Cross

'_' Horizontal line

'|' Vertical line
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Marker Description Resulting Marker
's' Square

'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'p' Pentagram

'h' Hexagram

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note These properties are only a subset. For a full list, see Line Properties.

Example: "Level","1"

level — Requirement level
"All" (default) | "1" | "2" | "3"

Requirement level to plot, specified as:

• "All"
• "1"
• "2"
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• "3"

Data Types: double

Output Arguments
line — One or more line objects
scalar | vector

One or more line objects, returned as a scalar or a vector. These are unique identifiers, which you can
use to query and modify properties of a specific line. For a list of properties, see Line Properties.

bline — One or more boundary line objects
scalar | vector

One or more boundary line objects, returned as a scalar or a vector. These are unique identifiers,
which you can use to query and modify properties of a specific chart line. For a list of properties, see
Line Properties.

See Also
altitudeEnvelopeContour | shortPeriodCategoryBPlot | shortPeriodCategoryCPlot |
boundaryline | line | Line Properties | plot

Introduced in R2021b
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shortPeriodCategoryBPlot
Draw MIL-F-8785C short-period category B requirements plot

Syntax
shortPeriodCategoryBPlot(nalpha,omega)
shortPeriodCategoryBPlot(nalpha,omega,LineSpec)
shortPeriodCategoryBPlot(nalpha1,omega1,LineSpec1,...nalphan,omegan,
LineSpecn)

shortPeriodCategoryBPlot(___,Name,Value)
shortPeriodCategoryBPlot(ax,___)

[line,bline] = shortPeriodCategoryBPlot(___)

Description
Basic Syntax and Line Specification

shortPeriodCategoryBPlot(nalpha,omega) plots vector omega versus vector nalpha. If
nalpha or omega is a matrix, then the function plots the vector versus the rows or columns of the
matrix, whichever are aligned. If nalpha is a scalar and omega is a vector, the function creates the
disconnected line objects and plots them as discrete points vertically at nalpha. This function is
based on the MATLAB plot function.

shortPeriodCategoryBPlot(nalpha,omega,LineSpec) plots short-period category A
requirements specified by the line specification LineSpec.

shortPeriodCategoryBPlot(nalpha1,omega1,LineSpec1,...nalphan,omegan,
LineSpecn) combines the plots specified by the nalpha, omega, and linespec. It sets the line
style, marker type, and color for each line. You can mix nalpha, omega, LineSpec triplets with
nalpha, omega arguments, for example,
plot(nalpha1,omega1,nalpha2,omega2,LineSpec2,nalpha3,omega3).
Name-Value Arguments and Axes Specification

shortPeriodCategoryBPlot(___,Name,Value) plots an altitude envelope contour specified by
one or more Name,Value arguments. Specify name-value arguments after all other input arguments.

shortPeriodCategoryBPlot(ax,___) draws an altitude contour plot onto the axes ax. Specify
arguments as previously listed after the ax argument.
Return Line Objects

[line,bline] = shortPeriodCategoryBPlot(___) returns a vector of line objects
lineobjects and a vector of boundaryline objects boundary_lineobjects. Use lineobjects
and boundary_lineobjects to modify properties of a specific plot after it is created. Specify
arguments as previously listed.

Examples
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Plot MIL-F-8785C Short-Period Category B Requirements

Plot the reference MIL-F-8785C short-period category B requirements.

shortPeriodCategoryBPlot([])

Plot nalpha and omega Data Against Level 1 B Requirements

Plot nalpha and omega data against the level 1 short-period category B requirements using diamond
markers.

nalpha = 1:10;
omega = rand(10)+1;
shortPeriodCategoryBPlot(nalpha,omega,"d","Level","1")
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Plot MIL-F-8785C Short-Period Category B Requirements and Return Vectors of Line Objects
and Boundary Line Objects

Plot the reference MIL-F-8785C short-period category B requirements. Return line objects and
boundary line objects in h and b.

[h,b] = shortPeriodCategoryBPlot([])

h = 

  0×1 empty Line array.

b = 

  4×1 BoundaryLine array:

  BoundaryLine    (Level 1)
  BoundaryLine    (Level 1)
  BoundaryLine    (Level 2)
  BoundaryLine    (Level 2 & 3)

Input Arguments
nalpha — Load factor per angle of attack
scalar | vector | matrix

Load factor per angle of attack n/α, specified as a scalar, vector, or matrix, in g's/radian.
Data Types: double
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omega — Short-period undamped natural frequency response
scalar | vector | matrix

Short-period undamped natural frequency response ωnSP, specified as a scalar, vector, or matrix, in
radians/second.
Data Types: double

ax — Valid axes
scalar handle

Valid axes, specified as a scalar handle. By default, this function plots to the current axes, obtainable
with the gca function.
Data Types: double

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

Marker Description Resulting Marker
'o' Circle

'+' Plus sign

'*' Asterisk

'.' Point

'x' Cross

'_' Horizontal line

'|' Vertical line

's' Square
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Marker Description Resulting Marker
'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'p' Pentagram

'h' Hexagram

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Name-Value Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note These properties are only a subset. For a full list, see Line Properties.

Example: "Level","1"

level — Requirement level
"All" (default) | "1" | "2" | "3"

Requirement level to plot, specified as:

• "All"
• "1"
• "2"
• "3"

Data Types: double
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Output Arguments
line — One or more line objects
scalar | vector

One or more line objects, returned as a scalar or a vector. These are unique identifiers, which you can
use to query and modify properties of a specific line. For a list of properties, see Line Properties.

bline — One or more boundary line objects
scalar | vector

One or more boundary line objects, returned as a scalar or a vector. These are unique identifiers,
which you can use to query and modify properties of a specific chart line. For a list of properties, see
Line Properties.

See Also
altitudeEnvelopeContour | shortPeriodCategoryAPlot | shortPeriodCategoryCPlot |
boundaryline | line | Line Properties | plot

Introduced in R2021b
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shortPeriodCategoryCPlot
Draw MIL-F-8785C short-period category C requirements plot

Syntax
shortPeriodCategoryCPlot(nalpha,omega)
shortPeriodCategoryCPlot(nalpha,omega,LineSpec)
shortPeriodCategoryCPlot(nalpha1,omega1,LineSpec1,...nalphan,omegan,
LineSpecn)

shortPeriodCategoryCPlot(___,Name,Value)
shortPeriodCategoryCPlot(ax,___)

[line,bline] = shortPeriodCategoryCPlot(___)

Description
Basic Syntax and Line Specification

shortPeriodCategoryCPlot(nalpha,omega) plots vector omega versus vector nalpha. If
nalpha or omega is a matrix, then the function plots the vector versus the rows or columns of the
matrix, whichever are aligned. If nalpha is a scalar and omega is a vector, the function creates the
disconnected line objects and plots them as discrete points vertically at nalpha. This function is
based on the MATLAB plot function.

shortPeriodCategoryCPlot(nalpha,omega,LineSpec) plots short-period category A
requirements specified by the line specification LineSpec.

shortPeriodCategoryCPlot(nalpha1,omega1,LineSpec1,...nalphan,omegan,
LineSpecn) combines the plots specified by the nalpha, omega, and linespec. It sets the line
style, marker type, and color for each line. You can mix nalpha, omega, LineSpec triplets with
nalpha, omega arguments, for example,
plot(nalpha1,omega1,nalpha2,omega2,LineSpec2,nalpha3,omega3).
Name-Value Arguments and Axes Specification

shortPeriodCategoryCPlot(___,Name,Value) plots an altitude envelope contour specified by
one or more Name,Value arguments. Specify name-value arguments after all other input arguments.

shortPeriodCategoryCPlot(ax,___) draws an altitude contour plot onto the axes ax. Specify
arguments as previously listed after the ax argument.
Return Line Objects

[line,bline] = shortPeriodCategoryCPlot(___) returns a vector of line objects
lineobjects and a vector of boundaryline objects boundary_lineobjects. Use lineobjects
and boundary_lineobjects to modify properties of a specific plot after it is created. Specify
arguments as previously listed.

Examples
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Plot MIL-F-8785C Short-Period Category C Requirements

Plot the reference MIL-F-8785C short-period category C requirements.

shortPeriodCategoryCPlot([])

Plot nalpha and omega Data Against Level 1 C Requirements

Plot nalpha and omega data against the level 1 short-period category C requirements using diamond
markers.

nalpha = 1:10;
omega = rand(10)+1;
shortPeriodCategoryCPlot(nalpha,omega,"d","Level","1")
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Plot MIL-F-8785C Short-Period Category C Requirements and Return Vectors of Line Objects
and Boundary Line Objects

Plot the reference MIL-F-8785C short-period category C requirements. Return line objects and
boundary line objects in h and b.

[h,b] = shortPeriodCategoryCPlot([])

h = 

  0×1 empty Line array.

b = 

  8×1 BoundaryLine array:

  BoundaryLine    (Level 1)
  BoundaryLine    (Level 1)
  BoundaryLine    (Level 1)
  BoundaryLine    (Level 1)
  BoundaryLine    (Level 2)
  BoundaryLine    (Level 2)
  BoundaryLine    (Level 2)
  BoundaryLine    (Level 2 & 3)

Input Arguments
nalpha — Load factor per angle of attack
scalar | vector | matrix
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Load factor per angle of attack n/α, specified as a scalar, vector, or matrix, in g's/radian.
Data Types: double

omega — Short-period undamped natural frequency response
scalar | vector | matrix

Short-period undamped natural frequency response ωnSP, specified as a scalar, vector, or matrix, in
radians/second.
Data Types: double

ax — Valid axes
scalar handle

Valid axes, specified as a scalar handle. By default, this function plots to the current axes, obtainable
with the gca function.
Data Types: double

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

Marker Description Resulting Marker
'o' Circle

'+' Plus sign

'*' Asterisk

'.' Point

'x' Cross

'_' Horizontal line
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Marker Description Resulting Marker
'|' Vertical line

's' Square

'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'p' Pentagram

'h' Hexagram

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note These properties are only a subset. For a full list, see Line Properties.

Example: "Level","1"

level — Requirement level
"All" (default) | "1" | "2" | "3"

Requirement level to plot, specified as:

• "All"
• "1"
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• "2"
• "3"

Data Types: double

Output Arguments
line — One or more line objects
scalar | vector

One or more line objects, returned as a scalar or a vector. These are unique identifiers, which you can
use to query and modify properties of a specific line. For a list of properties, see Line Properties.

bline — One or more boundary line objects
scalar | vector

One or more boundary line objects, returned as a scalar or a vector. These are unique identifiers,
which you can use to query and modify properties of a specific chart line. For a list of properties, see
Line Properties.

See Also
altitudeEnvelopeContour | shortPeriodCategoryAPlot | shortPeriodCategoryBPlot |
boundaryline | line | Line Properties | plot

Introduced in R2021b
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showAll
Package: matlabshared.satellitescenario

Show all graphics in viewer

Syntax
showAll(viewer)

Description
showAll(viewer) shows all graphics in the specified satellite scenario viewer.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.9

See Also
Objects
satelliteScenario | access | groundStation | satelliteScenarioViewer |
conicalSensor

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a

9. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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siderealTime
Greenwich mean and apparent sidereal times

Syntax
thGMST = siderealTime(utcJD)
thGMST = siderealTime(utcJD, dUT1, dAT)
[thGMST,thGAST] = siderealTime(utcJD,dUT1,dAT)

Description
thGMST = siderealTime(utcJD) calculates mean sidereal time at a specific Universal
Coordinated Time (UTC), specified as a Julian date.

thGMST = siderealTime(utcJD, dUT1, dAT) calculates mean sidereal time at a specific
Universal Coordinated Time (UTC) at a higher precision using Earth orientation parameters.

[thGMST,thGAST] = siderealTime(utcJD,dUT1,dAT) calculates mean and apparent sidereal
times.

Note Apparent sidereal time calculation requires that you download ephemeris data using the Add-
On Explorer. To start the Add-On Explorer, in the MATLAB Command Window, type
aeroDataPackage. on the MATLAB desktop toolstrip, click the Add-Ons button.

Examples

Calculate Greenwich Sidereal Times for Particular Date

Calculate Greenwich sidereal times at 12:00 on January 4, 2019.

jd = juliandate([2019 1 4 12 0 0]);
[thGMST, thGAST] = siderealTime(jd);

Calculate Greenwich Sidereal Times for Whole Month

Calculate Greenwich sidereal times at 12:00 for the month of January, 2019:

dates = datetime([2019 1 4 12 0 0]);
dates = dates + days(1:30)';
jdJan = juliandate(dates);
[thGMST, thGAST] = siderealTime(jdJan);

Input Arguments
utcJD — UTC as Julian date
scalar
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Universal Coordinated Time (UTC) as a Julian date, specified as a scalar.

Tip To calculate the Julian date for a particular date, use the juliandate function.

Data Types: double

dUT1 — Difference between CUT and UT1
0 (default) | scalar

Difference between the Coordinated Universal Time (UTC) and Universal Time (UT1), specified as a
scalar, in seconds.

dAT — Difference between TAI and UTC
0 (default) | scalar

Difference between International Atomic Time (TAI) and Coordinated Universal Time (UTC), specified
as a scalar, in seconds.

Output Arguments
thGMST — Greenwich mean sidereal time
scalar

Greenwich mean sidereal time, specified as a scalar, in seconds.

thGAST — Greenwich apparent sidereal time
scalar

Greenwich apparent sidereal time, specified as a scalar, in seconds.

Limitations
This function requires the Mapping Toolbox license.

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. alg. 1 and eqs. 1-63. New York:

McGraw-Hill, 1997.

See Also
ecef2eci | eci2ecef | dcmeci2ecef | CubeSat Vehicle

Introduced in R2021a
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setCoefficient
Class: Aero.FixedWing.Surface
Package: Aero

Set coefficient values for Aero.FixedWing.Surface object

Syntax
fixedWingSurface = setCoefficient(fixedWingSurface,stateOutput,stateVariable,
value)
fixedWingSurface = setCoefficient( ___ ,Name,Value)

Description
fixedWingSurface = setCoefficient(fixedWingSurface,stateOutput,stateVariable,
value) sets the coefficient value value to the coefficient specified by stateOutput and
stateVariable and returns the modified surface object.

fixedWingSurface = setCoefficient( ___ ,Name,Value) sets the coefficient value value to
the coefficient specified by stateOutput and stateVariable and returns the modified surface
object.

Input Arguments
fixedWingSurface — Aero.FixedWing.Surface object on which to set coefficient
scalar

Aero.FixedWing.Surface object on which to set coefficient, specified as a scalar.

stateOutput — State output
6-by-1 vector

State output, specified as a 6-by-1 vector where each entry is a valid state output. For more
information on state outputs, see Aero.FixedWing.Coefficient.
Data Types: char | string

stateVariable — State variable
vector

State variable, specified as a vector where each entry is a valid state variable. Valid state variables
depend on the coefficients defined on the object. For more information on fixed-wing states, see
Aero.FixedWing.State.
Data Types: char | string

value — State values
vector of cells
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State values, specified as a vector of cells where each cell is a numeric constant or a
Simulink.LookupTable object. For more information on coefficient values, see
Aero.FixedWing.Coefficient.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AddVariable','on'

Component — Component name
string

Component name, specified as a string. Valid component names depend on the object properties and
all subcomponents on the object. The default component name is the current object.
Data Types: char | string

AddVariable — Option to add state variable
off (default) | on

Option to add state variable if desired variable is missing, specified as:

• 'on' — Add a state variable.
• 'off' — Do not add a state variable.

Data Types: logical

Output Arguments
fixedWingSurface — Modified fixed-wing surface object
Aero.FixedWing.Surface

Modified fixed-wing surface object on which coefficient is set, returned as
Aero.FixedWing.Surface.

See Also
Aero.FixedWing | Aero.FixedWing.Coefficient | Aero.FixedWing.Surface |
Aero.FixedWing.Thrust | getCoefficient

Introduced in R2021a
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setCoefficient
Class: Aero.FixedWing.Thrust
Package: Aero

Set coefficient values for Aero.FixedWing.Thrust object

Syntax
fixedWingThrust = setCoefficient(fixedWingThrust,stateOutput,stateVariable,
value)
fixedWingThrust = setCoefficient( ___ ,Name,Value)

Description
fixedWingThrust = setCoefficient(fixedWingThrust,stateOutput,stateVariable,
value) sets the coefficient value value to the coefficient specified by stateOutput and
stateVariable and returns the modified thrust object.

fixedWingThrust = setCoefficient( ___ ,Name,Value) sets the coefficient value value to
the coefficient specified by stateOutput and stateVariable and returns the modified thrust
object.

Input Arguments
fixedWingCoefficient — Aero.FixedWing.Thrust object on which to set coefficient
scalar

Aero.FixedWing.Thrust object on which to set coefficient, specified as a scalar.

stateOutput — State output
6-by-1 vector

State output, specified as a 6-by-1 vector where each entry is a valid state output. For more
information on state outputs, see Aero.FixedWing.Coefficient.
Data Types: char | string

stateVariable — State variable
vector

State variable, specified as a vector where each entry is a valid state variable. Valid state variables
depend on the coefficients defined on the object. For more information on fixed-wing states, see
Aero.FixedWing.State.
Data Types: char | string

value — State values
vector of cells
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State values, specified as a vector of cells where each cell is a numeric constant or a
Simulink.LookupTable object. For more information on coefficient values, see
Aero.FixedWing.Coefficient.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AddVariable','on'

Component — Component name
string

Component name, specified as a string. Valid component names depend on the object properties and
all subcomponents on the object. The default component name is the current object.
Data Types: char | string

AddVariable — Option to add state variable
off (default) | on

Option to add state variable if desired state variable is missing, specified as:

• 'on' — Add a state variable.
• 'off' — Do not add a state variable.

Data Types: logical

Output Arguments
fixedWingThrust — Modified fixed-wing thrust object
Aero.FixedWing.Thrust

Modified fixed-wing thrust object on which coefficient is set, returned as Aero.FixedWing.Thrust.

See Also
Aero.FixedWing.Thrust | getCoefficient

Introduced in R2021a
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setState
Class: Aero.FixedWing.State
Package: Aero

Set state value to Aero.FixedWing.State object

Syntax
state = setState(state,statename,value)

Description
state = setState(state,statename,value) sets the state value to a specified state name
value.

Input Arguments
state — Aero.FixedWing.State object
scalar

Aero.FixedWing.State object, specified as a scalar.

statename — State names
vector

State names, specified in a vector. You cannot set effective control variables created with asymmetric
control surfaces. For more information on state names, see the Aero.FixedWing.State
“Properties” on page 4-60.

Tip Each vector of statename and value must be the same length.

Data Types: char | string

value — State values
vector

State values, specified as a vector.

• If the states are all scalar constants, value is a numeric vector.
• If one of more states are not scalar constants, value is a cell vector.

Tip Each vector of statename and value must be the same length.

Output Arguments
state — Modified Aero.FixedWing.State object
vector
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Modified input object with the modified states at the specified locations.

Examples

Set Pitch Angle of Cruise State

Set the pitch angle of a cruise state.

[C182, CruiseState] = astC182();
CruiseState = setState(CruiseState, "Alpha", 5)

CruiseState = 

  State with properties:

                   Alpha: NaN
                    Beta: NaN
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 82.2981
                 Inertia: [3×3 table]
         CenterOfGravity: [1.2936 0 0]
        CenterOfPressure: [1.2250 0 0]
             AltitudeMSL: 5000
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: -5000
                       U: 220.1000
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 2.6500e+03
             AltitudeAGL: 5000
                Airspeed: NaN
             GroundSpeed: 220.1000
              MachNumber: NaN
            BodyVelocity: [NaN NaN NaN]
          GroundVelocity: [220.1000 0 0]
                      Ur: NaN
                      Vr: NaN
                      Wr: NaN
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: NaN
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "English (ft/s)"

4 Functions

4-786



             AngleSystem: "Radians"
       TemperatureSystem: "Fahrenheit"
           ControlStates: [1×4 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

Set U, V, and W Velocity Components

Set the U, V, and W velocity components of a cruise state.

[C182, CruiseState] = astC182();
CruiseState = setState(CruiseState, ["U", "V", "W"], [50, 1, 10])

CruiseState = 

  State with properties:

                   Alpha: 0.1974
                    Beta: 0.0196
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 82.2981
                 Inertia: [3×3 table]
         CenterOfGravity: [1.2936 0 0]
        CenterOfPressure: [1.2250 0 0]
             AltitudeMSL: 5000
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: -5000
                       U: 50
                       V: 1
                       W: 10
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 2.6500e+03
             AltitudeAGL: 5000
                Airspeed: 51
             GroundSpeed: 51
              MachNumber: 0.0465
            BodyVelocity: [50 1 10]
          GroundVelocity: [50 1 10]
                      Ur: 50
                      Vr: 1
                      Wr: 10
         FlightPathAngle: 0.1974
             CourseAngle: 0.0200
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
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         DynamicPressure: 2.6639
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "English (ft/s)"
             AngleSystem: "Radians"
       TemperatureSystem: "Fahrenheit"
           ControlStates: [1×4 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

See Also
Aero.FixedWing.State | getState | setupControlStates

Introduced in R2021a
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SetTimer (Aero.FlightGearAnimation)
Set name of timer for animation of FlightGear flight simulator

Syntax
SetTimer(h)
h.SetTimer
SetTimer(h, MyFGTimer)
h.SetTimer('MyFGTimer')

Description
SetTimer(h) and h.SetTimer set the name of the MATLAB timer for the animation of the
FlightGear flight simulator. SetTimer(h, MyFGTimer) and h.SetTimer('MyFGTimer') set the
name of the MATLAB timer for the animation of the FlightGear flight simulator and assign a custom
name to the timer.

You can use this function to customize your FlightGear animation object. This customization allows
you to simultaneously run multiple FlightGear objects if you want to use

• Multiple FlightGear sessions
• Different ports to connect to those sessions

Examples
Set the MATLAB timer for animation of the FlightGear animation object, h:

h = Aero.FlightGearAnimation
h.SetTimer

Set the MATLAB timer used for animation of the FlightGear animation object, h, and assign a custom
name, MyFGTimer, to the timer:

h = Aero.FlightGearAnimation 
h.SetTimer('MyFGTimer') 

See Also
ClearTimer

Introduced in R2008b

 SetTimer (Aero.FlightGearAnimation)

4-789



setupControlStates
Class: Aero.FixedWing.State
Package: Aero

Set up control states for Aero.FixedWing.State object

Syntax
state = setupControlStates(aircraft, state)

Description
state = setupControlStates(aircraft, state) sets up initial control states for the
Aero.FixedWing object.

Input Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, specified as a scalar.
Data Types: double

state — Aero.FixedWing.State object
scalar

Aero.FixedWing.State object, specified as a scalar.

Output Arguments
state — Modified Aero.FixedWing.State object
scalar

Modified Aero.FixedWing.State object, returned as a scalar.
Data Types: double

Examples

Initialize Control and Command States

Initialize the control and command states on a cruise state.

[C182, CruiseState] = astC182();
CruiseState = setupControlStates(CruiseState,C182)

CruiseState = 
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  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 82.2981
                 Inertia: [3×3 table]
         CenterOfGravity: [1.2936 0 0]
        CenterOfPressure: [1.2250 0 0]
             AltitudeMSL: 5000
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: -5000
                       U: 220.1000
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 2.6500e+03
             AltitudeAGL: 5000
                Airspeed: 220.1000
             GroundSpeed: 220.1000
              MachNumber: 0.2006
            BodyVelocity: [220.1000 0 0]
          GroundVelocity: [220.1000 0 0]
                      Ur: 220.1000
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3×3 double]
    BodyToInertialMatrix: [3×3 double]
        BodyToWindMatrix: [3×3 double]
        WindToBodyMatrix: [3×3 double]
         DynamicPressure: 49.6149
             Environment: [1×1 Aero.Aircraft.Environment]
              UnitSystem: "English (ft/s)"
             AngleSystem: "Radians"
       TemperatureSystem: "Fahrenheit"
           ControlStates: [1×4 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1×1 Aero.Aircraft.Properties]

See Also
Aero.FixedWing.State | getState | setState

Introduced in R2021a
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show
Package: matlabshared.satellitescenario

Show object in satellite scenario viewer

Syntax
show(item)
show(item,v)

Description
show(item) shows the item on all open Satellite Scenario Viewers.

show(item,v) shows the graphic on the Satellite Scenario Viewer specified by v.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
    rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat = 
  1×2 Satellite array with properties:

    Name
    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    GroundTrack
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    Orbit
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontSize
    LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
  1×2 GroundTrack array with properties:

    LeadTime
    TrailTime
    LineWidth
    TrailLineColor
    LeadLineColor
    VisibilityMode

play(sc)
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Input Arguments

item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, or Access object.
These objects must belong to the same satelliteScenario, object.

Note If item is a satellite or a ground station, then the associated gimbals are also displayed on the
viewer.

v — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects
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Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | hide | access | groundStation | conicalSensor

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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show
Class: Aero.Animation
Package: Aero

Show animation object figure

Syntax
show(h)
h.show

Description
show(h) and h.show create the figure graphics object for the animation object h. Use the hide
function to close the figure.

Input Arguments
h Animation object.

Examples
Show the animation object, h.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
h.show;
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states
Package: matlabshared.satellitescenario

Position and velocity of satellite

Syntax
pos = states(sat)
[pos,velocity] = states(sat)
[ ___ ] = states(sat,timeIn)
[ ___ ] = states( ___ ,'CoordinateFrame',C)
[pos,velocity,timeOut] = states( ___ )

Description
pos = states(sat) returns a 3-by-n matrix with the position history of the satellite sat in the
Geocentric Celestial Reference Frame (GCRF), where n is the number of time samples in the satellite
scenario simulation.

[pos,velocity] = states(sat) returns a 3-by-n matrix with the position and velocity history of
satellite in GCRF.

[ ___ ] = states(sat,timeIn) also returns the outputs at the times specified by timeIn. Specify
any output argument combinations from previous syntaxes.

[ ___ ] = states( ___ ,'CoordinateFrame',C) returns the outputs in the coordinates specified
by C.

[pos,velocity,timeOut] = states( ___ ) returns the position and velocity history of the
satellite and the corresponding time in Universal Time Coordinated (UTC).

Examples

Obtain States of Satellite in ECEF Frame

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat = satellite(sc,tleFile);

Obtain the position and velocity of the satellite in the Earth-centered Earth-fixed (ECEF) frame
corresponding to May 25, 2021, 10:30 PM UTC.

time = datetime(2021,5,25,22,30,0);
[position,velocity] = states(sat(1),time,"CoordinateFrame","ecef")
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position = 3×1
107 ×

   -0.9431
   -3.0675
    2.7404

velocity = 3×1
103 ×

   -1.2166
    0.4198
   -1.6730

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

C — Coordinate frame
'ecef' | 'inertial' | 'geographical'

Coordinate frame in which the outputs are returned, specified as 'ecef', 'inertial', or
'geographical'.

• The 'ecef' option returns the coordinates in the Earth Centered Earth Fixed (ECEF) frame. For
more information on ECEF frames, see “Earth-Centered Earth-Fixed Coordinates” on page 2-64.

• The 'inertial' option returns the coordinates in the GCRF frame.
• The 'geographic' option returns the position as [lat; lon; altitude], where lat and lon are

latitude and longitude in degrees, and altitude is the height above the wgs84 ellipsoid in meters.
The velocity returned is ECEF, defined in the local North-East-Down (NED) frame.

Output Arguments
pos — Position history
scalar | vector | matrix | N-D array

Position history of the satellite, returned as a scalar, vector, matrix, or N-D array in the GCRF frame.
Units are in meters.

velocity — Velocity history
scalar | vector | matrix | N-D array
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Velocity history of the satellite, returned as a scalar, vector, matrix, or N-D array in the GCRF frame.
Units are in meters/second.

timeOut — Time samples of position and velocity
scalar | vector

Time samples of the position and velocity of the satellite, returned as a scalar or vector. If time
histories of the position and velocity of the satellite are returned, timeOut is a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access

Topics
“Satellite Scenario Key Concepts” on page 2-63

Introduced in R2021a
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staticStability
Class: Aero.FixedWing
Package: Aero

Calculate static stability of fixed-wing aircraft

Syntax
stability = staticStability(aircraft,state)
stability = staticStability( ___ ,Name,Value)
[stability,derivatives] = staticStability( ___ )

Description
stability = staticStability(aircraft,state) calculates the static stability stability of
a fixed-wing aircraft aircraft at an Aero.FixedWing.State state. This method calculates static
stability from changes in body forces and moments due to perturbations of an aircraft state. By
default, these states are airspeed, angle of attack, angle of side slip, and body roll rates. To change
these states, see criteriaTable.

The staticStability method evaluates the changes in body forces and moments after a
perturbation as either greater than, equal to, or less than 0 using the matching entry in the criteria
table.

• If the evaluation of a criterion is met, the aircraft is statically stable at that condition.
• If the evaluation of a criterion is not met, the aircraft is statically unstable at that condition.
• If the perturbation value is set to 0, the aircraft is statically neutral at that condition.

stability = staticStability( ___ ,Name,Value) calculates the static stability result with the
specified Name,Value arguments. Specify any of the input argument combinations in the previous
syntaxes followed by Name,Value pairs as the last input arguments.

[stability,derivatives] = staticStability( ___ ) returns the body forces and moments
derivatives table along with the static stability. Specify any of the input argument combinations in the
previous syntaxes.

Input Arguments
aircraft — Aero.FixedWing object
scalar

Aero.FixedWing object, specified as a scalar.
Data Types: double

state — Aero.FixedWing.State object
scalar

Aero.FixedWing.State object, specified as a scalar.
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Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RelativePerturbation','1e-5'

CriteriaTable — Static stability test criteria
6-by-8 table (default) | 6-by-N table

Static stability test criteria, specified as a 6-by-N table, where N is number of variables.

• If the value being evaluated is 0, it is neutral.
• If the value being evaluated does not meet the criteria, it is unstable.
• If the criterion is an empty string or is missing, then the stability result is an empty string.

The criteria table has these requirements:

• Each entry in the criteria table must be '<', '>', '', or missing.
• The table must have six rows: 'FX', 'FY', 'FZ', 'L', 'M', and 'N'.
• N number of variables for columns.

By default, this table appears as:

 U V W Alpha Beta P Q R
FX '<' '' '' '' '' '' '' ''
FY '' '<' '' '' '' '' '' ''
FZ '' '' '<' '' '' '' '' ''
L '' '' '' '' '' '<' '<' ''
M '>' '' '' '<' '' '' '<' ''
N '' '' '' '' '>' '' '' '<'

Data Types: string

RelativePerturbation — Relative perturbation
1e-5 (default) | scalar numeric

Relative perturbation of the system, specified as a scalar numeric. This perturbation takes the form
of:

Perturbation Type Definition
System State perturbation statePert = RelativePerturbation

+1e-3*RelativePerturbation*|baseValue|
System input perturbation ctrlPert = RelativePerturbation

+1e-3*RelativePerturbation*|baseValue|

To calculate the Jacobian of the system, linearize uses the result of these equations in conjunction
with the 'DifferentialMethod' property.
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Example: 'RelativePerturbation',1e-5
Data Types: double

DifferentialMethod — Direction while perturbing model
'Forward' (default) | 'Backward' | 'Central'

Direction while perturbing, specified as 'Forward', 'Backward', or 'Central'.

Direction Description
'Forward' Forward difference method that adds statePert

and ctrlPert to the base states and inputs,
respectively.

'Backward' Backward difference method that adds
statePert and ctrlPert to the base states an
inputs, respectively.

'Central' Central difference method that adds and
subtracts statePert and ctrlPert to and from
the base states and inputs, respectively.

Example: 'DifferentialMethod','Backward'
Data Types: char | string

Output Arguments
stability — Stability of fixed-wing aircraft
6-by-N table

Stability of fixed-wing aircraft, returned as a 6-by-N table.

derivatives — Body forces and moments derivatives
6-by-N table

Body forces and moments derivatives, returned as a 6-by-N table.

Examples

Calculate Static Stability of Cessna C182

Calculate the static stability of a Cessna C182.

[C182, CruiseState] = astC182();
stability = staticStability(C182, CruiseState)

stability =

  6×8 table

             U           V           W         Alpha        Beta         P           Q           R    
          ________    ________    ________    ________    ________    ________    ________    ________

    FX    "Stable"    ""          ""          ""          ""          ""          ""          ""      
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    FY    ""          "Stable"    ""          ""          ""          ""          ""          ""      
    FZ    ""          ""          "Stable"    ""          ""          ""          ""          ""      
    L     ""          ""          ""          ""          "Stable"    "Stable"    ""          ""      
    M     "Stable"    ""          ""          "Stable"    ""          ""          "Stable"    ""      
    N     ""          ""          ""          ""          "Stable"    ""          ""          "Stable"

Calculate Static Stability of Cessna C182 with Custom Criteria Table

Calculate the static stability of a Cessna C182 with a custom criteria table.

[C182, CruiseState] = astC182();
CT = C182.criteriaTable()
CT{"FX", "U"} = ">"
 stability = staticStability(C182, CruiseState, "CriteriaTable", CT)

CT =

  6×8 table

           U      V      W     Alpha    Beta     P      Q      R 
          ___    ___    ___    _____    ____    ___    ___    ___

    FX    "<"    ""     ""      ""      ""      ""     ""     "" 
    FY    ""     "<"    ""      ""      ""      ""     ""     "" 
    FZ    ""     ""     "<"     ""      ""      ""     ""     "" 
    L     ""     ""     ""      ""      "<"     "<"    ""     "" 
    M     ">"    ""     ""      "<"     ""      ""     "<"    "" 
    N     ""     ""     ""      ""      ">"     ""     ""     "<"

CT =

  6×8 table

           U      V      W     Alpha    Beta     P      Q      R 
          ___    ___    ___    _____    ____    ___    ___    ___

    FX    ">"    ""     ""      ""      ""      ""     ""     "" 
    FY    ""     "<"    ""      ""      ""      ""     ""     "" 
    FZ    ""     ""     "<"     ""      ""      ""     ""     "" 
    L     ""     ""     ""      ""      "<"     "<"    ""     "" 
    M     ">"    ""     ""      "<"     ""      ""     "<"    "" 
    N     ""     ""     ""      ""      ">"     ""     ""     "<"

stability =

  6×8 table

              U            V           W         Alpha        Beta         P           Q           R    
          __________    ________    ________    ________    ________    ________    ________    ________

    FX    "Unstable"    ""          ""          ""          ""          ""          ""          ""      
    FY    ""            "Stable"    ""          ""          ""          ""          ""          ""      
    FZ    ""            ""          "Stable"    ""          ""          ""          ""          ""      
    L     ""            ""          ""          ""          "Stable"    "Stable"    ""          ""      
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    M     "Stable"      ""          ""          "Stable"    ""          ""          "Stable"    ""      
    N     ""            ""          ""          ""          "Stable"    ""          ""          "Stable"

Calculate Static Stability of Cessna C182 with Central Differential Method

Calculate the static stability of a Cessna C182 using the central differential method.

[C182, CruiseState] = astC182();
stability = staticStability(C182, CruiseState, "DifferentialMethod", "Central")

stability =

  6×8 table

             U           V           W         Alpha        Beta         P           Q           R    
          ________    ________    ________    ________    ________    ________    ________    ________

    FX    "Stable"    ""          ""          ""          ""          ""          ""          ""      
    FY    ""          "Stable"    ""          ""          ""          ""          ""          ""      
    FZ    ""          ""          "Stable"    ""          ""          ""          ""          ""      
    L     ""          ""          ""          ""          "Stable"    "Stable"    ""          ""      
    M     "Stable"    ""          ""          "Stable"    ""          ""          "Stable"    ""      
    N     ""          ""          ""          ""          "Stable"    ""          ""          "Stable"

Calculate Static Stability and Derivatives of Cessna C182

Calculate the static stability and derivatives of a Cessna C182.

[C182, CruiseState] = astC182();
[stability,derivatives] = staticStability(C182, CruiseState)

stability =

  6×8 table

             U           V           W         Alpha        Beta         P           Q           R    
          ________    ________    ________    ________    ________    ________    ________    ________

    FX    "Stable"    ""          ""          ""          ""          ""          ""          ""      
    FY    ""          "Stable"    ""          ""          ""          ""          ""          ""      
    FZ    ""          ""          "Stable"    ""          ""          ""          ""          ""      
    L     ""          ""          ""          ""          "Stable"    "Stable"    ""          ""      
    M     "Stable"    ""          ""          "Stable"    ""          ""          "Stable"    ""      
    N     ""          ""          ""          ""          "Stable"    ""          ""          "Stable"

derivatives =

  6×8 table

             U            V            W       Alpha        Beta            P              Q           R   
          _______    ___________    _______    ______    __________    ___________    ___________    ______

    FX     -2.118    -5.4001e-08     7.2955    1606.1    -0.0023309              0              0         0
    FY          0        -15.415          0         0       -3392.8        -647.47              0    1847.5
    FZ    -24.083    -5.9117e-07    -174.03    -38305     -0.026503              0         -33669         0
    L           0        -130.33          0         0        -28686    -1.5042e+05              0     24801
    M      17.028     4.5475e-07    -105.88    -23303      0.018739              0    -5.2223e+05         0
    N           0         83.944          0         0         18476        -8595.5              0    -29248

See Also
Aero.FixedWing | criteriaTable | forcesAndMoments | linearize
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Introduced in R2021a
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tdbjuliandate
Convert from Barycentric Dynamical Time Estimate to Julian date

Syntax
jdtdb = tdbjuliandate(terrestrial_time)
[jdtdb,tttdb] = tdbjuliandate(terrestrial_time)

Description
jdtdb = tdbjuliandate(terrestrial_time) returns an estimate of the Julian date for
Barycentric Dynamical Time (TDB). These estimations are valid for the years 1980 to 2050.

[jdtdb,tttdb] = tdbjuliandate(terrestrial_time) additionally returns an array of Julian
dates for the Barycentric Dynamical Time (TDB) based on the Terrestrial Time (TT).

Examples

Estimate Julian Date for Barycentric Dynamical Time

Estimate the Julian date for the Barycentric Dynamical Time for the Terrestrial Time 2014/10/15
16:22:31.

jdtdb = tdbjuliandate([2014,10,15,16,22,31])

jdtdb =

   2.4569e+06

Estimate Julian Dates for the Barycentric Dynamical Time and TT-TDB

Estimate the Julian dates for the Barycentric Dynamical Time and TT-TDB in seconds for the
terrestrial time 2014/10/15 16:22:31 and 2010/7/22 1:57:17.

[jdtdb,tttdb] = tdbjuliandate([2014,10,15,16,22,31;2010,7,22,1,57,17])

JDTDB =

   1.0e+06 *

    2.4569
    2.4554

TTTTDB =
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    0.0016
    0.0005

Input Arguments
terrestrial_time — Terrestrial Time
1-by-6 array | M-by-6 array

Terrestrial Time (TT) in year, month, day, hour, minutes, and seconds for which the function calculates
the Julian date for Barycentric Dynamical Time. M is the number of Julian dates, one for each TT
date. Specify values for year, month, day, hour, and minutes as whole numbers.

Output Arguments
jdtdb — Julian date
M-by-1 array

Julian date for the Barycentric Dynamical Time, returned as an M-by-1 array. M is the number of
rows, one for each Terrestrial Time input.

tttdb — Difference in seconds
M-by-1 array

Difference in seconds between Terrestrial Time and Barycentric Dynamical Time (TT-TDB), returned
as an M-by-1 array. M is the number of rows, one for each Terrestrial Time input.

Limitations
Fundamentals of Astrodynamics and Applications[1] indicates an accuracy of 50 microseconds, which
this function cannot achieve due to numerical issues with the values involved.

References
[1] Vallado, D. A., Fundamentals of Astrodynamics and Applications, New York: McGraw-Hill, 1997.

See Also
dcmeci2ecef | ecef2lla | geoc2geod | geod2geoc | lla2ecef | lla2eci

Introduced in R2015a
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TurnCoordinator Properties
Control turn coordinator appearance and behavior

Description
Turn coordinators are components that represent a turn coordinator. Properties control the
appearance and behavior of a turn coordinator. Use dot notation to refer to a particular object and
property:

f = uifigure;
turn = uiaeroturn(f);
turn.Turn = 100;

The turn coordinator displays measurements on a turn coordinator and inclinometer. These
measurements help determine if the turn is coordinated, slipped, or skidded. The turn is a
coordinated turn that combines the rolling and yawing of a turn. The turn indicator signal turns the
airplane in the gauge, in degrees. The inclinometer turns the ball in the gauge, in degrees. Together,
these signals show the slip and skid of an airplane as it turns. Tilt angle values are limited to ±20
degrees. Slip values are limited to ±15 degrees.

Properties
Turn Coordinator

Slip — Slip
0 (default) | finite, real, and scalar numeric

Slip value, specified as any finite and scalar numeric. The slip value controls the direction of the
inclinometer ball. A negative value moves the ball to the right, a positive value moves the ball to the
left, in degrees. This value cannot exceed +/–15 degrees. If it exceed 15 degrees, the gauge stays
fixed at the minimum or maximum value.
Example: 10

Dependencies

Specifying this value changes the second element of the Value vector. Conversely, changing the
second element of the Value vector changes the Slip value.
Data Types: double

Turn — Turn
0 (default) | finite, real, and scalar numeric

Turn rate value, specified as any finite and scalar numeric, in degrees. Input the turn rate value as
the degrees of tilt of the aircraft symbol in the gauge. The standard rate turn marks are at angles of
±15 degrees. Tilt angle values are limited to ±20 degrees.
Example: 10
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Dependencies

Specifying this value changes the first element of the Value vector. Conversely, changing the first
element of the Value vector changes the Turn value.
Data Types: double

Value — Turn and slip
[0 0] (default) | two-element vector of finite, real, and scalar numerics

Turn and slip values, specified as a vector ([Turn Slip]).

• The turn rate value indicates the aircraft heading rate of change by the degrees of tilt of the
aircraft symbol.

• The slip value controls the direction of the inclinometer ball. A negative value moves the ball to
the right, and a positive value moves the ball to the left.

Example: [15 0] indicates a coordinated, standard rate turn.
Dependencies

• Specifying the Turn value changes the first element of the Value vector. Conversely, changing the
first element of the Value vector changes the Turn value.

• Specifying the Slip value changes the second element of the Value vector. Conversely, changing
the second element of the Value vector changes the Slip value.

Data Types: double

Interactivity

Visible — Visibility of turn coordinator
'on' (default) | on/off logical value

Visibility of the turn coordinator, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState. The Visible property determines whether the turn
coordinator, is displayed on the screen. If the Visible property is set to 'off', then the entire turn
coordinator is hidden, but you can still specify and access its properties.

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use
this property to display a context menu when you right-click on a component.

Enable — Operational state of turn coordinator
'on' (default) | on/off logical value

Operational state of turn coordinator, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the appearance of the turn coordinator indicates that the
turn coordinator is operational.
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• If you set this property to 'off', then the appearance of the turn coordinator appears dimmed,
indicating that the turn coordinator is not operational.

Position

Position — Location and size of turn coordinator
[100 100 120 120] (default) | [left bottom width height]

Location and size of the turn coordinator relative to the parent container, specified as the vector
[left bottom width height]. This table describes each element in the vector.

Element Description
left Distance from the inner left edge of the parent container to the

outer left edge of an imaginary box surrounding the turn
coordinator

bottom Distance from the inner bottom edge of the parent container to the
outer bottom edge of an imaginary box surrounding the turn
coordinator

width Distance between the right and left outer edges of the turn
coordinator

height Distance between the top and bottom outer edges of the turn
coordinator

All measurements are in pixel units.

The Position values are relative to the drawable area of the parent container. The drawable area is
the area inside the borders of the container and does not include the area occupied by decorations
such as a menu bar or title.
Example: [200 120 120 120]

InnerPosition — Inner location and size of turn coordinator
[100 100 120 120] (default) | [left bottom width height]

Inner location and size of the turn coordinator, specified as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.

OuterPosition — Outer location and size of turn coordinator
[100 100 120 120]] (default) | [left bottom width height]

This property is read-only.

Outer location and size of the turn coordinator returned as [left bottom width height].
Position values are relative to the parent container. All measurements are in pixel units. This property
value is identical to the Position property.

Layout — Layout options
empty LayoutOptions array (default) | GridLayoutOptions object

Layout options, specified as a GridLayoutOptions object. This property specifies options for
components that are children of grid layout containers. If the component is not a child of a grid layout
container (for example, it is a child of a figure or panel), then this property is empty and has no effect.
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However, if the component is a child of a grid layout container, you can place the component in the
desired row and column of the grid by setting the Row and Column properties on the
GridLayoutOptions object.

For example, this code places an turn coordinator in the third row and second column of its parent
grid.

g = uigridlayout([4 3]);
gauge = uiaeroturn(g);
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;

To make the turn coordinator span multiple rows or columns, specify the Row or Column property as
a two-element vector. For example, this turn coordinator spans columns 2 through 3:

gauge.Layout.Column = [2 3];

Callbacks

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB
initializes all property values before executing the CreateFcn callback. If you do not specify the
CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being
created using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the cell array

are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates

this expression in the base workspace.
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For more information about specifying a callback as a function handle, cell array, or character vector,
see “Write Callbacks in App Designer”.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB
executes the DeleteFcn callback before destroying the properties of the object. If you do not specify
the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being
deleted using the first argument of the callback function. Otherwise, use the gcbo function to access
the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | on/off logical value

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to
consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes
the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor,
and pause.

If the running callback does not contain one of these commands, then no interruption occurs.
MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of
the object that owns the running callback determines if the interruption occurs:

• If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction
property of the object that owns the interrupting callback determines if the interrupting callback
is discarded or added to the callback queue.

• If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB
processes the callback queue, it stops the execution of the running callback and executes the
interrupting callback. After the interrupting callback completes, MATLAB then resumes executing
the running callback.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback,
then the interruption occurs regardless of the Interruptible property value.

• If the running callback is currently executing the waitfor function, then the interruption occurs
regardless of the Interruptible property value.

• If the interrupting callback is owned by a Timer object, then the callback executes according to
schedule regardless of the Interruptible property value.
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Note When an interruption occurs, MATLAB does not save the state of properties or the display. For
example, the object returned by the gca or gcf command might change when another callback
executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions
are met:

• The running callback contains a command that processes the callback queue, such as drawnow,
figure, uifigure, getframe, waitfor, or pause.

• The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback
determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the running callback
finishes execution.

• 'cancel' — Does not execute the interrupting callback.

BeingDeleted — Deletion status
on/off logical value

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution.
The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB
calls the uifigure function to create a new Figure object that serves as the parent container.

HandleVisibility — Visibility of object handle
'on' (default) | 'callback' | 'off'

Visibility of the object handle, specified as 'on', 'callback', or 'off'.
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This property controls the visibility of the object in its parent's list of children. When an object is not
visible in its parent's list of children, it is not returned by functions that obtain objects by searching
the object hierarchy or querying properties. These functions include get, findobj, clf, and close.
Objects are valid even if they are not visible. If you can access an object, you can set and get its
properties, and pass it to any function that operates on objects.

HandleVisibility Value Description
'on' The object is always visible.
'callback' The object is visible from within callbacks or functions invoked by

callbacks, but not from within functions invoked from the
command line. This option blocks access to the object at the
command-line, but allows callback functions to access it.

'off' The object is invisible at all times. This option is useful for
preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to temporarily hide the object
during the execution of that function.

Identifiers

Type — Type of graphics object
'uiaeroturn'

This property is read-only.

Type of graphics object, returned as 'uiaeroturn'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need access to the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

See Also
uiaeroturn

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaeroairspeed
Package: Aero.ui.control

Create airspeed indicator component

Syntax
airspeed = uiaeroairspeed
airspeed = uiaeroairspeed(parent)
airspeed = uiaeroairspeed( ___ ,Name,Value)

Description
airspeed = uiaeroairspeed creates an airspeed indicator in a new figure. MATLAB calls the
uifigure function to create the figure.

The airspeed indicator displays measurements for aircraft airspeed in knots.

By default, minor ticks represent 10-knot increments and major ticks represent 40-knot increments.
The parameters Minimum and Maximum determine the minimum and maximum values on the
gauge. The number and distribution of ticks is fixed, which means that the first and last tick display
the minimum and maximum values. The ticks in between distribute evenly between the minimum and
maximum values. For major ticks, the distribution of ticks is (Maximum-Minimum)/9. For minor
ticks, the distribution of ticks is (Maximum-Minimum)/36.

The airspeed indicator has scale color bars that allow for overlapping for the first bar, displayed at a
different radius. This different radius lets the gauge represent VFE (maximum speed with flap
extended) and VSO (stall speed with flap extended) accurately for aircraft airspeed and stall speed.

If the value of the input is under Minimum, the needle displays 5 degrees under the Minimum
value. If the value exceeds the Maximum value, the needle displays 5 degrees over the maximum
tick.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

airspeed = uiaeroairspeed(parent) specifies the object in which to create the airspeed
indicator.

airspeed = uiaeroairspeed( ___ ,Name,Value) specifies airspeed indicator properties using
one or more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples
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Create Airspeed Indicator Component

Create an airspeed indicator component named airspeed. By default, the function creates a
uifigure object for the indicator object.

airspeed = uiaeroairspeed

airspeed = 

  AirspeedIndicator (0) with properties:

            Airspeed: 0
         ScaleColors: [4×3 double]
    ScaleColorLimits: [4×2 double]
              Limits: [40 400]
            Position: [100 100 120 120]

  Show all properties

Create Figure Window and Airspeed Indicator Component

Create a figure window to contain the airspeed indicator component, then create an airspeed
indicator component named airspeed.
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f = uifigure;
airspeed = uiaeroairspeed(f)

airspeed = 

  AirspeedIndicator (0) with properties:

            Airspeed: 0
         ScaleColors: [4×3 double]
    ScaleColorLimits: [4×2 double]
              Limits: [40 400]
            Position: [100 100 120 120]

  Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of airspeed indicator properties and descriptions for each type, see AirspeedIndicator
Properties.

Output Arguments
airspeed — Airspeed indicator component
object

Airspeed indicator component, returned as an object.

See Also
AirspeedIndicator Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaeroaltimeter
Package: Aero.ui.control

Create altimeter component

Syntax
altimeter = uiaeroaltimeter
altimeter = uiaeroaltimeter(parent)
altimeter = uiaeroaltimeter( ___ ,Name,Value)

Description
altimeter = uiaeroaltimeter creates an altimeter in a new figure. MATLAB calls the uifigure
function to create the figure.

The altimeter displays the altitude above sea level in feet, also known as the pressure altitude. It
displays the altitude value with needles on a gauge and a numeric indicator.

• The gauge has 10 major ticks. Within each major tick are five minor ticks. This gauge has three
needles. Using the needles, the altimeter can display accurately only altitudes between 0 and
100,000 feet.

• For the longest needle, an increment of a small tick represents 20 feet and a major tick
represents 100 feet.

• For the second longest needle, a minor tick represents 200 feet and a major tick represents
1,000 feet.

• For the shortest needle a minor tick represents 2,000 feet and a major tick represents 10,000
feet.

• For the numeric display, the gauge shows values as numeric characters between 0 and 9,999 feet.
When the numeric display value reaches 10,000 feet, the gauge displays the value as the
remaining values below 10,000 feet. For example, 12,345 feet displays as 2,345 feet. When a value
is less than 0 (below sea level), the gauge displays 0. The needles show the appropriate value
except for when the value is below sea level or over 100000 feet. Below sea level, the needles set
to 0, over 100,000, the needles stay set at 100,000.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

altimeter = uiaeroaltimeter(parent) specifies the object in which to create the altimeter.

altimeter = uiaeroaltimeter( ___ ,Name,Value) specifies altimeter properties using one or
more Name,Value pair arguments. Use this option with any of the input argument combinations in
the previous syntaxes.

Examples
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Create Altimeter Component

Create an altimeter component named altimeter. By default, the function creates a uifigure
object for the indicator object.

altimeter = uiaeroaltimeter

altimeter = 

Altimeter (0) with properties:

    Altitude: 0
    Position: [100 100 120 120]

Show all properties

Create Figure Window and Altimeter Component

Create a figure window to contain the altimeter component, then create a altimeter component
named altimeter.

f = uifigure;
altimeter = uiaeroaltimeter(f)

 uiaeroaltimeter
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altimeter = 

  Altimeter (0) with properties:

    Altitude: 0
    Position: [100 100 120 120]

  Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of Altimeter properties and descriptions for each type, see Altimeter Properties.

Output Arguments
altimeter — Altimeter component
object

Altimeter component, returned as an object.

See Also
Altimeter Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaeroclimb
Package: Aero.ui.control

Create climb rate indicator component

Syntax
climbrate = uiaeroclimb
climbrate = uiaeroclimb(parent)
climbrate = uiaeroclimb( ___ ,Name,Value)

Description
climbrate = uiaeroclimb creates a climb rate indicator in a new figure. MATLAB calls the
uifigure function to create the figure.

The climb rate indicator displays measurements for an aircraft climb rate in ft/min.

The needle covers the top semicircle, if the velocity is positive, and the lower semicircle, if the climb
rate is negative. The range of the indicator is from –Maximum feet per minute to Maximum feet per
minute. Major ticks indicate Maximum/4. Minor ticks indicate Maximum/8 and Maximum/80.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

climbrate = uiaeroclimb(parent) specifies the object in which to create the climb rate
indicator.

climbrate = uiaeroclimb( ___ ,Name,Value) specifies climb rate indicator properties using
one or more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Climb Rate Indicator Component

Create a climb rate indicator indicator component named climbrate. By default, the function
creates a uifigure object for the indicator object.

climbrate = uiaeroclimb

climbrate = 

  ClimbIndicator (0) with properties:

      ClimbRate: 0
    MaximumRate: 2000
       Position: [100 100 120 120]

 uiaeroclimb
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  Show all properties

Create Figure Window and Climb Rate Indicator Component

Create a figure window to contain the climb rate indicator component, then create an climb rate
indicator component named climbrate.

f = uifigure;
climbrate = uiaeroclimb(f)

climbrate = 

  ClimbIndicator (0) with properties:

      ClimbRate: 0
    MaximumRate: 2000
       Position: [100 100 120 120]
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  Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of climb rate indicator properties and descriptions for each type, see ClimbIndicator
Properties.

Output Arguments
climbrate — Climb rate indicator component
object

Climb rate indicator component, returned as an object.

See Also
ClimbIndicator Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaeroegt
Package: Aero.ui.control

Create exhaust gas temperature (EGT) indicator component

Syntax
egt = uiaeroegt
egt = uiaeroegt(parent)
egt = uiaeroegt( ___ ,Name,Value)

Description
egt = uiaeroegt creates an EGT indicator in a new figure. MATLAB calls the uifigure function
to create the figure.

The EGT indicator displays temperature measurements for engine exhaust gas temperature (EGT) in
Celsius.

This gauge displays values using both:

• A needle on a gauge. A major tick is (Maximum-Minimum)/1,000 degrees, a minor tick is
(Maximum-Minimum)/200 degrees Celsius.

• A numeric indicator. The operating range for the indicator goes from Minimum to Maximum
degrees Celsius.

If the value of the input is under Minimum, the needle displays 5 degrees under the Minimum
value, the numeric display shows the Minimum value. If the value exceeds the Maximum value, the
needle displays 5 degrees over the maximum tick, and the numeric displays the Maximum value.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

egt = uiaeroegt(parent) specifies the object in which to create the EGT indicator.

egt = uiaeroegt( ___ ,Name,Value) specifies EGT indicator properties using one or more
Name,Value pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes.

Examples

Create EGT Indicator Component

Create an EGT indicator component named egt. By default, the function creates a uifigure object
for the indicator object.

egt = uiaeroegt
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egt = 

  EGTIndicator (0) with properties:

         Temperature: 0
         ScaleColors: [3×3 double]
    ScaleColorLimits: [3×2 double]
              Limits: [0 1000]
            Position: [100 100 120 120]

  Show all properties

Create Figure Window and EGT Indicator Component

Create a figure window to contain the EGT indicator component, then create an EGT indicator
component named egt.

f = uifigure;
egt = uiaeroegt(f)

egt = 

  EGTIndicator (0) with properties:

 uiaeroegt
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         Temperature: 0
         ScaleColors: [3×3 double]
    ScaleColorLimits: [3×2 double]
              Limits: [0 1000]
            Position: [100 100 120 120]

  Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of EGT indicator properties and descriptions for each type, see EGTIndicator Properties.

Output Arguments
egt — EGT indicator component
object

EGT indicator component, returned as an object.

See Also
EGTIndicator Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaeroheading
Package: Aero.ui.control

Create heading indicator component

Syntax
heading = uiaeroheading
heading = uiaeroheading(parent)
heading = uiaeroheading( ___ ,Name,Value)

Description
heading = uiaeroheading creates a heading indicator in a new figure. MATLAB calls the
uifigure function to create the figure.

The heading indicator displays measurements for aircraft heading in degrees.

The heading indicator represents values between 0 and 360 degrees.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

heading = uiaeroheading(parent) specifies the object in which to create the heading indicator.

heading = uiaeroheading( ___ ,Name,Value) specifies heading indicator properties using
one or more Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Create Heading Indicator Component

Create a heading indicator component named heading. By default, the function creates a uifigure
object for the indicator object.

heading = uiaeroheading

heading = 

HeadingIndicator (0) with properties:

     Heading: 0
    Position: [100 100 120 120]
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Create Figure Window and Heading Indicator Component

Create a figure window to contain the heading component, then create a heading indicator
component named heading.

f = uifigure;
heading = uiaeroheading(f)

heading = 
HeadingIndicator (0) with properties:

     Heading: 0
    Position: [100 100 120 120]

Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
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container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of heading indicator properties and descriptions for each type, see HeadingIndicator
Properties.

Output Arguments
heading — Heading indicator component
object

Heading indicator component, returned as an object.

See Also
HeadingIndicator Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaerohorizon
Package: Aero.ui.control

Create artificial horizon component

Syntax
horizon = uiaerohorizon
horizon = uiaerohorizon(parent)
horizon = uiaerohorizon( ___ ,Name,Value)

Description
horizon = uiaerohorizon creates an artificial horizon in a new figure. MATLAB calls the
uifigure function to create the figure.

The artificial horizon represents aircraft attitude relative to horizon and displays roll and pitch in
degrees:

• Values for roll cannot exceed +/– 90 degrees.
• Values for pitch cannot exceed +/– 30 degrees.

If the values exceed the maximum values, the gauge maximum and minimum values do not change.

Changes in roll value affect the gauge semicircles and the ticks located on the black arc turn
accordingly. Changes in pitch value affect the scales and the distribution of the semicircles.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

horizon = uiaerohorizon(parent) specifies the object in which to create the artificial horizon.

horizon = uiaerohorizon( ___ ,Name,Value) specifies artificial horizon properties using one
or more Name,Value pair arguments. Use this option with any of the input argument combinations in
the previous syntaxes.

Examples

Create Artificial Horizon Component

Create an artificial horizon component named horizon. By default, the function creates a uifigure
object for the indicator object.

horizon = uiaerohorizon

horizon = 

  ArtificialHorizon ([0  0]) with properties:
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       Pitch: 0
        Roll: 0
    Position: [100 100 120 120]

  Show all properties

Create Figure Window and Artificial Horizon Component

Create a figure window to contain the artificial horizon component, then create an artificial horizon
component named horizon.

f = uifigure;
egt = uiaeroegt(f)

horizon = 

  ArtificialHorizon ([0  0]) with properties:

       Pitch: 0
        Roll: 0
    Position: [100 100 120 120]
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  Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of artificial horizon properties and descriptions for each type, see ArtificialHorizon
Properties.

Output Arguments
horizon — Artificial horizon component
object

Artificial horizon component, returned as an object.

See Also
ArtificialHorizon Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaerorpm
Package: Aero.ui.control

Create revolutions per minute (RPM) indicator component

Syntax
rpm = uiaerorpm
rpm = uiaerorpm(parent)
rpm = uiaerorpm( ___ ,Name,Value)

Description
rpm = uiaerorpm creates an RPM indicator in a new figure. MATLAB calls the uifigure function
to create the figure.

The RPM indicator displays measurements for engine revolutions per minute in percentage of RPM.

The range of values for RPM goes from 0 to 110%. Minor ticks represent increments of 5% RPM and
major ticks represent increments of 10% RPM.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

rpm = uiaerorpm(parent) specifies the object in which to create the RPM indicator.

rpm = uiaerorpm( ___ ,Name,Value) specifies RPM indicator properties using one or more
Name,Value pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes.

Examples

Create RPM Indicator Component

Create an RPM indicator component named rpm. By default, the function creates a uifigure object
for the indicator object.

rpm = uiaerorpm

rpm = 

  RPMIndicator (0) with properties:

                 RPM: 0
         ScaleColors: [3×3 double]
    ScaleColorLimits: [3×2 double]
            Position: [100 100 120 120]

  Show all properties
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Create Figure Window and RPM Indicator Component

Create a figure window to contain the RPM indicator component, then create an RPM indicator
component named rpm.

f = uifigure;
rpm = uiaerorpm(f)

rpm = 

  RPMIndicator (0) with properties:

                 RPM: 0
         ScaleColors: [3×3 double]
    ScaleColorLimits: [3×2 double]
            Position: [100 100 120 120]

  Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object
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Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of RPM indicator properties and descriptions for each type, see RPMIndicator
Properties.

Output Arguments
rpm — RPM indicator
object

RPM indicator component, returned as an object.

See Also
RPMIndicator Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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uiaeroturn
Package: Aero.ui.control

Create turn coordinator component

Syntax
turn = uiaeroturn
turn = uiaeroturn(parent)
turn = uiaeroturn( ___ ,Name,Value)

Description
turn = uiaeroturn creates a turn coordinator in a new figure. MATLAB calls the uifigure
function to create the figure.

The uiaeroturn function displays measurements on a gyroscopic turn rate instrument and on an
inclinometer.

• The gyroscopic turn rate instrument shows the rate of heading change of the aircraft as a tilting of
the aircraft symbol in the gauge.

• The inclinometer shows whether the turn is coordinated, slipping, or skidding by the position of
the ball.

When the ball is centered, the turn is coordinated. When the ball is off center, the turn is slipping or
skidding. The turn rate instrument has marks for wings level and for a standard rate turn. A standard
rate turn is a heading change of 3 degrees per second, also known as a two minute turn.

The input for gyroscopic turn rate instruments and inclinometers is in degrees. The turn rate value is
input as the degrees of tilt of the aircraft symbol in the gauge. The standard rate turn marks are at
angles of ±15 degrees. Tilt angle values are limited to ±20 degrees, whereas inclinometer angles are
limited to ±15 degrees.

For example, turn indicator and inclinometer values of [15 0] indicate a coordinated, standard rate
turn.

Note Use this function only with figures created using the uifigure function. Apps created using
GUIDE or the figure function do not support flight instrument components.

turn = uiaeroturn(parent) specifies the object in which to create the turn coordinator.

turn = uiaeroturn( ___ ,Name,Value) specifies turn coordinator properties using one or more
Name,Value pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes.

Examples
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Create Turn Coordinator Component

Create a turn coordinator component named turn.

turn = uiaeroturn

turn = 

  TurnCoordinator ([0  0]) with properties:

        Turn: 0
        Slip: 0
    Position: [100 100 120 120]

  Show all properties

Create Figure Window and Turn Coordinator Component

Create a figure window to contain the turn coordinator component, then create a turn coordinator
component named turn.

f = uifigure;
turn = uiaeroturn(f)

 uiaeroturn
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turn = 

  TurnCoordinator ([0  0]) with properties:

        Turn: 0
        Slip: 0
    Position: [100 100 120 120]

  Show all properties

Input Arguments
parent — Parent container
Figure object (default) | Panel object | Tab object | ButtonGroup object | GridLayout object

Parent container, specified as a Figure object created using the uifigure function, or one of its
child containers: Tab, Panel, ButtonGroup, or GridLayout. If you do not specify a parent
container, MATLAB calls the uifigure function to create a new Figure object that serves as the
parent container.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For a full list of turn coordinator properties and descriptions for each type, see TurnCoordinator
Properties.

Output Arguments
turn — Turn coordinator component
object

Turn coordinator component, returned as an object.

See Also
TurnCoordinator Properties

Topics
“Create and Configure Flight Instrument Component and an Animation Object” on page 2-49
“Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110

Introduced in R2018b
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update
Class: Aero.FixedWing
Package: Aero

Update Aero.FixedWing object

Syntax
aircraft = update(aircraft)
aircraft = update(aircraft,Rename,Value)

Description
aircraft = update(aircraft) returns the modified coefficient Aero.FixedWing object.

aircraft = update(aircraft,Rename,Value) updates the Name property in the
Simulink.lookuptable.StructTypeInfo object of each Simulink.LookupTable coefficient in
the Aero.FixedWing object hierarchy. The updated name is a compilation of all component Name
values in the Aero.FixedWing hierarchy, with this format:

• Listed in descending order
• Separated by underscores (_)
• Appended by the stateOutput and stateVariable values of each Simulink.LookupTable

location

Input Arguments
aircraft — Aero.FixedWing coefficient object
scalar | Aero.FixedWing | Aero.FixedWing.Surface | Aero.FixedWing.Control |
Aero.FixedWing.Thrust | Aero.FixedWing.Coefficient

Aero.FixedWing coefficient object, specified as a scalar, of type Aero.FixedWing,
Aero.FixedWing.Surface, Aero.FixedWing.Control, Aero.FixedWing.Thrust, or
Aero.FixedWing.Coefficient.

Rename,Value — Option to update Name property in
Simulink.lookuptable.StructTypeInfo object
on (default) | off

Option to update the Name property in the Simulink.lookuptable.StructTypeInfo object,
specified as:

• 'on' — To modify the Name property in the Simulink.lookuptable.StructTypeInfo object.
• 'off' — Do not modify the Name field in the Simulink.lookuptable.StructTypeInfo object.

Example: 'Rename','on'
Data Types: string | char

 update
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Output Arguments
aircraft — Modified Aero.FixedWing object
scalar

Modified Aero.FixedWing object with the modified coefficients at the specified locations, returned
as a scalar.

Examples

Update Aircraft Name and View Updated Coefficients

Update the aircraft name and view the updated coefficients.

aircraft = astSkyHogg;
aircraft.Properties.Name = 'NewName';
aircraft = update(aircraft);
aircraft.Coefficients.Values{1}.StructTypeInfo.Name

ans =

    'NewName_CD_Zero'

Update Aircraft Name But Do Not Propagate

Update the aircraft name, but do not propagate the new name to the coefficients.

aircraft = astSkyHogg;
aircraft.Properties.Name = 'NewName';
aircraft = update(aircraft, 'Rename', 'off');
aircraft.Coefficients.Values{1}.StructTypeInfo.Name

ans =

    'SkyHogg_CD_Zero'

See Also
Aero.FixedWing | getCoefficient | setCoefficient | Simulink.LookupTable |
Simulink.lookuptable.StructTypeInfo

Topics
“Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129
“Perform Controls and Static Stability Analysis with Linearized Fixed-Wing Aircraft” on page 5-114
“Customize Fixed-Wing Aircraft with Additional Aircraft States” on page 5-121

Introduced in R2021a
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update
Class: Aero.FixedWing.Coefficient
Package: Aero

Update Aero.FixedWing.Coefficient object

Syntax
FixedWingCoefficient = update(FixedWingCoefficient,Rename,Value)

Description
FixedWingCoefficient = update(FixedWingCoefficient,Rename,Value) updates the
Aero.FixedWing.Coefficient object.

Input Arguments
FixedWingCoefficient — Aero.FixedWingCoefficient object
scalar

Aero.FixedWing.Coefficient object, specified as a scalar.

Rename,Value — Option to update Name property in
Simulink.lookuptable.StructTypeInfo object
on (default) | off

Option to update the Name property in the Simulink.lookuptable.StructTypeInfo object,
specified as:

• 'on' — Modify the Name property in the Simulink.lookuptable.StructTypeInfo object.

This method sets the Name property in the Simulink.lookuptable.StructTypeInfo objects
to name_stateOutput_stateVariable, where:

• name is the combined string from the component name joined with all component names above
it.

• stateOutput and stateVariable are the stateOutput and stateVariable values from
each specific Simulink.LookupTable location, respectively.

• 'off' — Do not modify the Name field in the Simulink.lookuptable.StructTypeInfo object.

Example: 'Rename','on'
Data Types: string | char

Output Arguments
FixedWingCoefficient — Modified Aero.FixedWing.Coefficient object
scalar
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Modified Aero.FixedWing.Coefficient object with modified coefficients at the specified
locations, specified as a scalar.

See Also
Aero.FixedWing | Simulink.lookuptable.StructTypeInfo

Introduced in R2021a
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update
Class: Aero.FixedWing.Surface
Package: Aero

Update Aero.FixedWing.Surface object

Syntax
FixedWingSurface = update(FixedWingSurface,Rename,Value)

Description
FixedWingSurface = update(FixedWingSurface,Rename,Value) updates the surface object
FixedWingSurface.

Input Arguments
FixedWingSurface — Aero.FixedWingSurface object
scalar

Aero.FixedWingSurface surface object, specified as a scalar.

Rename,Value — Option to update Name property in
Simulink.lookuptable.StructTypeInfo object
on (default) | off

Option to update the Name property in the Simulink.lookuptable.StructTypeInfo object,
specified as:

• 'on' — Modify the Name property in the Simulink.lookuptable.StructTypeInfo object.

The method sets the Name property in the Simulink.lookuptable.StructTypeInfo objects to
name_stateOutput_stateVariable, where:

• name is the combined string from the component name joined with all component names above
it.

• stateOutput and stateVariable are the stateOutput and stateVariable values from
each specific Simulink.LookupTable location, respectively.

• 'off' — Do not modify the Name field in the Simulink.lookuptable.StructTypeInfo object.

Example: 'Rename','on'
Data Types: string | char

Output Arguments
FixedWingSurface — Modified Aero.FixedWing.Surface object
scalar

 update
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Modified Aero.FixedWing.Surface object with the modified coefficients at the specified locations,
returned as a scalar.

See Also
Aero.FixedWing | Simulink.lookuptable.StructTypeInfo

Introduced in R2021a
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update
Class: Aero.FixedWing.Thrust
Package: Aero

Update Aero.FixedWing.Thrust object

Syntax
FixedWingThrust = update(FixedWingThrust,Rename,Value)

Description
FixedWingThrust = update(FixedWingThrust,Rename,Value) updates the
Aero.FixedWingThrust object.

Input Arguments
FixedWingThrust — Aero.FixedWingThrust object
scalar

Aero.FixedWingThrust thrust object, specified as a scalar.

Rename,Value — Option to update Name property in
Simulink.lookuptable.StructTypeInfo object
on (default) | off

Option to update the Name property in the Simulink.lookuptable.StructTypeInfo object,
specified as:

• 'on' — Modify the Name property in the Simulink.lookuptable.StructTypeInfo object.

The method sets the Name property in the Simulink.lookuptable.StructTypeInfo objects to
name_stateOutput_stateVariable, where:

• name is the combined string from the component name joined with all component names above
it.

• stateOutput and stateVariable are the stateOutput and stateVariable values from
each specific Simulink.LookupTable location, respectively.

• 'off' — Do not modify the Name field in the Simulink.lookuptable.StructTypeInfo object.

Example: 'Rename','on'
Data Types: string | char

Output Arguments
FixedWingThrust — Modified Aero.FixedWing.Thrust object
Aero.FixedWing.Thrust

Modified Aero.FixedWingThrust object with the modified coefficients at the specified locations.
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See Also
Aero.FixedWing | Simulink.lookuptable.StructTypeInfo

Introduced in R2021a
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update (Aero.Body)
Change body position and orientation as function of time

Syntax
update(h,t)
h.update(t)

Description
update(h,t) and h.update(t) change body position and orientation of body h as a function of
time t. t is a scalar in seconds.

Note This function requires that you load the body geometry and time series data first.

Examples
Update the body b with time in seconds of 5.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d'); 
tsdata = [ ...
    0,  1,1,1, 0,0,0; ...
    10  2,2,2, 1,1,1; ];
b.TimeSeriesSource = tsdata;
b.update(5);

See Also
load

Introduced in R2007a
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update (Aero.Camera)
Update camera position based on time and position of other Aero.Body objects

Syntax
update(h,newtime,bodies)
h.update(newtime,bodies)

Description
update(h,newtime,bodies) and h.update(newtime,bodies) update the camera object, h,
position and aim point data based on the new time, newtime, and position of other Aero.Body
objects, bodies. This function updates the camera object PrevTime property to newtime.

See Also
play

Introduced in R2007a
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update (Aero.FlightGearAnimation)
Update position data to FlightGear animation object

Syntax
update(h,time)
h.update(time)

Description
update(h,time) and h.update(time) update the position data to the FlightGear animation object
via UDP. It sets the new position and attitude of body h. time is a scalar in seconds.

Note This function requires that you load the time series data and run FlightGear first.

Examples
Configure a body with TimeSeriesSource set to simdata, then update the body with time time
equal to 0.

h = Aero.FlightGearAnimation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
load simdata;
h.TimeSeriesSource = simdata;
t = 0;
h.update(t);

See Also
GenerateRunScript | initialize | play

Introduced in R2007a
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update (Aero.Node)
Change node position and orientation versus time data

Syntax
update(h,t)
h.update(t)

Description
update(h,t) and h.update(t) change node position and orientation of node h as a function of
time t. t is a scalar in seconds.

Note This function requires that you load the node and time series data first.

Examples
Move the Lynx body.
h = Aero.VirtualRealityAnimation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
load takeoffData
h.Nodes{7}.TimeseriesSource = takeoffData;
h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';
h.Nodes{7}.update(5);

See Also
updateNodes

Introduced in R2007b

4 Functions

4-850



updateBodies
Class: Aero.Animation
Package: Aero

Update bodies of animation object

Syntax
h = updateBodies(time)
h.updateBodies(time)

Description
h = updateBodies(time) and h.updateBodies(time) set the new position and attitude of
movable bodies in the animation object h. This function updates the bodies contained in the
animation object h. time is a scalar in seconds.

Examples
Configure a body with TimeSeriesSource set to simdata, then update the body with time t equal
to 0.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
t = 0;
h.updateBodies(t);
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updateCamera
Class: Aero.Animation
Package: Aero

Update camera in animation object

Syntax
updateCamera(h,time)
h.updateCamera(time)

Description
updateCamera(h,time) and h.updateCamera(time) update the camera in the animation object
h. time is a scalar in seconds.

Note The PositionFcn property of a camera object controls the camera position relative to the
bodies in the animation. The default camera PositionFcn follows the path of a first order chase
vehicle. Therefore, it takes a few steps for the camera to position itself correctly in the chase plane
position.

Input Arguments
h Animation object.
time Scalar in seconds.

Examples
Configure a body with TimeSeriesSource set to simdata, then update the camera with time t
equal to 0.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
t = 0;
h.updateCamera(t);
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updateNodes (Aero.VirtualRealityAnimation)
Change virtual reality animation node position and orientation as function of time

Syntax
updateNodes(h,t)
h.updateNotes(t)

Description
updateNodes(h,t) and h.updateNotes(t) change node position and orientation of body h as a
function of time t. t is a scalar in seconds.

Note This function requires that you load the node and time series data first.

Examples
Update the node h with time in 5 seconds.
h = Aero.VirtualRealityAnimation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];
h.initialize();
load takeoffData
h.Nodes{7}.TimeseriesSource = takeoffData;
h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';
h.Nodes{7}.CoordTransformFcn = @vranimCustomTransform;
h.updateNodes(5);

See Also
addNode | update

Introduced in R2007b
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Viewpoint (Aero.Viewpoint)
Create viewpoint object for use in virtual reality animation

Syntax
h = Aero.Viewpoint

Description
h = Aero.Viewpoint creates a viewpoint object for use with virtual reality animation.

See Aero.Viewpoint for further details.

Introduced in R2007b
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VirtualRealityAnimation
(Aero.VirtualRealityAnimation)
Construct virtual reality animation object

Syntax
h = Aero.VirtualRealityAnimation

Description
h = Aero.VirtualRealityAnimation constructs a virtual reality animation object. The animation
object is returned to h.

See Aero.VirtualRealityAnimation for further details.

See Also
Aero.VirtualRealityAnimation

Introduced in R2007b
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wrldmagm
Use World Magnetic Model

Syntax
[XYZ,H,D,I,F] = wrldmagm(height,latitude,longitude,decimalYear)
[XYZ,H,D,I,F] = wrldmagm(height,latitude,longitude,decimalYear,model)
[XYZ,H,D,I,F] = wrldmagm(height,latitude,longitude,decimalYear,
'Custom',filename)

Description
[XYZ,H,D,I,F] = wrldmagm(height,latitude,longitude,decimalYear) calculates the
Earth magnetic field at a specific location and time using the World Magnetic Model (WMM)
WMM2020.

[XYZ,H,D,I,F] = wrldmagm(height,latitude,longitude,decimalYear,model) calculates
the Earth magnetic field using World Magnetic Model model.

[XYZ,H,D,I,F] = wrldmagm(height,latitude,longitude,decimalYear,
'Custom',filename) calculates the Earth magnetic field using the World Magnetic Model defined
in the WMM.cof file. The WMM.cof files must be in their original form as provided by NOAA.

Examples

Calculate Magnetic Model Using WMM2020

Calculate the magnetic model 1000 meters over Natick, Massachusetts, on July 4, 2020, using the
WMM2020 model.

[XYZ, H, D, I, F] = wrldmagm(1000, 42.283, -71.35, decyear(2020,7,4),'2020')

XYZ =
   1.0e+04 *

    1.9738
   -0.5014
    4.7556

H =
   2.0364e+04

D =
  -14.2536

I =
   66.8184
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F =
   5.1733e+04

Calculate Magnetic Model for Downloaded WMM2020.COF file

Calculate the magnetic model 1000 meters over Natick, Massachusetts, on July 4, 2020, using a
downloaded WMM2020.COF file.

[XYZ, H, D, I, F] = wrldmagm(1000, 42.283, -71.35, decyear(2020,7,4),'Custom','WMM2020.COF')

XYZ =
   1.0e+04 *

    1.9738
   -0.5014
    4.7556

H =
   2.0364e+04

D =
  -14.2536

I =
   66.8184

F =
   5.1733e+04

Input Arguments
height — Distance
scalar

Distance from the surface of the Earth, specified as a scalar, in meters.
Data Types: double

latitude — Geodetic latitude
scalar

Geodetic latitude, specified as a scalar, in degrees. North latitude is positive and south latitude is
negative.

This function accepts latitude values greater than 90 and less than -90.
Data Types: double

longitude — Geodetic longitude
scalar

Geodetic longitude, specified as a scalar, in degrees. East longitude is positive and west longitude is
negative. This function accepts longitude values greater than 180 and less than -180.
Data Types: double
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decimalYear — Decimal year
scalar

Year, in decimal format, specified as a scalar. This value can have any fraction of the year that has
already passed.
Data Types: double

model — World Magnetic Model
'2020' (default) | '2015v2' | '2015' | '2015v1' | '2010' | '2005' | '2000' | character vector |
string

World Magnetic Model, specified as a character vector or string.

Model Description
'2020' WMM2020 (epoch 2020–2025).
'2015v2' or '2015' WMM2015v2 (epoch 2015–2020).
'2015v1' WMM2015 (epoch 2015–2020). This version is

not recommended. Use '2015v2' (WMM2015v2)
instead.

'2010' WMM2010 (epoch 2010–2015).
'2005' WMM2005 (epoch 2005–2010).
'2000' WMM2000 (epoch 2000–2005).

Data Types: char | string

'Custom',filename — Coefficient file
coefficient file name

Coefficient file, WMM.COF, downloaded from https://www.ngdc.noaa.gov/geomag/WMM/
DoDWMM.shtml.
Example: 'Custom','WMM.COF'
Data Types: char | string

Output Arguments
XYZ — Magnetic field vector
vector

Magnetic field vector, returned as a vector, in nanotesla.

H — Horizontal intensity
scalar

Horizontal intensity, returned as a scalar, in nanotesla.

D — Declination
scalar

Declination, returned as a scalar, in degrees (+ve east).
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I — Inclination
scalar

Inclination, returned as a scalar, in degrees (+ve down).

F — Total intensity
scalar

Total intensity, returned as a scalar, in nanotesla (nT).

Limitations
• The WMM specification produces data that is reliable five years after the epoch of the model,

which begins January 1 of the model year selected. The WMM specification describes only the
long-wavelength spatial magnetic fluctuations due to the Earth core. Intermediate and short-
wavelength fluctuations, contributed from the crustal field (the mantle and crust), are not
included. Also, the substantial fluctuations of the geomagnetic field, which occur constantly during
magnetic storms and almost constantly in the disturbance field (auroral zones), are not included.

• This function has the limitations of the World Magnetic Model (WMM). WMM2020 is valid
between -1km and 850km, as outlined in the World Magnetic Model 2020 Technical Report.

• WMM2015v2 was released by NOAA in February, 2019 to correct performance degradation issues
in the Arctic region from January 1, 2015 to December 31, 2019. WMM2015v2 supersedes
WMM2015. Consider replacing WMM2015 with WMM2015v2 for use with navigation and other
systems. It is still acceptable to use WMM2015 in systems below 55 degrees latitude in the
Northern hemisphere.

See Also
decyear | igrfmagm

External Websites
https://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

Introduced in R2006b

 wrldmagm

4-859

https://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml


Bodies property
Class: Aero.Animation
Package: Aero

Specify name of animation object

Values
MATLAB array

Default: [ ]

Description
This property specifies the bodies that the animation object contains.
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Camera property
Class: Aero.Animation
Package: Aero

Specify camera that animation object contains

Values
handle

Default: [ ]

Description
This property specifies the camera that the animation object contains.
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Figure property
Class: Aero.Animation
Package: Aero

Specify name of figure object

Values
MATLAB array

Default: [ ]

Description
This property specifies the name of the figure object.
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FigureCustomizationFcn property
Class: Aero.Animation
Package: Aero

Specify figure customization function

Values
MATLAB array

Default: [ ]

Description
This property specifies the figure customization function.

 FigureCustomizationFcn property
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FramesPerSecond property
Class: Aero.Animation
Package: Aero

Animation rate

Values
MATLAB array

Default: 12

Description
This property specifies rate in frames per second.
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Name property
Class: Aero.Animation
Package: Aero

Specify name of animation object

Values
Character vector | string

Default: ' '

Description
This property specifies the name of the animation object.

 Name property
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TCurrent property
Class: Aero.Animation
Package: Aero

Current time

Values
double

Default: 0

Description
This property specifies the current time.
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TFinal property
Class: Aero.Animation
Package: Aero

End time

Values
double

Default: NaN

Description
This property specifies the end time.

 TFinal property
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TimeScaling property
Class: Aero.Animation
Package: Aero

Scaling time

Values
double

Default: 1

Description
This property specifies the time, in seconds.
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TStart property
Class: Aero.Animation
Package: Aero

Start time

Values
double

Default: NaN

Description
This property specifies the start time.

 TStart property
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VideoCompression property
Class: Aero.Animation
Package: Aero

Video recording compression file type

Values
‘Archival’

Create Motion JPEG 2000 format file with lossless compression.

‘Motion JPEG AVI’

Create compressed AVI format file using Motion JPEG codec.

‘Motion JPEG 2000’

Create compressed Motion JPEG 2000 format file.

‘MPEG-4’

Create compressed MPEG-4 format file with H.264 encoding (Windows 7 systems only).

‘Uncompressed AVI’

Create uncompressed AVI format file with RGB24 video.

Data type: Aero.VideoProfileTypeEnum

Default: 'Archival'

Description
This property specifies the compression file type to create. For more information on video
compression, see VideoWriter.
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VideoFileName property
Class: Aero.Animation
Package: Aero

Video recording file name

Values
filename

Data type: character vector | string

Default: temp

Description
This property specifies the file name for the video recording.
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VideoQuality property
Class: Aero.Animation
Package: Aero

Video recording quality

Values
Value between 0 and 100

Data type: double

Default: 75

Description
This property specifies the recording quality. For more information on video quality, see the Quality
property in VideoWriter.
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VideoRecord property
Class: Aero.Animation
Package: Aero

Video recording

Values
‘on’

Enable video recording.

‘off’

Disable video recording.

‘scheduled’

Schedule video recording. Use this setting with the VideoTStart and VideoTFinal properties.

Data type: character vector | string

Default: 'off'

Description
This property enables video recording of animation objects.

If you are capturing frames of a plot that takes a long time to generate or are repeatedly capturing
frames in a loop, make sure that your computer's screen saver does not activate and that your
monitor does not turn off for the duration of the capture; otherwise one or more of the captured
frames can contain graphics from your screen saver or nothing at all.

Note In situations where MATLAB software is running on a virtual desktop that is not currently
visible on your monitor, it may capture a region on your monitor that corresponds to the position
occupied by the figure or axes on the hidden desktop. Therefore, make sure that the window to be
captured exists on the currently active desktop.

Examples

Record Animation Object Simulation

Simulate and record flight data. Create an animation object.

h = Aero.Animation;

Control the frame display rate.

h.FramesPerSecond = 10;
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Set the time-scaling (TimeScaling) property on the animation object to specify the data per second.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling properties determines the time step of the
simulation. These settings result in a time step of approximately 0.5 s.

Create and load a body for the animation object.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');

Load simulated flight trajectory data (simdata), located in matlabroot\toolbox\aero
\astdemos.

load simdata;

Set the time series data for the body.

h.Bodies{1}.TimeSeriesSource = simdata;

Create a figure object for the animation object.

h.show();

Set up recording properties.

h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
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h = 
  Animation with properties:

                      Name: ''
                    Figure: [1×1 Figure]
    FigureCustomizationFcn: []
                    Bodies: {[1×1 Aero.Body]}
                    Camera: [1×1 Aero.Camera]
               TimeScaling: 5
                    TStart: NaN
                    TFinal: NaN
                  TCurrent: 0
           FramesPerSecond: 10
               VideoRecord: 'on'
             VideoFileName: 'temp'
          VideoCompression: 'Motion JPEG AVI'
              VideoQuality: 50
               VideoTStart: NaN
               VideoTFinal: NaN

h.VideoFilename = 'astMotion_JPEG';

Play the animation.

h.play();

Verify that a file named astMotion_JPEG.avi was created in the current folder.

Disable recording to preserve the file.

h.VideoRecord = 'off';

Record Animation for Four Seconds

Simulate flight data for four seconds. Create an animation object.

h = Aero.Animation;

Control the frame display rate.

h.FramesPerSecond = 10;

Configure the animation object to set the seconds of animation data per second time-scaling
(TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling properties determines the time step of the
simulation (TimeScaling/|FramesPerSecond|). These settings result in a time step of approximately
0.5 s.

Create and load a body for the animation object.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
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Load simulated flight trajectory data (simdata), located in matlabroot\toolbox\aero
\astdemos.

load simdata;

Set the time series data for the body.

h.Bodies{1}.TimeSeriesSource = simdata;

Create a figure object for the animation object.

h.show();

Set up recording properties.

h.VideoRecord='on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI';
h.VideoFilename = 'astMotion_JPEG';

Play the animation from TFinal to TStart.

h.TSTart = 1;
h.TFinal = 5;
h.play();
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Verify that a file named astMotion_JPEG.avi was created in the current folder. When you rerun the
recording, notice that the play time is shorter than that in the previous example when you record for
the length of the simulation time.

Disable recording to preserve the file.

h.VideoRecord = 'off';

Schedule Three Second Recording of Simulation

Schedule three second recording of animation object simulation.

Create an animation object.

h = Aero.Animation;

Control the frame display rate.

h.FramesPerSecond = 10;

Configure the animation object to set the seconds of animation data per second time-scaling
(TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling properties determines the time step of the
simulation (TimeScaling/|FramesPerSecond|). These settings result in a time step of
approximately 0.5 s.

Create and load a body for the animation object.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');

Load simulated flight trajectory data (simdata), located in matlabroot\toolbox\aero
\astdemos.

load simdata;

Set the time series data for the body.

h.Bodies{1}.TimeSeriesSource = simdata;

Create a figure object for the animation object.

h.show();

 VideoRecord property

4-877



VideoTFinal property
Class: Aero.Animation
Package: Aero

Video recording stop time for scheduled recording

Values
Value between TStart and TFinal

Data type: double

Default: NaN, which uses the value of TFinal

Description
This property specifies the stop time of scheduled recording.

Use when VideoRecord is set to 'scheduled'. Use VideoTStart to set the start time of the
recording.
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VideoTStart property
Class: Aero.Animation
Package: Aero

Video recording start time for scheduled recording

Values
Value between TStart and TFinal

Data type: double

Default: NaN, which uses the value of TStart.

Description
This property specifies the start time of the scheduled recording.

Use when VideoRecord is set to 'scheduled'. Use VideoTFinal to set the end time of the
recording.

 VideoTStart property
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Aerospace Toolbox Examples

• “Importing from USAF Digital DATCOM Files” on page 5-2
• “Create a Flight Animation from Trajectory Data” on page 5-17
• “Estimating G Forces for Flight Data” on page 5-20
• “Calculating Best Glide Quantities” on page 5-25
• “Overlaying Simulated and Actual Flight Data” on page 5-30
• “Comparing Zonal Harmonic Gravity Model to Other Gravity Models” on page 5-39
• “Visualize Aircraft Takeoff via Virtual Reality Animation Object” on page 5-46
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• “Analyzing Flow with Friction Through an Insulated Constant Area Duct” on page 5-64
• “Determining Heat Transfer and Mass Flow Rate in a Ramjet Combustion Chamber”

on page 5-69
• “Solving for the Exit Flow of a Supersonic Nozzle” on page 5-75
• “Visualizing World Magnetic Model Contours for 2020 Epoch” on page 5-85
• “Visualizing Geoid Height for Earth Geopotential Model 1996” on page 5-93
• “Marine Navigation Using Planetary Ephemerides” on page 5-98
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on page 5-107
• “Display Flight Trajectory Data Using Flight Instruments and Flight Animation” on page 5-110
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• “Modeling Satellite Constellations Using Ephemeris Data” on page 5-138
• “Satellite Constellation Access to a Ground Station” on page 5-148
• “Comparison of Orbit Propagators” on page 5-162
• “Detect and Track LEO Satellite Constellation with Ground Radars” on page 5-170
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• “Customize Fixed-Wing Aircraft with the Object Interface” on page 5-197
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Importing from USAF Digital DATCOM Files
This example shows how to bring United States Air Force (USAF) Digital DATCOM files into the
MATLAB® environment using the Aerospace Toolbox™ software.

Example USAF Digital DATCOM File

Here's a sample input file for USAF Digital DATCOM for a wing-body-horizontal tail-vertical tail
configuration running over 5 alphas, 2 Mach numbers, and 2 altitudes and calculating static and
dynamic derivatives:

type astdatcom.in

 $FLTCON NMACH=2.0,MACH(1)=0.1,0.2$
 $FLTCON NALT=2.0,ALT(1)=5000.0,8000.0$                        
 $FLTCON NALPHA=5.,ALSCHD(1)=-2.0,0.0,2.0,    
  ALSCHD(4)=4.0,8.0,LOOP=2.0$
 $OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$                                      
 $SYNTHS XCG=7.08,ZCG=0.0,XW=6.1,ZW=-1.4,ALIW=1.1,XH=20.2,                      
   ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$                                        
 $BODY NX=10.0,                          
   X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,                       
   R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$                     
 $WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,   
   TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$                         
NACA-W-6-64A412
 $HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,                 
   CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$                                               
NACA-H-4-0012
 $VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,                 
   CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$                                               
NACA-V-4-0012
CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG 
DAMP
NEXT CASE                                                                    

Here's the output file generated by USAF Digital DATCOM for the same wing-body-horizontal tail-
vertical tail configuration running over 5 alphas, 2 Mach numbers, and 2 altitudes:

type astdatcom.out

 THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION
 IS RELEASED "AS IS".  THE U.S. GOVERNMENT MAKES NO
 WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, CONCERNING
 THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION,
 INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 IN NO EVENT WILL THE U.S. GOVERNMENT BE LIABLE FOR ANY
 DAMAGES, INCLUDING LOST PROFITS, LOST SAVINGS OR OTHER
 INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 
 USE, OR INABILITY TO USE, THIS SOFTWARE OR ANY
 ACCOMPANYING DOCUMENTATION, EVEN IF INFORMED IN ADVANCE
 OF THE POSSIBILITY OF SUCH DAMAGES.
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                                        ****************************************************
                                        *    USAF STABILITY AND CONTROL  DIGITAL DATCOM    *
                                        *    PROGRAM REV. JAN 96   DIRECT INQUIRIES TO:    *
                                        *   WRIGHT LABORATORY  (WL/FIGC)  ATTN: W. BLAKE   *
                                        *         WRIGHT PATTERSON AFB, OHIO  45433        *
                                        *    PHONE (513) 255-6764,   FAX (513) 258-4054    *
                                        ****************************************************
1                         CONERR - INPUT ERROR CHECKING
0 ERROR CODES - N* DENOTES THE NUMBER OF OCCURENCES OF EACH ERROR
0 A - UNKNOWN VARIABLE NAME
0 B - MISSING EQUAL SIGN FOLLOWING VARIABLE NAME
0 C - NON-ARRAY VARIABLE HAS AN ARRAY ELEMENT DESIGNATION - (N)
0 D - NON-ARRAY VARIABLE HAS MULTIPLE VALUES ASSIGNED
0 E - ASSIGNED VALUES EXCEED ARRAY DIMENSION
0 F - SYNTAX ERROR

0******************************  INPUT DATA CARDS  ******************************

  $FLTCON NMACH=2.0,MACH(1)=0.1,0.2$                                             
  $FLTCON NALT=2.0,ALT(1)=5000.0,8000.0$                                         
  $FLTCON NALPHA=5.,ALSCHD(1)=-2.0,0.0,2.0,                                      
   ALSCHD(4)=4.0,8.0,LOOP=2.0$                                                   
  $OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$                                     
  $SYNTHS XCG=7.08,ZCG=0.0,XW=6.1,ZW=-1.4,ALIW=1.1,XH=20.2,                      
    ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$                                
  $BODY NX=10.0,                                                                 
    X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,                               
    R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$                                   
  $WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,       
    TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$                       
 NACA-W-6-64A412                                                                 
  $HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,                 
    CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$                                              
 NACA-H-4-0012                                                                   
  $VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,                    
    CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$                                             
 NACA-V-4-0012                                                                   
 CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG        
 DAMP                                                                            
 NEXT CASE                                                                       
1          THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE.
0
  $FLTCON NMACH=2.0,MACH(1)=0.1,0.2$                                             
  $FLTCON NALT=2.0,ALT(1)=5000.0,8000.0$                                         
  $FLTCON NALPHA=5.,ALSCHD(1)=-2.0,0.0,2.0,                                      
   ALSCHD(4)=4.0,8.0,LOOP=2.0$                                                   
  $OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$                                     
  $SYNTHS XCG=7.08,ZCG=0.0,XW=6.1,ZW=-1.4,ALIW=1.1,XH=20.2,                      
    ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$                                
  $BODY NX=10.0,                                                                 
    X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,                               
    R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$                                   
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  $WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,       
    TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$                       
 NACA-W-6-64A412                                                                 
  $HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,                 
    CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$                                              
 NACA-H-4-0012                                                                   
  $VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,                    
    CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$                                             
 NACA-V-4-0012                                                                   
 CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG        
 DAMP                                                                            
 NEXT CASE                                                                       
0 INPUT DIMENSIONS ARE IN FT, SCALE FACTOR IS 1.0000

1                             AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM   
                                                        WING SECTION DEFINITION
0                                 IDEAL ANGLE OF ATTACK =   0.00000 DEG.

                              ZERO LIFT ANGLE OF ATTACK =  -3.09292 DEG.

                                 IDEAL LIFT COEFFICIENT =   0.40000

                  ZERO LIFT PITCHING MOMENT COEFFICIENT =  -0.08719

                             MACH ZERO LIFT-CURVE-SLOPE =   0.09654 /DEG.

                                    LEADING EDGE RADIUS =   0.00993 FRACTION CHORD

                              MAXIMUM AIRFOIL THICKNESS =   0.12000 FRACTION CHORD

                                                DELTA-Y =   2.46808 PERCENT CHORD

0                         MACH= 0.1000 LIFT-CURVE-SLOPE =   0.09693 /DEG.      XAC =   0.26404
0                         MACH= 0.2000 LIFT-CURVE-SLOPE =   0.09811 /DEG.      XAC =   0.26457
1                             AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM   
                                                   HORIZONTAL TAIL SECTION DEFINITION
0                                 IDEAL ANGLE OF ATTACK =   0.00000 DEG.

                              ZERO LIFT ANGLE OF ATTACK =   0.00000 DEG.

                                 IDEAL LIFT COEFFICIENT =   0.00000

                  ZERO LIFT PITCHING MOMENT COEFFICIENT =   0.00000

                             MACH ZERO LIFT-CURVE-SLOPE =   0.09596 /DEG.

                                    LEADING EDGE RADIUS =   0.01587 FRACTION CHORD

                              MAXIMUM AIRFOIL THICKNESS =   0.12000 FRACTION CHORD

                                                DELTA-Y =   3.16898 PERCENT CHORD

0                         MACH= 0.1000 LIFT-CURVE-SLOPE =   0.09636 /DEG.      XAC =   0.25854
0                         MACH= 0.2000 LIFT-CURVE-SLOPE =   0.09761 /DEG.      XAC =   0.25881
1                             AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM   
                                                    VERTICAL TAIL SECTION DEFINITION
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0                                 IDEAL ANGLE OF ATTACK =   0.00000 DEG.

                              ZERO LIFT ANGLE OF ATTACK =   0.00000 DEG.

                                 IDEAL LIFT COEFFICIENT =   0.00000

                  ZERO LIFT PITCHING MOMENT COEFFICIENT =   0.00000

                             MACH ZERO LIFT-CURVE-SLOPE =   0.09596 /DEG.

                                    LEADING EDGE RADIUS =   0.01587 FRACTION CHORD

                              MAXIMUM AIRFOIL THICKNESS =   0.12000 FRACTION CHORD

                                                DELTA-Y =   3.16898 PERCENT CHORD

0                         MACH= 0.1000 LIFT-CURVE-SLOPE =   0.09636 /DEG.      XAC =   0.25854
0                         MACH= 0.2000 LIFT-CURVE-SLOPE =   0.09761 /DEG.      XAC =   0.25881
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                         CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
0 0.100    5000.00     109.70   1.7609E+03     500.843     6.1507E+05           225.800      5.750    41.150     7.080     0.000
0                                                               -------------------DERIVATIVE (PER DEGREE)-------------------
0 ALPHA     CD       CL       CM       CN       CA       XCP        CLA          CMA          CYB          CNB          CLB
0
   -2.0    0.032    0.113   -0.0340   0.112    0.035   -0.304    8.926E-02   -2.105E-02   -3.458E-03    9.142E-04   -6.161E-04
    0.0    0.035    0.296   -0.0752   0.296    0.035   -0.254    9.350E-02   -2.034E-02                             -6.205E-04
    2.0    0.042    0.487   -0.1153   0.488    0.025   -0.236    9.732E-02   -1.971E-02                             -6.268E-04
    4.0    0.052    0.685   -0.1541   0.687    0.004   -0.224    1.005E-01   -1.927E-02                             -6.349E-04
    8.0    0.084    1.098   -0.2304   1.099   -0.069   -0.210    1.059E-01   -1.890E-02                             -6.554E-04
0                                    ALPHA     Q/QINF    EPSLON  D(EPSLON)/D(ALPHA)
0
                                     -2.0      1.000      0.953        0.571
                                      0.0      1.000      2.094        0.583
                                      2.0      1.000      3.284        0.606
                                      4.0      1.000      4.520        0.610
                                      8.0      1.000      6.897        0.594
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                                         DYNAMIC DERIVATIVES
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
0 0.100    5000.00     109.70   1.7609E+03     500.843     6.1507E+05           225.800      5.750    41.150     7.080     0.000
                                                    DYNAMIC DERIVATIVES (PER DEGREE)
0           -------PITCHING-------    -----ACCELERATION------    --------------ROLLING--------------    --------YAWING--------
0   ALPHA       CLQ          CMQ           CLAD         CMAD         CLP          CYP          CNP          CNR          CLR
0
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    -2.00    9.739E-02   -8.918E-02     1.874E-02   -4.247E-02   -7.824E-03   -1.516E-03   -1.498E-04   -1.059E-03    6.334E-04
     0.00                               1.913E-02   -4.336E-02   -8.226E-03   -1.649E-03   -4.034E-04   -1.068E-03    1.240E-03
     2.00                               1.991E-02   -4.512E-02   -8.599E-03   -1.792E-03   -6.631E-04   -1.073E-03    1.878E-03
     4.00                               2.003E-02   -4.540E-02   -8.890E-03   -1.942E-03   -9.290E-04   -1.073E-03    2.542E-03
     8.00                               1.952E-02   -4.424E-02   -9.387E-03   -2.262E-03   -1.479E-03   -1.060E-03    3.926E-03
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                         CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
0 0.200    5000.00     219.39   1.7609E+03     500.843     1.2301E+06           225.800      5.750    41.150     7.080     0.000
0                                                               -------------------DERIVATIVE (PER DEGREE)-------------------
0 ALPHA     CD       CL       CM       CN       CA       XCP        CLA          CMA          CYB          CNB          CLB
0
   -2.0    0.028    0.114   -0.0335   0.113    0.032   -0.297    9.000E-02   -2.124E-02   -3.465E-03    8.781E-04   -6.226E-04
    0.0    0.031    0.298   -0.0751   0.298    0.031   -0.252    9.421E-02   -2.051E-02                             -6.270E-04
    2.0    0.038    0.491   -0.1155   0.492    0.021   -0.235    9.800E-02   -1.987E-02                             -6.332E-04
    4.0    0.048    0.690   -0.1546   0.692    0.000   -0.223    1.011E-01   -1.943E-02                             -6.413E-04
    8.0    0.081    1.105   -0.2316   1.106   -0.074   -0.209    1.065E-01   -1.906E-02                             -6.614E-04
0                                    ALPHA     Q/QINF    EPSLON  D(EPSLON)/D(ALPHA)
0
                                     -2.0      1.000      0.957        0.573
                                      0.0      1.000      2.103        0.585
                                      2.0      1.000      3.297        0.609
                                      4.0      1.000      4.537        0.612
                                      8.0      1.000      6.923        0.596
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                                         DYNAMIC DERIVATIVES
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
0 0.200    5000.00     219.39   1.7609E+03     500.843     1.2301E+06           225.800      5.750    41.150     7.080     0.000
                                                    DYNAMIC DERIVATIVES (PER DEGREE)
0           -------PITCHING-------    -----ACCELERATION------    --------------ROLLING--------------    --------YAWING--------
0   ALPHA       CLQ          CMQ           CLAD         CMAD         CLP          CYP          CNP          CNR          CLR
0
    -2.00    9.840E-02   -8.993E-02     1.900E-02   -4.307E-02   -7.877E-03   -1.525E-03   -1.499E-04   -1.057E-03    6.448E-04
     0.00                               1.940E-02   -4.398E-02   -8.276E-03   -1.659E-03   -4.038E-04   -1.066E-03    1.264E-03
     2.00                               2.018E-02   -4.574E-02   -8.646E-03   -1.802E-03   -6.637E-04   -1.070E-03    1.915E-03
     4.00                               2.030E-02   -4.602E-02   -8.934E-03   -1.953E-03   -9.297E-04   -1.070E-03    2.593E-03
     8.00                               1.978E-02   -4.483E-02   -9.423E-03   -2.273E-03   -1.479E-03   -1.057E-03    4.003E-03
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                         CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
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0 0.100    8000.00     108.52   1.5721E+03     490.151     5.6457E+05           225.800      5.750    41.150     7.080     0.000
0                                                               -------------------DERIVATIVE (PER DEGREE)-------------------
0 ALPHA     CD       CL       CM       CN       CA       XCP        CLA          CMA          CYB          CNB          CLB
0
   -2.0    0.032    0.113   -0.0340   0.112    0.036   -0.305    8.926E-02   -2.106E-02   -3.458E-03    9.190E-04   -6.161E-04
    0.0    0.035    0.296   -0.0753   0.296    0.035   -0.254    9.350E-02   -2.034E-02                             -6.205E-04
    2.0    0.042    0.487   -0.1154   0.488    0.025   -0.236    9.732E-02   -1.971E-02                             -6.268E-04
    4.0    0.052    0.685   -0.1541   0.687    0.004   -0.224    1.005E-01   -1.927E-02                             -6.349E-04
    8.0    0.085    1.098   -0.2304   1.099   -0.069   -0.210    1.059E-01   -1.891E-02                             -6.554E-04
0                                    ALPHA     Q/QINF    EPSLON  D(EPSLON)/D(ALPHA)
0
                                     -2.0      1.000      0.953        0.571
                                      0.0      1.000      2.094        0.583
                                      2.0      1.000      3.284        0.606
                                      4.0      1.000      4.520        0.610
                                      8.0      1.000      6.897        0.594
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                                         DYNAMIC DERIVATIVES
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
0 0.100    8000.00     108.52   1.5721E+03     490.151     5.6457E+05           225.800      5.750    41.150     7.080     0.000
                                                    DYNAMIC DERIVATIVES (PER DEGREE)
0           -------PITCHING-------    -----ACCELERATION------    --------------ROLLING--------------    --------YAWING--------
0   ALPHA       CLQ          CMQ           CLAD         CMAD         CLP          CYP          CNP          CNR          CLR
0
    -2.00    9.739E-02   -8.918E-02     1.874E-02   -4.247E-02   -7.824E-03   -1.516E-03   -1.498E-04   -1.060E-03    6.334E-04
     0.00                               1.913E-02   -4.336E-02   -8.226E-03   -1.649E-03   -4.034E-04   -1.069E-03    1.240E-03
     2.00                               1.991E-02   -4.512E-02   -8.599E-03   -1.792E-03   -6.631E-04   -1.073E-03    1.878E-03
     4.00                               2.003E-02   -4.540E-02   -8.890E-03   -1.942E-03   -9.290E-04   -1.074E-03    2.542E-03
     8.00                               1.952E-02   -4.424E-02   -9.387E-03   -2.262E-03   -1.479E-03   -1.061E-03    3.926E-03
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                         CHARACTERISTICS AT ANGLE OF ATTACK AND IN SIDESLIP
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
0 0.200    8000.00     217.04   1.5721E+03     490.151     1.1291E+06           225.800      5.750    41.150     7.080     0.000
0                                                               -------------------DERIVATIVE (PER DEGREE)-------------------
0 ALPHA     CD       CL       CM       CN       CA       XCP        CLA          CMA          CYB          CNB          CLB
0
   -2.0    0.028    0.114   -0.0335   0.113    0.032   -0.297    9.000E-02   -2.124E-02   -3.465E-03    8.829E-04   -6.226E-04
    0.0    0.031    0.298   -0.0751   0.298    0.031   -0.252    9.421E-02   -2.051E-02                             -6.270E-04
    2.0    0.038    0.491   -0.1156   0.492    0.021   -0.235    9.800E-02   -1.987E-02                             -6.332E-04
    4.0    0.049    0.690   -0.1546   0.692    0.000   -0.223    1.011E-01   -1.943E-02                             -6.413E-04
    8.0    0.081    1.105   -0.2316   1.106   -0.073   -0.209    1.065E-01   -1.906E-02                             -6.614E-04
0                                    ALPHA     Q/QINF    EPSLON  D(EPSLON)/D(ALPHA)
0
                                     -2.0      1.000      0.957        0.573
                                      0.0      1.000      2.103        0.585
                                      2.0      1.000      3.297        0.609
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                                      4.0      1.000      4.537        0.612
                                      8.0      1.000      6.923        0.596
1                               AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM
                                                         DYNAMIC DERIVATIVES
                                        WING-BODY-VERTICAL TAIL-HORIZONTAL TAIL CONFIGURATION
                                 SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
 
 -----------------------  FLIGHT CONDITIONS  ------------------------           --------------  REFERENCE DIMENSIONS  ------------
  MACH    ALTITUDE   VELOCITY    PRESSURE    TEMPERATURE     REYNOLDS             REF.      REFERENCE LENGTH   MOMENT REF. CENTER
 NUMBER                                                       NUMBER              AREA       LONG.     LAT.     HORIZ      VERT
             FT       FT/SEC     LB/FT**2       DEG R         1/FT               FT**2        FT        FT        FT        FT
0 0.200    8000.00     217.04   1.5721E+03     490.151     1.1291E+06           225.800      5.750    41.150     7.080     0.000
                                                    DYNAMIC DERIVATIVES (PER DEGREE)
0           -------PITCHING-------    -----ACCELERATION------    --------------ROLLING--------------    --------YAWING--------
0   ALPHA       CLQ          CMQ           CLAD         CMAD         CLP          CYP          CNP          CNR          CLR
0
    -2.00    9.840E-02   -8.993E-02     1.900E-02   -4.307E-02   -7.877E-03   -1.525E-03   -1.499E-04   -1.057E-03    6.448E-04
     0.00                               1.940E-02   -4.398E-02   -8.276E-03   -1.659E-03   -4.038E-04   -1.066E-03    1.264E-03
     2.00                               2.018E-02   -4.574E-02   -8.646E-03   -1.802E-03   -6.637E-04   -1.071E-03    1.915E-03
     4.00                               2.030E-02   -4.602E-02   -8.934E-03   -1.953E-03   -9.297E-04   -1.071E-03    2.593E-03
     8.00                               1.978E-02   -4.483E-02   -9.424E-03   -2.273E-03   -1.479E-03   -1.057E-03    4.003E-03
1          THE FOLLOWING IS A LIST OF ALL INPUT CARDS FOR THIS CASE.
0
1 END OF JOB.

Import Data from DATCOM Files

Use the datcomimport function to bring the Digital DATCOM data into MATLAB.

alldata = datcomimport('astdatcom.out', true, 0);

Examining Imported DATCOM Data

The datcomimport function creates a cell array of structures containing the data from the Digital
DATCOM output file.

data = alldata{1}

data = 

  struct with fields:

        case: 'SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG'
        mach: [0.1000 0.2000]
         alt: [5000 8000]
       alpha: [-2 0 2 4 8]
       nmach: 2
        nalt: 2
      nalpha: 5
       rnnub: []
      hypers: 0
        loop: 2
        sref: 225.8000
        cbar: 5.7500
       blref: 41.1500
         dim: 'ft'
       deriv: 'deg'
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      stmach: 0.6000
      tsmach: 1.4000
        save: 0
       stype: []
        trim: 0
        damp: 1
       build: 1
        part: 0
     highsym: 0
     highasy: 0
     highcon: 0
        tjet: 0
      hypeff: 0
          lb: 0
         pwr: 0
        grnd: 0
       wsspn: 18.7000
       hsspn: 5.7000
      ndelta: 0
       delta: []
      deltal: []
      deltar: []
         ngh: 0
      grndht: []
      config: [1x1 struct]
     version: 1976
          cd: [5x2x2 double]
          cl: [5x2x2 double]
          cm: [5x2x2 double]
          cn: [5x2x2 double]
          ca: [5x2x2 double]
         xcp: [5x2x2 double]
         cma: [5x2x2 double]
         cyb: [5x2x2 double]
         cnb: [5x2x2 double]
         clb: [5x2x2 double]
         cla: [5x2x2 double]
       qqinf: [5x2x2 double]
         eps: [5x2x2 double]
    depsdalp: [5x2x2 double]
         clq: [5x2x2 double]
         cmq: [5x2x2 double]
        clad: [5x2x2 double]
        cmad: [5x2x2 double]
         clp: [5x2x2 double]
         cyp: [5x2x2 double]
         cnp: [5x2x2 double]
         cnr: [5x2x2 double]
         clr: [5x2x2 double]

Filling in Missing DATCOM Data

By default, missing data points are set to 99999 and data points are set to NaN where no DATCOM
methods exist or where the method is not applicable.

It can be seen in the Digital DATCOM output file and examining the imported data that
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have data only in the first alpha value. Here are the imported data values.

data.cyb

ans(:,:,1) =

   1.0e+04 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

   1.0e+04 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

data.cnb

ans(:,:,1) =

   1.0e+04 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

   1.0e+04 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

data.clq

ans(:,:,1) =
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   1.0e+04 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

   1.0e+04 *

    0.0000    0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

data.cmq

ans(:,:,1) =

   1.0e+04 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

ans(:,:,2) =

   1.0e+04 *

   -0.0000   -0.0000
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999
    9.9999    9.9999

The missing data points will be filled with the values for the first alpha, since these data points are
meant to be used for all alpha values.

aerotab = {'cyb' 'cnb' 'clq' 'cmq'};

for k = 1:length(aerotab)
    for m = 1:data.nmach
        for h = 1:data.nalt
            data.(aerotab{k})(:,m,h) = data.(aerotab{k})(1,m,h);
        end
    end
end

Here are the updated imported data values:
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data.cyb

ans(:,:,1) =

   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035

ans(:,:,2) =

   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035
   -0.0035   -0.0035

data.cnb

ans(:,:,1) =

   1.0e-03 *

    0.9142    0.8781
    0.9142    0.8781
    0.9142    0.8781
    0.9142    0.8781
    0.9142    0.8781

ans(:,:,2) =

   1.0e-03 *

    0.9190    0.8829
    0.9190    0.8829
    0.9190    0.8829
    0.9190    0.8829
    0.9190    0.8829

data.clq

ans(:,:,1) =

    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984

ans(:,:,2) =
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    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984
    0.0974    0.0984

data.cmq

ans(:,:,1) =

   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899

ans(:,:,2) =

   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899
   -0.0892   -0.0899

Plotting Aerodynamic Coefficients

Plot lift curve, drag polar and pitching moments.

h1 = figure;
figtitle = {'Lift Curve' ''};
for k=1:2
    subplot(2,1,k)
    plot(data.alpha,permute(data.cl(:,k,:),[1 3 2]))
    grid
    ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])
    title(figtitle{k});
end
xlabel('Angle of Attack (deg)')
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h2 = figure;
figtitle = {'Drag Polar' ''};
for k=1:2
    subplot(2,1,k)
    plot(permute(data.cd(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))
    grid
    ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])
    title(figtitle{k})
end
xlabel('Drag Coefficient')
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h3 = figure;
figtitle = {'Pitching Moment' ''};
for k=1:2
    subplot(2,1,k)
    plot(permute(data.cm(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))
    grid
    ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])
    title(figtitle{k})
end
xlabel('Pitching Moment Coefficient')
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close(h1,h2,h3);
%#ok<*NOPTS>
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Create a Flight Animation from Trajectory Data
This example shows how to create a flight animation for a trajectory using a FlightGear Animation
object.

Note: When running this example within the product, you must customize the example with your
FlightGear installation and uncomment the GenerateRunScript, system and play commands. You must
also copy the $MATLAB/toolbox/aero/astdemos/HL20 folder into the $FLIGHTGEAR/data/Aircraft/
folder.

Load Recorded Flight Trajectory Data

The flight trajectory data for this example is stored in a comma separated value formatted file. Use
dlmread to read the data from the file starting at row 1 and column 0 skipping the header
information.

tdata = dlmread('asthl20log.csv',',',1,0);

Create a Time Series Object from Trajectory Data

Use the MATLAB® timeseries command to create the time series object, ts, from the latitude,
longitude, altitude, and Euler angle data along with the time array in tdata. To convert the latitude,
longitude, and Euler angles from degrees to radians use the convang function.

ts = timeseries([convang(tdata(:,[3 2]),'deg','rad') ...
                 tdata(:,4) convang(tdata(:,5:7),'deg','rad')],tdata(:,1));

You can create imported data from this data using other valid formats, such as 'Array6DoF', For
example:

ts = [tdata(:,1) convang(tdata(:,[3 2]),'deg','rad') tdata(:,4) ... convang(tdata(:,5:7),'deg','rad')];

and 'Array3DoF'.

ts = [tdata(:,1) convang(tdata(:,3),'deg','rad') tdata(:,4) ... convang(tdata(:,6),'deg','rad')];

Use FlightGearAnimation Object to Initialize Flight Animation

Open a FlightGearAnimation object.

h = Aero.FlightGearAnimation;

Set FlightGearAnimation object properties for timeseries.

h.TimeseriesSourceType = 'Timeseries';
h.TimeseriesSource = ts;

Set FlightGearAnimation object properties about FlightGear

These properties include the path to the installation folder, the aircraft geometry model, and the
network information for FlightGear flight simulator.

h.FlightGearBaseDirectory = 'C:\Program Files\FlightGear';
h.GeometryModelName = 'HL20';
h.DestinationIpAddress = '127.0.0.1';
h.DestinationPort = '5502';
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Set the desired initial conditions (location and orientation) for FlightGear flight simulator.

h.AirportId = 'KSFO';
h.RunwayId = '10L';
h.InitialAltitude = 7224;
h.InitialHeading = 113;
h.OffsetDistance = 4.72;
h.OffsetAzimuth = 0;

Enable "just in time" scenery installation for FlightGear flight simulator. Required scenery will be
downloaded while the simulator is running. For Windows® systems, you may encounter an error
message while launching FlightGear with this option enabled. For more information, see “Installing
Additional FlightGear Scenery” on page 2-42.

h.InstallScenery = true;

Disable FlightGear Shaders.

h.DisableShaders = true;

Set the seconds of animation data per second of wall-clock time.

h.TimeScaling = 5;

Use get(h) to check the FlightGearAnimation object properties and their values.

get(h)

             OutputFileName: 'runfg.bat'
    FlightGearBaseDirectory: 'C:\Program Files\FlightGear'
          GeometryModelName: 'HL20'
       DestinationIpAddress: '127.0.0.1'
            DestinationPort: '5502'
                  AirportId: 'KSFO'
                   RunwayId: '10L'
            InitialAltitude: 7224
             InitialHeading: 113
             OffsetDistance: 4.7200
              OffsetAzimuth: 0
             InstallScenery: 1
             DisableShaders: 1
               Architecture: 'Default'
                TimeScaling: 5
            FramesPerSecond: 12
                     TStart: NaN
                     TFinal: NaN
           TimeseriesSource: [1x1 timeseries]
       TimeseriesSourceType: 'Timeseries'
          TimeseriesReadFcn: @TimeseriesRead

Create a Run Script to Launch FlightGear Flight Simulator

To start FlightGear with the desired initial conditions (location, date, time, weather, and operating
modes), create a run script with the GenerateRunScript command. By default, GenerateRunScript
saves the run script as a text file named 'runfg.bat'.

GenerateRunScript(h)
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You do not need to generate this file each time the data is viewed. Generate it only when the desired
initial conditions or FlightGear information changes.

Start FlightGear Flight Simulator

To start FlightGear from the MATLAB command prompt, type the system command to execute the
run script created by GenerateRunScript.

system('runfg.bat &');

Tip: With the FlightGear window in focus, press the V key to alternate between the different aircraft
views: cockpit view, helicopter view, and chase view.

Play the Flight Animation of Trajectory Data

Once FlightGear is up and running, the FlightGearAnimation object can start to communicate with
FlightGear. To display the flight animation with FlightGear, use the play command.

play(h)

To display a screenshot of the flight animation, use the MATLAB image command.

image(imread([matlabroot filesep fullfile('toolbox','aero','astdemos','figures','astfganim01.png')],'png'));
axis off;
set(gca,'Position',[ 0 0 1 1 ]);
set(gcf,'MenuBar','none');
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Estimating G Forces for Flight Data
This example shows how to load flight data and estimate G forces during the flight.

Load Recorded Flight Data for Analysis

The recorded data contains the following flight parameters:

• angle of attack (alpha) in radians,
• sideslip angle (beta) in radians,
• indicated airspeed (IAS) in knots,
• body angular rates (omega) in radians/second,
• downrange and crossrange positions in feet, and
• altitude (alt) in feet.

load('astflight.mat');

Extract Flight Parameters from Loaded Data

MATLAB® variables are created for angle of attack (alpha), sideslip angle (beta), body angular rates
(omega), and altitude (alt) from recorded data. The convangvel function is used to convert body
angular rates from radians per second (rad/s) to degrees per second (deg/s).

alpha = fltdata(:,2);
beta  = fltdata(:,3);
omega = convangvel( fltdata(:,5:7), 'rad/s', 'deg/s' );
alt   = fltdata(:,10);

Compute True Airspeed from Indicated Airspeed

In this set of flight data, indicated airspeed (IAS) was recorded. Indicated airspeed (IAS) is displayed
in the cockpit instrumentation. To perform calculations, true airspeed (TAS), the airspeed without
measurement errors, is typically used.

Measurement errors are introduced through the pitot-static airspeed indicators used to determine
airspeed. These measurement errors are density error, compressibility error and calibration error.
Applying these errors to true airspeed results in indicated airspeed.

• Density error occurs due to lower air density at altitude. The effect is an airspeed indicator reads
lower than true airspeed at higher altitudes. When the difference or error in air density at altitude
from air density on a standard day at sea level is applied to true airspeed, it results in equivalent
airspeed (EAS). Equivalent airspeed is true airspeed modified with the changes in atmospheric
density which affect the airspeed indicator.

• Compressibility error occurs because air has a limited ability to resist compression. This ability is
reduced by an increase in altitude, an increase in speed, or a restricted volume. Within the
airspeed indicator, there is a certain amount of trapped air. When flying at high altitudes and
higher airspeeds, calibrated airspeed (CAS) is always higher than equivalent airspeed. Calibrated
airspeed is equivalent airspeed modified with compressibility effects of air which affect the
airspeed indicator.

• Calibration error is specific to a given aircraft design. Calibration error is the result of the position
and placement of the static vent(s) to maintain a pressure equal to atmospheric pressure inside
the airspeed indicator. Position and placement of the static vent along with angle of attack and

5 Aerospace Toolbox Examples

5-20



velocity of the aircraft will determine the pressure inside the airspeed indicator and thus the
amount of calibration error of the airspeed indicator. A calibration table is usually given in the
pilot operating handbook (POH) or in other aircraft specifications. Using this calibration table, the
indicated airspeed (IAS) is determined from calibrated airspeed by modifying it with calibration
error of the airspeed indicator.

The following data is the airspeed calibration table for the airspeed indicator of the aircraft with zero
flap deflection. The airspeed calibration table converts indicated airspeed (IAS) to calibrated airspeed
(CAS) by removing the calibration error.

flaps0IAS = 40:10:140;
flaps0CAS = [43 51 59 68 77 87 98 108 118 129 140];

The indicated airspeed (IAS) from the flight and airspeed calibration table are used to determine the
calibrated airspeed (CAS) for the flight.

CAS = interp1( flaps0IAS, flaps0CAS, fltdata(:,4) );

The atmospheric properties, temperature (T), speed of sound (a), pressure (P), and density (rho), are
determined at altitude for standard day using the atmoscoesa function.

[T, a, P, rho]= atmoscoesa( alt );

Once the calibrated airspeed (CAS) and the atmospheric properties are determined, the true airspeed
(Vt) can be calculated using the correctairspeed function.

Vt = correctairspeed( CAS, a, P, 'CAS', 'TAS' );

Import Digital DATCOM Data for Aircraft

Use the datcomimport function to bring the Digital DATCOM data into MATLAB. The units for this
aerodynamic information are feet and degrees.

data = datcomimport( 'astflight.out', true, 0 );

It can be seen in the Digital DATCOM output file and examining the imported data that

have data only in the first alpha value. By default, missing data points are set to 99999. The missing
data points are filled with the values for the first alpha, since these data points are meant to be used
for all alpha values.

aerotab = {'cyb' 'cnb' 'clq' 'cmq'};

for k = 1:length(aerotab)
    for m = 1:data{1}.nmach
        for h = 1:data{1}.nalt
            data{1}.(aerotab{k})(:,m,h) = data{1}.(aerotab{k})(1,m,h);
        end
    end
end

Interpolate Stability and Dynamic Derivatives at Flight Conditions

The stability and dynamic derivatives in the digital DATCOM structure are 3-D tables which are
functions of Mach number, angle of attack in degrees, and altitude in feet. In order to perform 3-D
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linear interpolation (interp3), the indices for the derivative tables are required to be monotonic and
plaid. Indices of this form are generated by the meshgrid function.

[mnum, alp, h] = meshgrid( data{1}.mach, data{1}.alpha, data{1}.alt );

Since the angular units of the derivatives are in degrees, the units of angle of attack (alpha) are
converted from radians from degrees by the function convang.

alphadeg = convang( alpha, 'rad', 'deg' );

The Mach numbers for the flight are calculated by the function machnumber using speed of sound (a)
and airspeed (Vt).

Mach = machnumber( convvel( [Vt zeros(size(Vt,1),2)], 'kts', 'm/s' ), a );

Looping through the flight conditions, allows interp3 to be used to linearly interpolate derivative
tables to find static and dynamic derivatives at those flight conditions.

for k = length(alt):-1:1
    cd(k,:)   = interp3( mnum, alp, h, data{1}.cd,   Mach(k), alphadeg(k), alt(k), 'linear');
    cyb(k,:)  = interp3( mnum, alp, h, data{1}.cyb,  Mach(k), alphadeg(k), alt(k), 'linear');
    cl(k,:)   = interp3( mnum, alp, h, data{1}.cl,   Mach(k), alphadeg(k), alt(k), 'linear');
    cyp(k,:)  = interp3( mnum, alp, h, data{1}.cyp,  Mach(k), alphadeg(k), alt(k), 'linear');
    clad(k,:) = interp3( mnum, alp, h, data{1}.clad, Mach(k), alphadeg(k), alt(k), 'linear');
end

Compute Aerodynamic Coefficients

Once the derivatives are found for the flight conditions, aerodynamic coefficients can be calculated.

Reference lengths and areas used in the aerodynamic coefficient computation are extracted from the
digital DATCOM structure.

cbar = data{1}.cbar;
Sref = data{1}.sref;
bref = data{1}.blref;

The angular units of the derivatives are in degrees, so the units of sideslip angle (beta) are converted
from radians from degrees by the function convang.

betadeg  = convang( beta,  'rad', 'deg' );

In order to calculate the aerodynamic coefficients, the body angular rates (omega) need to be given in
the stability axes, like the derivatives. The function dcmbody2wind generates the direction cosine
matrix for body axes to stability axes (Tsb) when the sideslip angle (beta) is set to zero.

Tsb = dcmbody2wind( alpha, zeros(size(alpha)) );

The rate of change in angle of attack (alpha_dot) is also needed to find angular rates in stability axis
(omega_stab). The function diff is used on alpha in degrees divided by data sample time (0.50
seconds) to approximate the rate of change in angle of attack (alpha_dot).

alpha_dot = diff( alphadeg/0.50 );

The last value of alpha_dot is held to keep the length of alpha_dot consistent with other arrays in this
calculation. This is needed because the diff function returns an array that is one value shorter that
the input

5 Aerospace Toolbox Examples

5-22



alpha_dot = [alpha_dot; alpha_dot(end)];

The angular rates in stability axis (omega_stab) are computed for the flight data. The angular rates
are reshaped into a 3-D matrix to be multiplied with the 3-D matrix for the direction cosine matrix for
body axes to stability axes (Tsb).

omega_temp = reshape((omega - [zeros(size(alpha)) alpha_dot zeros(size(alpha))])',3,1,length(omega));

for k = length(omega):-1:1
    omega_stab(k,:) = (Tsb(:,:,k)*omega_temp(:,:,k))';
end

Compute the drag coefficient (CD), the side force coefficient (CY) and the lift coefficient (CL). The
convvel function is used to get the units of airspeed (Vt) consistent with those of the derivatives.

CD = cd;
CY = cyb.*betadeg + cyp.*omega_stab(:,1)*bref/2./convvel(Vt,'kts','ft/s');
CL = cl + clad.*alpha_dot*cbar/2./convvel(Vt,'kts','ft/s');

Compute Forces

Aerodynamic coefficients for drag, side force and lift are used to compute aerodynamic forces.

Dynamic pressure is needed to calculate the aerodynamic forces. The function dpressure compute
dynamic pressure from the airspeed (Vt) and density (rho). The convvel function is used to get the
units of airspeed (Vt) consistent with those of density (rho).

qbar = dpressure( convvel( [Vt zeros(size(Vt,1),2)], 'kts', 'm/s' ), rho );

To find forces in body axes, the direction cosine matrix for stability axes to body axes (Tbs) is needed.
Direction cosine matrix for stability axes to body axes (Tbs) is the transpose of direction cosine matrix
for body axes to stability axes (Tsb). To take the transpose of an 3-D array, the permute function is
used.

Tbs = permute( Tsb, [2 1 3] );

Looping through the flight data points, aerodynamic forces are computed and converted from
stability to body axes. The convpres function is used to get the units of dynamic pressure (qbar)
consistent with those of the reference area (Sref).

for k = length(qbar):-1:1
    forces_lbs(k,:) = Tbs(:,:,k)*(convpres(qbar(k),'Pa','psf')*Sref*[-CD(k); CY(k); -CL(k)]);
end

A constant thrust is estimated in the body axes.

thrust = ones(length(forces_lbs),1)*[200 0 0];

The constant thrust estimate is added to aerodynamic forces and units are converted to metric.

forces = convforce((forces_lbs + thrust),'lbf','N');

Estimate G Forces

Using the calculated forces, estimate G forces during the flight.

Accelerations are estimated using the calculated forces and mass converted into kilograms using
convmass. Accelerations are converted to G forces using convacc.
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N = convacc(( forces/convmass(84.2,'slug','kg') ),'m/s^2','G''s');
N = [N(:,1:2) -N(:,3)];

G forces are plotted over the flight.

h1 = figure;
plot(fltdata(:,1), N);
xlabel('Time (sec)')
ylabel('G Force')
title('G Forces over the Flight')
legend('Nx','Ny','Nz','Location','Best')

close(h1);
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Calculating Best Glide Quantities
This example shows how to perform glide calculations for a Cessna 172 following Example 9.1 in
Reference 1 using the Aerospace Toolbox™ software.

Best glide calculations provide values (velocity and glide angle) that minimize drag and maximize lift-
drag ratio (also called the glide ratio).

Aircraft Specifications

The aircraft parameters are declared as follows.

W = 2400; % weight, lbf
S = 174;  % wing reference area, ft^2;
A = 7.38; % wing aspect ratio
C_D0 = 0.037; % flaps up parasite drag coefficient
e = 0.72; % airplane efficiency factor

Conditions

Set the current aircraft conditions. The bank angle (phi) is zero for this case.

h = 4000; % altitude, ft
phi = 0; % bank angle, deg

Convert altitude to meters using convlength. The atmospheric calculations in the next step require
values in metric units.

h_m = convlength(h,'ft','m');

Calculate atmospheric parameters based on altitude using atmoscoesa:

[T, a, P, rho] = atmoscoesa(h_m, 'Warning');

Convert density from metric to English units using convdensity:

rho = convdensity(rho,'kg/m^3','slug/ft^3');

Best Glide Data

Best glide velocity is calculated using the following equation. TAS (true airspeed in feet per second) is
the velocity of the aircraft relative to the surrounding air mass.

TAS_bg = sqrt((2*W) / (rho*S))...
         *(1./(4*C_D0.^2 + C_D0.*pi*e*A*cos(phi)^2)).^(1/4); % TAS, fps

Convert velocity from fps to kts using convvel. KTAS is true airspeed in knots.

KTAS_bg = convvel(TAS_bg,'ft/s','kts')';

Convert KTAS to KCAS using correctairspeed. KCAS (calibrated airspeed in knots) is the velocity
corrected for instrument error and position error. This position error comes from inaccuracies in
static pressure measurements at different points in the flight envelope.
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KCAS_bg = correctairspeed(KTAS_bg,a,P,'TAS','CAS')';

Best glide angle is calculated using:

This is the angle between the flight path and the ground that provides the highest L/D ratio.

gamma_bg_rad = asin( -sqrt((4.*C_D0')./(pi*e*A*cos(phi)^2 + 4.*C_D0')) );

Convert glide angle from radians to degrees using convang:

gamma_bg = convang(gamma_bg_rad,'rad','deg');

Best glide drag is calculated using:

D_bg = -W*sin(gamma_bg_rad);

Best glide lift is calculated using:

L_bg =  W*cos(gamma_bg_rad);

Calculate dynamic pressure using dpressure:

qbar = dpressure([TAS_bg' zeros(size(TAS_bg,2),2)], rho);

Calculate drag and lift coefficients using:

C_D_bg = D_bg./(qbar*S);
C_L_bg = L_bg./(qbar*S);

Summary of Best Glide Values

Here are the best glide values:
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Verification

These plots show drag and lift-drag ratio plots for the aircraft as a function of KCAS. The plots are
used to verify the best glide calculations.

Set range of airspeeds and convert to KCAS using convvel and correctairspeed:

TAS = (70:200)'; % true airspeed, fps
KTAS = convvel(TAS,'ft/s','kts')'; % true airspeed, kts
KCAS = correctairspeed(KTAS,a,P,'TAS','CAS')'; % corrected airspeed, kts

Calculate dynamic pressure for new airspeeds using dpressure:

qbar = dpressure([TAS zeros(size(TAS,1),2)], rho);

Calculate parasite drag using:

Dp = qbar*S.*C_D0;

Calculate induced drag using:

Di = (2*W^2)/(rho*S*pi*e*A).*(TAS.^-2);

Calculate total drag using:

D = Dp + Di;

Approximate lift as weight (assuming small glide angle and small angle of attack). At this speed,
assuming

and using

from above, the angle of attack is about 7 degrees. Adding the flight path angle (i.e. best glide angle)
from above shows the fuselage pitch (attitude angle theta) to be about 2 degrees.

L = W;

Plot L/D versus KCAS

As expected, the maximum L/D occurs at approximately the best glide velocity calculated above.
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h1 = figure;
plot(KCAS,L./D);
title('L/D vs. KCAS');
xlabel('KCAS'); ylabel('L/D');
hold on
plot(KCAS_bg,L_bg/D_bg,'Marker','o','MarkerFaceColor','black',...
    'MarkerEdgeColor','black','Color','white');
hold off
legend('L/D','L_{bg}/D_{bg}','Location','Best');
annotation('textarrow',[0.49 0.49],[0.23 0.12],'String','KCAS_{bg}');

Plot parasite, induced, and total drag curves

Notice the minimum total drag (i.e. D_bg) occurs at approximately the same best glide velocity
calculated above.

h2 = figure;
plot(KCAS,Dp,KCAS,Di,KCAS,D);
title('Parasite, induced, and total drag curves');
xlabel('KCAS'); ylabel('Drag, lbf');
hold on
plot(KCAS_bg,D_bg,'Marker','o','MarkerFaceColor','black',...
    'MarkerEdgeColor','black','Color','white');
hold off
legend('Parasite, D_p','Induced, D_i','Total, D','D_{bg}','Location','Best');
annotation('textarrow',[0.49 0.49],[0.23 0.12],'String','KCAS_{bg}');
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close(h1,h2);

Reference

[1] Lowry, J. T., "Performance of Light Aircraft", AIAA(R) Education Series,
    Washington, DC, 1999.
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Overlaying Simulated and Actual Flight Data
This example shows how to visualize simulated versus actual flight trajectories with the animation
object (Aero.Animation) while showing some of the animation object functionality. In this example,
you can use the Aero.Animation object to create and configure an animation object, then use that
object to create, visualize, and manipulate bodies for the flight trajectories.

Create the Animation Object

This code creates an instance of the Aero.Animation object.

h = Aero.Animation;

Set the Animation Object Properties

This code sets the number of frames per second. This controls the rate at which frames are displayed
in the figure window.

h.FramesPerSecond = 10;

This code sets the seconds of animation data per second time scaling. This property and the
'FramesPerSecond' property determine the time step of the simulation. The settings in this
example result in a time step of approximately 0.5s. The equation is (1/
FramesPerSecond)*TimeScaling along with some extra terms to handle for sub-second precision.

h.TimeScaling = 5;

Create and Load Bodies

This code loads the bodies using createBody for the animation object, h. This example will use these
bodies to work with and display the simulated and actual flight trajectories. The first body is orange
and will represent simulated data. The second body is blue and will represent the actual flight data.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
idx2 = h.createBody('pa24-250_blue.ac','Ac3d');

Load Recorded Data for Flight Trajectories

Using the bodies from the previous code, this code provides simulated and actual recorded data for
flight trajectories in the following files:

• The simdata file contains logged simulated data. simdata is set up as a 6DoF array, which is one
of the default data formats.

• The fltdata file contains actual flight test data. In this example, fltdata is set up in a custom
format. The example must create a custom read function and set the 'TimeSeriesSourceType'
parameter to 'Custom'.

To load the simdata and fltdata files:

load simdata
load fltdata

To work with the custom flight test data, this code sets the second body 'TimeSeriesReadFcn'. The
custom read function is located here: matlabroot/toolbox/aero/astdemos/
CustomReadBodyTSData.m
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h.Bodies{2}.TimeseriesReadFcn = @CustomReadBodyTSData;

Set the bodies' timeseries data.

h.Bodies{1}.TimeSeriesSource = simdata;
h.Bodies{2}.TimeSeriesSource = fltdata;
h.Bodies{2}.TimeSeriesSourceType = 'Custom';

Camera Manipulation

This code illustrates how you can manipulate the camera for the two bodies.

The 'PositionFcn' property of a camera object controls the camera position relative to the bodies
in the animation. The default camera 'PositionFcn' follows the path of a first order chase vehicle.
Therefore, it takes a few steps for the camera to position itself correctly in the chase plane position.
The default 'PositionFcn' is located here: matlabroot/toolbox/aero/aero/
doFirstOrderChaseCameraDynamics.m

Set 'PositionFcn'.

h.Camera.PositionFcn = @doFirstOrderChaseCameraDynamics;

Display Body Geometries in Figure

This code uses the show method to create the figure graphics object for the animation object.

h.show();
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Use the Animation Object to Play Back Flight Trajectories

This code uses the play method to animate bodies for the duration of the timeseries data. Using this
method will illustrate the slight differences between the simulated and flight data.

h.play();

The code can also use a custom, simplified 'PositionFcn' that is a static position based on the
position of the bodies (i.e., no dynamics). The simplified 'PositionFcn' is located here:
matlabroot/toolbox/aero/astdemos/staticCameraPosition.m

Set the new 'PositionFcn'.

h.Camera.PositionFcn = @staticCameraPosition;

Run the animation with new 'PositionFcn'.

h.play();
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Move Bodies

This code illustrates how to move the bodies to the starting position (based on timeseries data) and
update the camera position according to the new 'PositionFcn'. This code uses updateBodies
and updateCamera.

t = 0;
h.updateBodies(t);
h.updateCamera(t);
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Reposition Bodies

This code illustrates how to reposition the bodies by first getting the current body position and then
separating the bodies.

Get current body positions and rotations from the body objects.

pos1 = h.Bodies{1}.Position;
rot1 = h.Bodies{1}.Rotation;
pos2 = h.Bodies{2}.Position;
rot2 = h.Bodies{2}.Rotation;

Separate bodies using moveBody. This code separates and repositions the two bodies.

h.moveBody(1,pos1 + [0 0 -3],rot1);
h.moveBody(2,pos1 + [0 0  0],rot2);
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Create Transparency in the First Body

This code illustrates how to create transparency in the first body. The code does this by changing the
body patch properties via 'PatchHandles'. (For more information on patches in MATLAB®, see the
“Introduction to Patch Objects” section in the MATLAB documentation.)

Note: On some platforms utilizing software OpenGL® rendering, the transparency may cause a
decrease in animation speed.

See the opengl documentation for more information on OpenGL in MATLAB.

To create a transparency, the code gets the patch handles for the first body.

patchHandles2 = h.Bodies{1}.PatchHandles;

Set desired face and edge alpha values.

desiredFaceTransparency = .3;
desiredEdgeTransparency = 1;

This code gets the current face and edge alpha data and changes all values to desired alpha values. In
the figure, notice the first body now has a transparency.

for k = 1:size(patchHandles2,1)
    tempFaceAlpha = get(patchHandles2(k),'FaceVertexAlphaData');
    tempEdgeAlpha = get(patchHandles2(k),'EdgeAlpha');
    set(patchHandles2(k),...
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        'FaceVertexAlphaData',repmat(desiredFaceTransparency,size(tempFaceAlpha)));
    set(patchHandles2(k),...
        'EdgeAlpha',repmat(desiredEdgeTransparency,size(tempEdgeAlpha)));
end

Change Color of the Second Body

This code illustrates how to change the body color of the second body. The code does this by changing
the body patch properties via 'PatchHandles'.

patchHandles3 = h.Bodies{2}.PatchHandles;

This code sets the desired patch color (red).

desiredColor = [1 0 0];

The code can now get the current face color data and change all values to desired color values. Note
the following points on the code:

• The if condition keeps the windows from being colored.
• The name property is stored in the geometry data of the body

(h.Bodies{2}.Geometry.FaceVertexColorData(k).name).
• The code only changes the indices in patchHandles3 with non-window counterparts in the body

geometry data.

The name property might not always be available to determine various parts of the vehicle. In these
cases, you will need to use an alternative approach to selective coloring.
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for k = 1:size(patchHandles3,1)
    tempFaceColor = get(patchHandles3(k),'FaceVertexCData');
    tempName = h.Bodies{2}.Geometry.FaceVertexColorData(k).name;
    if ~contains(tempName,'Windshield') &&...
       ~contains(tempName,'front-windows') &&...
       ~contains(tempName,'rear-windows')
    set(patchHandles3(k),...
        'FaceVertexCData',repmat(desiredColor,[size(tempFaceColor,1),1]));
    end
end

Turn Off Landing Gear on Second Body

The following code turns off the landing gear for the second body. To do this, it turns off the visibility
of all vehicle parts associated with the landing gear. Note the indices into the patchHandles3 vector
were determined from the name property in the geometry data. Other data sources might not have
this information available. In these cases, you will need to know which indices correspond to
particular parts of the geometry.

for k = [1:8,11:14,52:57]
    set(patchHandles3(k),'Visible','off')
end
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Close and Delete Animation Object

To close and delete

h.delete();

%#ok<*REPMAT>
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Comparing Zonal Harmonic Gravity Model to Other Gravity
Models

This example shows how to examine the zonal harmonic, spherical and 1984 World Geodetic System
(WGS84) gravity models for latitudes from +/- 90 degrees at the surface of the Earth.

Determine Earth-Centered Earth-Fixed (ECEF) Position

Since ECEF coordinate system is geocentric, you can use spherical equations to determine the
position from the latitude, longitude and geocentric radius.

Calculate the geocentric radii in meters at an array of latitudes from +/- 90 degrees using
geocradius.

lat = -90:90;
r = geocradius( lat );
rlat = convang( lat, 'deg', 'rad');
z = r.*sin(rlat);

Because longitude has no effect for zonal harmonic gravity model, assume that the y position is zero.

x = r.*cos(rlat);
y = zeros(size(x));

Compute Zonal Harmonic Gravity for Earth

Use gravityzonal to calculate array of zonal harmonic gravity in ECEF coordinates for array of
ECEF positions in meters per seconds squared.

[gx_zonal, gy_zonal, gz_zonal] = gravityzonal([x' y' z']);

Calculate WGS84 Gravity

Use gravitywgs84 to compute WGS84 gravity in down-axis and north-axis at the Earth's surface, an
array of geodetic latitudes in degrees and 0 degrees longitude using the exact method with
atmosphere, no centrifugal effects, and no precessing.

lat_gd = geoc2geod(lat, r);
long_gd = zeros(size(lat));
[gd_wgs84, gn_wgs84] = gravitywgs84( zeros(size(lat)), lat_gd, long_gd, 'Exact', [false true false 0] );

Determine Gravity for Spherical Earth

Compute the array of spherical gravity for the array of geocentric radii in meters per second squared
using the Earth's gravitational parameter in meters cubed per second squared.

GM  = 3.986004415e14;
gd_sphere = -GM./(r.*r);

Comparison Plots for Different Gravity Models

To compare the gravity models, their outputs must be in the same coordinate system. You can
transform zonal gravity from ECEF coordinates to NED coordinates by using the Direction Cosine
Matrix from dcmecef2ned.

dcm_ef = dcmecef2ned( lat_gd, long_gd );
gxyz_zonal = reshape([gx_zonal gy_zonal gz_zonal]', [3 1 181]);
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for m = length(lat):-1:1
    gned_zonal(m,:) = (dcm_ef(:,:,m)*gxyz_zonal(:,:,m))';
end

figure(1)
plot(lat_gd, gned_zonal(:,3), lat, -gd_sphere, '--', lat_gd, gd_wgs84, '-.')
legend('Zonal Harmonic', 'Spherical', 'WGS84','Location','North')
xlabel('Geodetic Latitude (degrees)')
ylabel('Down gravity (m/s^2)')
grid

Figure 1: Gravity in the Down-axis in meters per second squared

figure(2)
plot( lat_gd, gned_zonal(:,1), lat_gd, gn_wgs84, 'r-.' )
hold on
plot([lat(1) lat(end)], [0 0], 'g--' )
legend('Zonal Harmonic', 'WGS84', 'Spherical','Location','Best')
xlabel('Geodetic Latitude (degrees)')
ylabel('North gravity (m/s^2)')
grid
hold off
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Figure 2: Gravity in the North-axis in meters per second squared

Calculate total gravity for WGS84 and from zonal gravity vector in meters per second squared.

gtotal_wgs84 = gravitywgs84( zeros(size(lat)), lat_gd, zeros(size(lat)), 'Exact', [false true false 0] );
gtotal_zonal = sqrt(sum([gx_zonal.^2 gy_zonal.^2 gz_zonal.^2],2));

figure(3)
plot( lat, gtotal_zonal, lat_gd, gtotal_wgs84, '-.' )
legend('Zonal Harmonic', 'WGS84','Location','North')
xlabel('Geodetic Latitude (degrees)')
ylabel('Total gravity (m/s^2)')
grid
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Figure 3: Total gravity in meters per second squared

Compare Gravity Models with Centrifugal Effects

Now, you have seen the gravity comparisons of a non-rotating Earth. Examine the centrifugal effects
from the Earth's rotation on the gravity models.

Compute Gravity Centrifugal Effects for Earth

Use gravitycentrifugal to calculate array of centrifugal effects in ECEF coordinates for array of
ECEF positions in meters per seconds squared.

[gx_cent, gy_cent, gz_cent] = gravitycentrifugal([x' y' z']);

Add centrifugal effects to zonal harmonic gravity.

gx_cent_zonal = gx_zonal + gx_cent;
gy_cent_zonal = gy_zonal + gy_cent;
gz_cent_zonal = gz_zonal + gz_cent;

Calculate WGS84 Gravity with Centrifugal Effects

Use gravitywgs84 to compute WGS84 gravity in down-axis and north-axis at the Earth's surface, an
array of geodetic latitudes in degrees and 0 degrees longitude using the exact method with
atmosphere, centrifugal effects, and no precessing.

[gd_cent_wgs84, gn_cent_wgs84] = gravitywgs84( zeros(size(lat)), lat_gd, long_gd, 'Exact', [false false false 0] );
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Calculate total gravity with centrifugal effects for WGS84 and from zonal gravity vector in meters per
second squared.

gtotal_cent_wgs84 = gravitywgs84( zeros(size(lat)), lat_gd, zeros(size(lat)), 'Exact', [false false false 0] );
gtotal_cent_zonal = sqrt(sum([gx_cent_zonal.^2 gy_cent_zonal.^2 gz_cent_zonal.^2],2));

Comparison Plots for Different Gravity Models with Centrifugal Effects

To compare the gravity models, their outputs must be in the same coordinate system. You can
transform zonal gravity from ECEF coordinates to NED coordinates by using the Direction Cosine
Matrix from dcmecef2ned. In figure 5, you can see there is some difference between zonal harmonic
gravity with centrifugal effects and WGS84 gravity with centrifugal effects. The majority of difference
is due to differences between the zonal harmonic gravity and WGS84 gravity calculations.

gxyz_cent_zonal = reshape([gx_cent_zonal gy_cent_zonal gz_cent_zonal]', [3 1 181]);
for m = length(lat):-1:1
    gned_cent_zonal(m,:) = (dcm_ef(:,:,m)*gxyz_cent_zonal(:,:,m))';
end

figure(4)
plot(lat_gd, gned_cent_zonal(:,3), lat_gd, gd_cent_wgs84, '-.')
legend('Zonal Harmonic', 'WGS84','Location','North')
xlabel('Geodetic Latitude (degrees)')
ylabel('Down gravity (m/s^2)')
grid

Figure 4: Gravity with centrifugal effects in the Down-axis in meters per second squared
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figure(5)
plot( lat_gd, gned_cent_zonal(:,1), lat_gd, gn_cent_wgs84, '--', lat_gd, (gned_zonal(:,1)-gn_wgs84'), '-.' )
axis([-100 100 -0.0002 0.0002])
legend('Zonal Harmonic', 'WGS84', 'Error Between Models w/o Centrifugal Effects', 'Location','Best')
xlabel('Geodetic Latitude (degrees)')
ylabel('North gravity (m/s^2)')
grid

Figure 5: Gravity in the North-axis in meters per second squared

figure(6)
plot( lat, gtotal_cent_zonal, lat_gd, gtotal_cent_wgs84, '-.' )
legend('Zonal Harmonic', 'WGS84','Location','North')
xlabel('Geodetic Latitude (degrees)')
ylabel('Total gravity (m/s^2)')
grid
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Figure 6: Total gravity with centrifugal effects in meters per second squared

 Comparing Zonal Harmonic Gravity Model to Other Gravity Models

5-45



Visualize Aircraft Takeoff via Virtual Reality Animation Object
This example shows how to visualize aircraft takeoff and chase helicopter with the virtual reality
animation object. In this example, you can use the Aero.VirtualRealityAnimation object to set up a
virtual reality animation based on the asttkoff.wrl file. The scene simulates an aircraft takeoff. The
example adds a chase vehicle to the simulation and a chase viewpoint associated with the new
vehicle.

Create the Animation Object

This code creates an instance of the Aero.VirtualRealityAnimation object.

h = Aero.VirtualRealityAnimation;

Set the Animation Object Properties

This code sets the number of frames per second and the seconds of animation data per second time
scaling. 'FramesPerSecond' controls the rate at which frames are displayed in the figure window.
'TimeScaling' is the seconds of animation data per second time scaling.

The 'TimeScaling' and 'FramesPerSecond' properties determine the time step of the
simulation. The settings in this example result in a time step of approximately 0.5s. The equation is:

(1/FramesPerSecond)*TimeScaling + extra terms to handle for sub-second precision.

h.FramesPerSecond = 10;
h.TimeScaling = 5;

This code sets the .wrl file to be used in the virtual reality animation.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

Change Directory

The VirtualRealityAnimation object methods use temporary .wrl files to keep track of changes to the
world. This requires the directory containing the original .wrl file to be writable. This code runs the
example from a temporary directory to ensure there are no issues with directory permissions. Note, a
license for Simulink® 3D Animation™ is required to run this example.

% Copy file to temporary directory
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
% Set world filename to the copied .wrl file.
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

Initialize the Virtual Reality Animation Object

The initialize method loads the animation world described in the 'VRWorldFilename' field of
the animation object. When parsing the world, node objects are created for existing nodes with DEF
names. The initialize method also opens the Simulink 3D Animation viewer.

h.initialize();
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Set Additional Node Information

This code sets simulation timeseries data. takeoffData.mat contains logged simulated data.
takeoffData is set up as a 'StructureWithTime', which is one of the default data formats.

load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

Set Coordinate Transform Function

The virtual reality animation object expects positions and rotations in aerospace body coordinates. If
the input data is different, you must create a coordinate transformation function in order to correctly
line up the position and rotation data with the surrounding objects in the virtual world. This code sets
the coordinate transformation function for the virtual reality animation.

In this particular case, if the input translation coordinates are [x1,y1,z1], they must be adjusted as
follows: [X,Y,Z] = -[y1,x1,z1]. The custom transform function can be seen here: matlabroot/
toolbox/aero/astdemos/vranimCustomTransform.m
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h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

Add a Chase Helicopter

This code shows how to add a chase helicopter to the animation object.

You can view all the nodes currently in the virtual reality animation object by using the nodeInfo
method. When called with no output argument, this method prints the node information to the
command window. With an output argument, the method sets node information to that argument.

h.nodeInfo;

Node Information
1    Camera1
2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1

This code moves the camera angle of the virtual reality figure to view the aircraft.

set(h.VRFigure,'CameraDirection',[0.45 0 -1]);
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Use the addNode method to add another node to the object. By default, each time you add or remove
a node or route, or when you call the saveas method, Aerospace Toolbox displays a message about
the current .wrl file location. To disable this message, set the 'ShowSaveWarning' property in the
VirtualRealityAnimation object.

h.ShowSaveWarning = 0;
h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);
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Another call to nodeInfo shows the newly added Node objects.

h.nodeInfo

Node Information
1    Camera1
2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1
9    Lynx
10    Lynx_Inline

Adjust newly added helicopter to sit on runway.

[~, idxLynx] = find(strcmp('Lynx',h.nodeInfo));
h.Nodes{idxLynx}.VRNode.translation = [0 1.5 0];
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This code sets data properties for the chase helicopter. The 'TimeseriesSourceType' is the
default 'Array6DoF', so no additional property changes are needed. The same coordinate transform
function (vranimCustomTransform) is used for this node as the preceding node. The previous call
to nodeInfo returned the node index (2).

load chaseData
h.Nodes{idxLynx}.TimeseriesSource = chaseData;
h.Nodes{idxLynx}.CoordTransformFcn = @vranimCustomTransform;

Create New Viewpoint

This code uses the addViewpoint method to create a new viewpoint named 'chaseView'. The new
viewpoint will appear in the viewpoint pulldown menu in the virtual reality window as "View From
Helicopter". Another call to nodeInfo shows the newly added node objects. The node is created as a
child of the chase helicopter.

h.addViewpoint(h.Nodes{idxLynx}.VRNode,'children','chaseView','View From Helicopter');

Play Animation

The play method runs the simulation for the specified timeseries data.
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h.play();

Play Animation From Helicopter

This code sets the orientation of the viewpoint via the vrnode object associated with the node object
for the viewpoint. In this case, it will change the viewpoint to look out the left side of the helicopter at
the plane.

[~, idxChaseView] = find(strcmp('chaseView',h.nodeInfo));
h.Nodes{idxChaseView}.VRNode.orientation = [0 1 0 convang(200,'deg','rad')];
set(h.VRFigure,'Viewpoint','View From Helicopter');

Add ROUTE

This code calls the addRoute method to add a ROUTE command to connect the plane position to the
Camera1 node. This will allow for the "Ride on the Plane" viewpoint to function as intended.

h.addRoute('Plane','translation','Camera1','translation');

5 Aerospace Toolbox Examples

5-52



The scene from the helicopter viewpoint

This code plays the animation.

h.play();
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Add Another Body

This code adds another helicopter to the scene. It also changes to another viewpoint to view all three
bodies in the scene at once.

set(h.VRFigure,'Viewpoint','See Whole Trajectory');
h.addNode('Lynx1',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);
h.nodeInfo

Node Information
1    Camera1
2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1
9    Lynx
10    Lynx_Inline
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11    chaseView
12    Lynx1
13    Lynx1_Inline

Adjust newly added helicopter to sit above runway.

[~, idxLynx1] = find(strcmp('Lynx1',h.nodeInfo));
h.Nodes{idxLynx1}.VRNode.translation = [0 1.3 0];

Remove Body

This code uses the removeNode method to remove the second helicopter. removeNode takes either
the node name or node index (as obtained from nodeInfo). The associated inline node is removed as
well.

h.removeNode('Lynx1');
h.nodeInfo

Node Information
1    Camera1
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2    Plane
3    _V2
4    Block
5    Terminal
6    _v3
7    Lighthouse
8    _v1
9    Lynx
10    Lynx_Inline
11    chaseView

Revert To Original World

The original filename is stored in the 'VRWorldOldFilename' property of the animation object. To
bring up the original world, set 'VRWorldFilename' to the original name and reinitializing it.

h.VRWorldFilename = h.VRWorldOldFilename{1};
h.initialize();
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Close and Delete World

To close and delete

h.delete();
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Calculating Compressor Power Required in a Supersonic Wind
Tunnel

This example shows how to calculate the required compressor power in a supersonic wind tunnel.

Problem Definition

This section describes the problem to be solved. It also provides necessary equations and known
values.

Calculate how much compressor power is required to run a fixed geometry supersonic wind tunnel at
steady-state and startup to simulate operating conditions of Mach 2 flow at an altitude of 20
kilometers.

The test section is circular with a diameter of 25 centimeters. After the test section is a fixed-area
diffuser. The wind tunnel uses a cooler to reject extra energy that is added to the system by the
compressor. Therefore, the compressor inlet and the test section have the same stagnation
temperature. Assume the compressor is isentropic and friction effects are negligible.

steadyPicture = astsswtschematic('steady');

The given information in the problem is:

diameter = 25/100;  % Diameter of the cross-section [m]
height   = 20e+03;    % Design altitude [m]
testMach = 2.0;     % Mach number in the test section [dimensionless]
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The fluid is assumed to be air and therefore it has the following properties.

k  = 1.4;        % Specific heat ratio [dimensionless]
cp = 1.004;     % Specific heat at constant pressure [kJ / (kg * K)]

The cross-section area of the test section is needed from the diameter.

testSectionArea = pi * (diameter)^2 / 4 ; % [m^2]

Because the design altitude is given, solve for the flight conditions at that altitude. The Aerospace
Toolbox has several functions to calculate the conditions at various altitudes. One such function,
atmosisa, uses the International Standard Atmosphere to calculate the flight conditions on the left
hand side given an altitude input:

[testSectionTemp, testSectionSpeedOfSound, testSectionPressure, testSectionDensity] = atmosisa(height);

This function uses the following units:

testSectionTemp = Static temperature in the test section        [K]
testSectionSpeedOfSound = Speed of sound in the test section    [m / s]
testSectionPressure = Static pressure in the test section       [kPa]
testSectionDensity = Density of the fluid in the test section   [kg / m^3]

Calculation of the Stagnation Quantities

You must calculate many of the stagnation (total) quantities in the test section. The ratios of local
static conditions to the stagnation conditions can be calculated with flowisentropic.

[~,tempRatioIsen, presRatioIsen, ~, areaRatioIsen] = flowisentropic(k, testMach);

All of the left hand side quantities are dimensionless ratios. Now we can use the ratio of static
temperature to stagnation temperature to calculate the stagnation temperature.

testSectionStagTemp = testSectionTemp / tempRatioIsen;

The optimum condition for steady-state operation of a supersonic wind tunnel with a fixed-area
diffuser occurs when a normal shock is present at the diffuser throat. For optimum condition, the area
of the diffuser throat must be smaller than the area of the nozzle throat. Assuming a perfect gas with
constant specific heats, calculate the factor by which the diffuser area must be smaller than the
nozzle area. This calculation is from a simplified form of the conservation of mass equation involving
total pressures and cross-sectional areas:

where

Rearrange the equation:
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This example assumes the nozzle throat area, the test section, and the region of flow at the diffuser
throat before the shock to be upstream. Because the shock wave is at the throat of the diffuser, the
diffuser throat area can be considered either upstream or downstream of the shock. This example
assumes the diffuser throat area to be downstream. Since the upstream flow is isentropic until the
shock wave, you can use the test section Mach number as the upstream Mach number. Doing this
enables you to calculate the total pressure ratio through the shock and then the area ratio between
the nozzle and the diffuser area.

The total pressure ratio is:

Calculate the total pressure ratio using the normal shock function from the Aerospace Toolbox:

[~, ~, ~, ~, ~, stagPressRatio] = flownormalshock(k, testMach);

The area ratio at the shock is:

We have the following expression using the conservation of mass as discussed previously.

areaRatioShock = stagPressRatio;

Calculate the area of the diffuser:

diffuserArea = testSectionArea / (areaRatioShock * areaRatioIsen);

Because the diffuser throat area is smaller than the test section area, the Mach number of the flow
must converge toward unity. Using flowisentropic with the area ratio as the input, calculate the
Mach number just upstream of the shock:

diffuserMachUpstreamOfShock = flowisentropic(k, (1 / areaRatioShock), 'sup');

Use flownormalshock to calculate the flow properties through the shock wave. Note, here again,
we will only need the total pressure ratio:

[~, ~, ~, ~, ~, P0] = flownormalshock(k, diffuserMachUpstreamOfShock);

Calculation of Work and Power Required for the Steady-State Case

The work done by the compressor per unit mass of fluid equals the enthalpy change through the
compressor. From the definition of enthalpy, calculate the specific work done by knowing the
temperature change and the specific heat of the fluid at constant pressure:

For an isentropic compressor,
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Rearrange the above equation to solve for the temperature difference. Recall that the temperature
into the compressor is the same as the test section stagnation temperature.

tempDiff = testSectionStagTemp * ((1 / P0)^((k - 1) / k) - 1); % [K]

Now the specific work can be found.

specificWork = cp * tempDiff; % [kJ / kg]

The power required equals the specific work times the mass flow rate. During steady-state operation,
the mass flow rate through the test section is given by:

where all flow quantities are the values in the test section:

massFlowRate = testSectionDensity * testSectionArea * testMach * testSectionSpeedOfSound; % [kg / s]

Finally, calculate the power required by the compressor during steady-state operation.

powerSteadyState = specificWork * massFlowRate;  % [kW]

Calculating Work and Power Required During Startup

startupPicture = astsswtschematic('startup');
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For the startup condition the shock wave is in the test section. The Mach number immediately before
the shock wave is the test section Mach number.

[~, ~, ~, ~, ~, stagPressRatioStartup] = flownormalshock(k, testMach);

Now, calculate the specific work of the isentropic compressor.

specificWorkStartup = cp * testSectionStagTemp * ((1 / stagPressRatioStartup)^((k - 1) / k) - 1); % [kJ / kg]

Then, calculate the power required during startup:

powerStartup = specificWorkStartup * massFlowRate;   % [kW]

The power required during steady-state operation (53.1 kW) is much lower than that required by the
compressor during startup (97.9 kW) These power required results represent the optimum and worst-
case operation conditions, respectively.

power = [powerSteadyState powerStartup];
barGraph = figure('name','barGraph');
bar(power,0.1);
ylabel('Power required [kilowatts]')
set(gca,'XTickLabel',{'powerSteadyState', 'powerStartup'})
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close(steadyPicture, startupPicture, barGraph)

Reference

[1] James, J. E. A., "Gas Dynamics, Second Edition", Allyn and Bacon, Inc, Boston, 1984.

 Calculating Compressor Power Required in a Supersonic Wind Tunnel

5-63



Analyzing Flow with Friction Through an Insulated Constant
Area Duct

This example shows how to implement a steady, viscous flow through an insulated, constant-area duct
using the Aerospace Toolbox™ software. This flow is also called Fanno line flow.

Problem Definition

This section describes the problem to be solved. It also provides necessary equations and known
values.

Fanno line flow is the modeling of perfect gas flow through a constant-area duct that does not change
with time and which is adiabatic. Wall friction is the main mechanism for the change of the flow
variables. This example looks at Fanno flow of air entering a 3 centimeter diameter pipe that is 45
centimeters long at a Mach number of 0.6. The conditions at the inlet, also called station 1, are static
pressure of 150 kilopascals and static temperature of 300 Kelvin. The duct is assumed to have a
coefficient of friction of 0.02. Calculate the Mach number, static pressure and static temperature at
the exit of the duct or station 2.

ductPicture = astfrictionduct;

The given information in the problem is:

ductLength       = 0.45;    % Length of the duct [m]
diameter         = 0.03;    % Diameter of the duct [m]
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inletMach        = 0.6;     % Mach number at the duct inlet [dimensionless]
inletPressure    = 150;     % Static pressure at the duct inlet [kPa]
inletTemperature = 300;     % Static temperature at the duct input [K]
frictionCoeff    = 0.02;    % Duct friction coefficient [dimensionless]

The fluid is air which has the following specific heat ratio.

k = 1.4;    % Specific heat ratio [dimensionless]

Understanding the Fanno Parameter

The Fanno parameter is a dimensionless quantity that indicates how much influence friction will have
while the fluid is flowing through the duct. For a given duct, the Fanno parameter is defined as

Where

For the circular pipe, assume the hydraulic diameter is the inner diameter of the pipe. The friction
coefficient, f, is given by the following expression:

where

Note, this example uses the convention in which a factor of four is not visible in the Fanno parameter.
This convention defines the friction coefficient as four times the skin friction over the dynamic
pressure. Friction will have a greater effect on the flow in a long duct than in a short duct because
the flow is impeded by more wall surface friction. Additionally, friction is more dominant when the
duct is narrow. This is because the boundary layer affects a larger portion of the flow along the walls
than when the duct width is large.

Friction is an energy loss that generates entropy (irreversibility) in the system. The increase in
entropy causes the flow to tend towards the choked condition (Mach = 1). The choked condition
occurs if the length of the duct is long enough. For a given Mach number and specific heat ratio, the
reference Fanno parameter for choked flow is
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where

Using the Fanno Parameter and FLOWFANNO to Solve for the Flow Properties at the Inlet

This example provides the length of the duct, the diameter of the duct, and the friction coefficient.
Therefore, the actual Fanno parameter of the duct can be computed as follows:

fannoParameter = frictionCoeff * ductLength / diameter;

This example also provides the Mach number and specific heat ratio. This enables you to calculate the
reference Fanno parameter for the inlet condition, the inlet temperature ratio and inlet the pressure
ratio. Use the flowfanno function from the Aerospace Toolbox:

[~, inletTempRatio, inletPresRatio, ~, ~, ~, inletFannoRef] = flowfanno(k, inletMach);

where:

• The subscript indicates the flow station.
• Unstarred quantities are the local values of the given variables.
• Starred quantities are referenced value of the given variables if the flow is brought to the choked

condition.

The length of the inlet reference Fanno parameter, also called inlet max length, is the length that the
pipe needs to be to have choked flow for a given inlet condition. If the actual length is less than the
inlet max length, an extension to the pipe is needed for choked flow. This choked flow corresponds to
a reference Fanno parameter for the outlet. Since the diameter and friction coefficient are given in
the problem statement, only the lengths vary in the following equation for the outlet reference Fanno
parameter:

outletFannoRef = inletFannoRef - fannoParameter;

Calculating the Flow Properties at the Outlet with the FLOWFANNO Function

Next, use flowfanno to calculate the flow ratios at the outlet station. The third input, 'fannosub',
indicates that the second input, outletFannoRef, is a subsonic Fanno parameter input.

[outletMach, outletTempRatio, outletPresRatio] = flowfanno(k, outletFannoRef, 'fannosub');
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Use the temperature ratios found at the inlet and outlet to calculate the temperature and pressure at
the outlet. The reference conditions are the same at both stations because the duct is insulated. In
addition, assume that the effects of friction act on both stations in the same manner. As a result, we
have

Therefore, the temperature at the outlet and the pressure at the outlet are

outletTemperature = inletTemperature / inletTempRatio * outletTempRatio;

outletPressure = inletPressure / inletPresRatio * outletPresRatio;

The values that we wanted to calculate are

outletMach          % [dimensionless]
outletTemperature   % [K]
outletPressure      % [kPa]

outletMach =

    0.7093

outletTemperature =

  292.2018

outletPressure =

  125.2332

For Fanno line flow where the inlet flow is subsonic, the temperature and pressure always decrease
through the duct. For all Fanno line flow cases the Mach number moves closer to one.

close(ductPicture)

Reference

[1] James, J. E. A., "Gas Dynamics, Second Edition", Allyn and Bacon, Inc, Boston, 1984.
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Determining Heat Transfer and Mass Flow Rate in a Ramjet
Combustion Chamber

This example shows how to use the Aerospace Toolbox™ functions to determine heat transfer and
mass flow rate in a ramjet combustion chamber.

The Ramjet Engine

When calculating the thrust of a ramjet engine, it is important to optimize the amount of heat added
and the mass flow rate through an air breathing engine. This optimization is important because the
thrust generated by the engine is governed by these parameters. The ramjet thrust equation is the
following:

where

In the ramjet thrust equation, the subscripts denote the location of the parameter.

• enter - Denotes the entrance of the entire ramjet.
• exit - Denotes the exit of the ramjet engine.
• inlet - Used for the beginning of the combustion chamber.
• outlet - Used for the end of the combustion chamber.

This difference is illustrated in the following figure, (RJ) stands for the entire ramjet engine and (CC)
refers to the combustion chamber.

ramjetPicture = astramjet;
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Note, the thrust equation takes directly into account the mass flow rate. Heat addition correlates to
higher exit velocity from the energy equation; higher exit velocity means more thrust. Modeling the
ramjet combustion chamber as a constant area duct where heat addition is the main driver for the
change in the flow variables enables the use of Rayleigh line flow principles.

Problem Definition

This section describes the problem to be solved. It also provides necessary equations and known
values.

After a series of shock waves, flow enters the combustion at a velocity of 100 m/s and static
temperature of 400K. We want to:

• Maximize the amount of heat added in the combustion chamber without decreasing the mass flow
rate.

• Calculate the fuel-air ratio associated with the maximum allowable heat added.

The heating value of the fuel is 40 megajoules per kilogram and the mass of the fuel is negligible
compared to the mass of the air. We assume that the working fluid behaves like a perfect gas with
constant specific heat ratio and specific heat at constant pressure given as:

Given data for problem is listed below.
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inletVelocity       = 100;      % Velocity of fluid at combustor intake [m/s]
inletTemperature    = 400;      % Temperature of fluid at combustor intake [K]
heatingValue        = 40e+03;   % Heating value of the fuel [kJ/kg]
k                   = 1.4;      % Specific heat ratio [dimensionless]
cp                  = 1.004;    % Specific heat at constant pressure [kJ/(kg*K)]

Because the fluid is air, it also has the following gas constant:

R = 287; % Gas constant of air [J/(kg*K)]

Therefore, the speed of sound is:

speedOfSound = sqrt(k * R * inletTemperature); % [m/s]

The inlet Mach number is

inletMach = inletVelocity/speedOfSound; % [dimensionless]

Solving for the Stagnation Quantities and Reference Values

To apply the energy equation in order to find the heat transfer rate, calculate the stagnation
temperature at the inlet. Use isentropic flow ratios and the static temperature at that point to
calculate this temperature. The flowisentropic function calculates the ratio of the static
temperature to the total (stagnation) temperature.

Where

[~, inletTempRatio, inletPresRatio] = flowisentropic(k, inletMach);

With the temperature ratio at the inlet, calculate the total temperature at the inlet. Be careful. Note
that the form in which we need the temperature ratio is inverted from the form as given in the
flowisentropic function.

inletTotalTemp = inletTemperature / inletTempRatio;

Use the energy equation to describe the flow in the combustion chamber:

where

To maximize the rate of heat transfer, the stagnation temperature at the outlet station must be the
reference stagnation temperature:
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Use the flowrayleigh function to calculate the total temperature ratio at the inlet. After this, you
can calculate the reference total temperature.

[~,~,~,~,~,totalTempRatio] = flowrayleigh(k, inletMach);

In this equation, note that this ratio is found by the function as the local value over the reference
value.

Now calculate the reference total temperature. Note that the total temperature ratio has been
inverted to allow the proper cancellation of terms.

inletTotalTempRef = inletTotalTemp / totalTempRatio;

Calculating the Fuel-to-Air Ratio and Maximum Heat Added

Calculate the fuel-to-air ratio by rearranging the energy equation.

fuelAirRatio = cp * (inletTotalTempRef - inletTotalTemp) / heatingValue

fuelAirRatio =

    0.0296

The maximum heat added is:

heatMax = cp * (inletTotalTempRef - inletTotalTemp)

heatMax =

   1.1826e+03

Accounting for an Increase in the Fuel-Air Ratio

Consider the case where there is a 10% increase in the fuel-air ratio. Calculate how much the mass
flow rate decreases with a 10% increase in fuel-to-air ratio, holding the stagnation temperature and
pressure constant. The new fuel-air ratio is:

fuelAirRatio10 = 1.1 * fuelAirRatio;

Note, any variable that ends with "10" indicate that the given value is related to the 10% increase in
fuel-to-air ratio. Rearrange the energy equation to calculate the difference in total temperatures from
the inlet to the outlet of the combustion chamber:
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totalTempDiff = fuelAirRatio10 * heatingValue / cp;

The maximum heating condition is where the flow is choked at the outlet:

Therefore, inlet reference total temperature and the ratio of total temperature to the reference value
are:

inletTotalTempRef10 = totalTempDiff + inletTotalTemp;

totalTempRatio10 = inletTotalTemp / inletTotalTempRef10;

Calculating the Decrease in Mass Flow Rate

Given the total temperature ratio, flowrayleigh calculates the Mach number at the inlet of the
combustion chamber:

inletMach10 = flowrayleigh(k, totalTempRatio10, 'totaltsub');

In this equation, the string input causes the function to use the subsonic total temperature ratio input
mode. We know that the flow will be subsonic entering the combustion chamber because the flow will
have gone through several shock waves leading up to the combustion chamber. With this Mach
number at the inlet, use flowisentropic to find the isentropic temperature ratio and pressure ratio
at the inlet:

[~, inletTempRatio10, inletPresRatio10] = flowisentropic(k, inletMach10);

The static temperature at the inlet is:

inletTemperature10 = inletTotalTemp * inletTempRatio10;

From the equation of state, the mass flow rate can be written as:

With a 10% fuel-air ratio increase, relate a ratio showing a decrease in mass flow from a 10%
increase in the mass flow rate to the ratio of decreasing Mach number. The increase in pressure ratio
contributes to increasing the mass flow rate, but not as much as the decrease in Mach number
decreases the mass flow rate. All other variables are constant between the two cases.
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massFlowRateRatio = inletMach10 / inletMach * inletPresRatio10 / inletPresRatio;

This ratio represents the percentage of the mass flow rate of the case with a 10% increase in fuel-to-
air ratio. It uses the original mass flow rate as a whole. The percentage decrease in mass flow rate is
just one minus the above ratio (times 100):

percentageDecrease = ( 1 - massFlowRateRatio ) * 100 % [percent]

percentageDecrease =

    3.7665

These results show that adding fuel to the fuel-air mixture decreases the mass flow rate. This in turn
makes the thrust decrease. This means that once a certain amount of fuel is added to the combustion
chamber, adding more produces an inefficient result. Therefore, preemptive calculations such as
these help engineers maximize fuel efficiency around the design conditions of an engine.

close(ramjetPicture)

Reference

[1] James, J. E. A., "Gas Dynamics, Second Edition", Allyn and Bacon, Inc, Boston, 1984.
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Solving for the Exit Flow of a Supersonic Nozzle
This example shows how to use the method of characteristics and Prandtl-Meyer flow theory to solve
a problem in supersonic flow involving expansions. Solve for the flow field downstream of the exit of a
supersonic nozzle.

Problem Definition

This section describes the problem to be solved. It also provides necessary equations and known
values.

Solve for the flow field downstream of a supersonic nozzle using the method of characteristics. The
Mach number at the exit plane is 1.5 and the pressure at the exit plane is 200 kilopascals. The back
pressure is 100 kilopascals.

Assumptions:

• Flow is isentropic
• Variation in flow properties depend on the interaction of expansion waves that occur throughout

the wake of the nozzle.
• The geometry of the nozzle and the flow is symmetric.

Model the expansion fan as three characteristics. Due to symmetry, arbitrarily choose to work only on
the top half of the flow. Following is a figure of the nozzle exit.

upperNozzle = astexpandschematic('uppernozzle');
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The given information in the problem is:

exitMach = 1.5; % Mach number at the exit plane [dimensionless]
exitPres = 200; % Static pressure at the exit plane [kPa]
backPres = 100; % Pressure downstream of the nozzle, outside of the expansion wake

The fluid is assumed to be air that behaves like a perfect gas with the following constant specific heat
ratio.

k = 1.4; % Specific heat ratio [dimensionless]

Method of Characteristics

The method of characteristics is a theory for supersonic flow that analyzes the irrotational potential
flow equation in fully nonlinear form. Isentropic flow is assumed. The definition of characteristics are
the curves in the flow where the velocity is continuous but the first derivative of velocity is
discontinuous.

In the previous figure, the blue lines in the are approximate characteristics. Characteristics of type I
make a negative acute angle with the flow direction. Characteristics of type II make a positive acute
angle with the flow direction. A detailed derivation of the method is outside the scope of this example
analysis. This example analysis uses the region-to-region procedure. It is assumed that you are
familiar with this procedure.

In Prandtl-Meyer flow and the method of characteristics, calculate the important angles for all
regions of the flow.

• Flow angle is the direction in which the air is moving.

• The Prandtl-Meyer angle is the angle at which the flow changes direction from one region to
another.

• Mach angle is the angle between the local flow direction and the weak pressure waves that
emanate from a given point.

Compute the Mach number in each region and solve for the angles of both types of characteristic in
all of the regions. Solve for the geometric boundary of all of the regions by calculating the slopes of
all of the characteristics and locate of all of the intersections of characteristics.

Computing the Flow Properties Through the First Expansion Fan

Determine the Mach number outside the wake (region 4). The Mach number at this location can be
found using isentropic ratios for pressure and the given values for pressure. The pressure ratio at the
exit plane is easily solved for using flowisentropic.

[~, ~, exitPresRatio] = flowisentropic(k, exitMach);

The back pressure ratio is the ratio of the back pressure to the stagnation pressure. The isentropic
pressure ratio at the outer wake region is:
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backPresRatio = backPres / exitPres * exitPresRatio;

Calculate the Mach number in region 4 using flowisentropic.

backMach = flowisentropic(k, backPresRatio, 'pres');

The 'pres' string input indicates that the function is in pressure ratio input mode. The flow angle in
the back pressure region is the difference in Prandtl-Meyer angles from the exit plane region (region
1) to the back pressure region (region 4).

[~, nu_1]    = flowprandtlmeyer(k, exitMach);
[~, nu_4]    = flowprandtlmeyer(k, backMach);
theta_4 = nu_4 - nu_1;

Because we are approximating the flow with three characteristics, the calculate the change in flow
angle in crossing type I characteristics from region 1 to region 4:

deltaThetaI = theta_4 / 3;

Note that flow in region 1 is parallel to the horizontal and therefore:

theta_1 = 0;

In fact, the flow in any region that straddles the centerline is parallel to the centerline. This is
because the centerline is considered to be a boundary for this symmetric flow. In addition, there are
no sources nor sinks at the boundary.

theta_5  = 0;
theta_8  = 0;
theta_10 = 0;

The flow angles of regions 2 and 3 follow simply.

theta_2 = theta_1 + deltaThetaI;
theta_3 = theta_2 + deltaThetaI;

Across type I characteristics, the change in Prandtl-Meyer angle is equal to the change in flow angle:

deltaNuI = deltaThetaI;

Calculate the Prandtl-Meyer angle in region 2 by using the Prandtl-Meyer angle in region 1 and
deltaNuI, the change in Prandtl-Meyer angle through type I characteristics. Calculate the Prandtl-
Meyer angle in region 3 in a similar manner to that of region 2.
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nu_2 = nu_1 + deltaNuI;
nu_3 = nu_2 + deltaNuI;

Calculating Flow Properties in the Interference Regions

The flow angle in region 5 is known to be zero from the centerline boundary condition. Therefore, the
change in angle from region 2 to region 5 is

deltaThetaII = theta_5 - theta_2;

Calculate the change in Prandtl-Meyer angle across type II characteristics:

deltaNuII = -deltaThetaII;

Then, calculate the Prandtl-Meyer angle in region 5. You already know the region 2 Prandtl-Meyer
angle and the change in Prandtl-Meyer angle across type II characteristics.

nu_5 = nu_2 + deltaNuII;

To calculate the properties in region 6, use the fact that the properties in region 3 and region 5 are
known. Note also that which characteristic the flow crosses define the changes in properties. From
region 5 to region 6, a type I characteristic is crossed. Therefore,

Rearranged this as:

A type II characteristic is crossed in going from region 3 to region 6. Therefore,

Rearranging this as:

Add equations (1) and (2) together, then solve for the Prandtl-Meyer angle in region 6. This yields the
following expression.

In MATLAB®, use:

nu_6 = ((nu_5 - theta_5) + (nu_3 + theta_3))/2;

From equation (1), the flow angle in region 6 is

theta_6 = nu_6 - (nu_5 - theta_5);
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For region 7 a type one characteristic is crossed and all information is available in region 6.

nu_7    = nu_6 + deltaNuI;
theta_7 = theta_6 + deltaThetaI;

Region 8 is on the centerline; its flow angle is zero. Going from region 6 to region 8 requires crossing
a type II characteristic. Therefore, calculate the Prandtl-Meyer angle in region 8 as:

nu_8 = nu_6 + deltaNuII;

Calculate the Prandtl-Meyer angle and flow angle in region 9 just like the way you did for region 6.
Region 8 is the upstream region across the type I characteristic. Region 7 is the upstream region
across the type II characteristic.

nu_9    = ((nu_8 - theta_8) + (nu_7 + theta_7))/2;
theta_9 = nu_9 - (nu_8 - theta_8);

Region ten is on the centerline. The flow is parallel and so the flow angle is zero. Use the Prandtl-
Meyer angle in region 9 and the crossing over a type II characteristic to calculate the Prandtl-Meyer
angle in region 10.

nu_10 = nu_9 + deltaNuII;

Preparing and Tabulating the Flow Parameter Results

For upcoming calculations, combine the flow angles into one vector and the Prandtl-Meyer angles
into another vector.

flowAngles         = [theta_1 theta_2 theta_3 theta_4 theta_5 theta_6 theta_7 theta_8 theta_9 theta_10];

prandtlMeyerAngles = [nu_1 nu_2 nu_3 nu_4 nu_5 nu_6 nu_7 nu_8 nu_9 nu_10];

To calculate the Mach numbers and Mach angles in each region, using the flowprandtlmeyer
function with the prandtlMeyerAngles as the input. You can use the results from this function to find
the angle that the type I and type II characteristics make with the horizontal inside each region. You
can then use these angles to calculate slopes in the x-y plane, where the centerline is the x-axis and
the exit plane of the nozzle is the y-axis. For type I characteristics and type II characteristics,
respectively, the slopes are:

Note, the values in the following table for type I and type II are the angles with the horizontal, not the
slopes.

% Preallocation for speed
machNumbers = zeros(1,10);
machAngles  = zeros(1,10);
typeOne     = zeros(1,10);
typeTwo     = zeros(1,10);

for i = 1:10
    [machNumbers(i), ~, machAngles(i)] = flowprandtlmeyer(k, prandtlMeyerAngles(i), 'nu');
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    typeOne(i) = flowAngles(i) - machAngles(i);
    typeTwo(i) = flowAngles(i) + machAngles(i);
end

clear table;
table(1,:) = 'Region   theta        nu        Mach        mu       type I    type II';
table(2,:) = '         (Deg)      (Deg)                  (Deg)     (Deg)      (Deg) ';
for m=1:length(machNumbers)
table(m+3,:) = sprintf('%3.0d   %8.2f      %5.2f   %8.3f    %8.2f   %8.2f  %8.2f ', ...
                m, flowAngles(m), prandtlMeyerAngles(m), machNumbers(m), ...
                machAngles(m), typeOne(m), typeTwo(m));
end

disp(table)

Region   theta        nu        Mach        mu       type I    type II
         (Deg)      (Deg)                  (Deg)     (Deg)      (Deg) 
                                                                      
  1       0.00      11.91      1.500       41.81     -41.81     41.81 
  2       4.45      16.35      1.650       37.29     -32.85     41.74 
  3       8.89      20.80      1.803       33.70     -24.80     42.59 
  4      13.34      25.24      1.959       30.69     -17.35     44.03 
  5       0.00      20.80      1.803       33.70     -33.70     33.70 
  6       4.45      25.24      1.959       30.69     -26.25     35.14 
  7       8.89      29.69      2.122       28.11     -19.22     37.00 
  8       0.00      29.69      2.122       28.11     -28.11     28.11 
  9       4.45      34.14      2.294       25.84     -21.40     30.29 
 10       0.00      38.58      2.477       23.81     -23.81     23.81 

Note the following:

• The flow angles increase away from the centerline.
• The Prandtl-Meyer angles increase as the flow moves downstream.
• The Mach number also increases as the flow moves downstream.

Solving for the Flow Geometry

The flow properties are known in all regions, but in order to solve for the flow field you must calculate
the actual geometry of each region. The last two columns of the above table contain the angles that
each type of characteristic makes with the horizontal. Because straight lines approximate the
characteristics of the flow in each region, the boundary between any two regions is approximated by
the average of the angles that each makes in the bordering regions. Because the waves bend through
the expansion fan, begin the analysis from the point from which the characteristics originate. The
characteristics originate at the lip of the nozzle and work downstream.

Assume the intersection of the centerline and the exit plane of the nozzle is the origin of our
coordinate system. Also assume lengths are normalized to half of the exit height of the nozzle. The
positive x axis is taken horizontal along the centerline in the downstream direction. The positive y
axis is vertically up in the exit plane of the nozzle. The lip of the nozzle is at the point (0,1).

All three characteristics that propagate from the upper lip are type I characteristics. Analyze the
steepest sloping characteristic first because no waves interfere with the steepest wave until the
steepest wave intersects the centerline. In the symmetric half-nozzle model, the steepest wave
reflects back into the fan and interferes with the other waves in the expansion fan.
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This wave that "reflects" from the centerline is actually the steepest sloping type II characteristic that
propagates from the bottom lip. However, the analysis considers the centerline to be a boundary due
to symmetry. This produces the same results that you would get if you worked both halves of the
nozzle.

The steepest sloping line from the lip is a type I characteristic that separates region 1 and region 2.
To calculate the angle that steepest sloping wave makes with the horizontal use the average of angles
that the type I characteristics make in each region. To calculate the slope use trigonometry.

avgAngle12 = (typeOne(1) + typeOne(2)) / 2;
slope12    = tand(avgAngle12);

With the following information known:

• Slope of the first type I wave in x-y space.
• The y-intercept of the wave (y = 1 at the lip).
• The wave intersects the centerline (y = 0) without interference.

Calculate the x-location of the point using the equation of a line in slope-intercept form. Rearrange y
= m*x+b for the x-location with y = 0 to produce x = -b / m. This is the x-location of the first
downstream point, point 1.

y1 = 0; % On the centerline
x1 = -1 / slope12;

From point 1, the first type II characteristic propagates and interferes with the fan. The other type I
characteristics that originate from the nozzle lip are disturbed by the type II wave, but not before
reaching that wave. Therefore, calculate the points of intersection of the steepest type II
characteristic and the flatter type I waves from the lip. The type II characteristic coming up from the
centerline separates region 2 and region 5. The average of the two angles and associated slopes are
given by:

avgAngle25 = (typeTwo(2) + typeTwo(5)) / 2;
slope25    = tand(avgAngle25);

The second steepest type I characteristic is the from the nozzle lip, separates region 2 and region 3.
The average angle with the horizontal and the associated slope of the wave are given by:

avgAngle23 = (typeOne(2) + typeOne(3)) / 2;
slope23    = tand(avgAngle23);

Calculate the point of intersection of the region 2-3 boundary and the region 2-5 boundary. You need
this point because the characteristics interfere with each other at this point. The slopes of both
boundaries and a point on each line are known. Point 1 and the nozzle lip (to be referenced point 0
are known." Solve for the unknown x-coordinate of the point of intersection. Use that x-location in the
equation of either of the two lines to find the y-location of the point of intersection. The point-slope
form equation of a line through point p with slope m is:

The advantage of this form of a line is that you need only one point and the slope to completely define
the line. The x and y without subscripts can be any point on the line. However, the point of
intersection of two lines must be unique. Calling this point of intersection point 2, the equation of
both lines are the following.
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where

Subtract and rearrange:

Knowing some of the values exactly due to the axes intercepts simplifies this expression to.

x2 = (x1 * slope25 + 1) / (slope25 -slope23);

Below the y-location of point 2 is found by plugging the x-location of point 2 into equation (4) above,
but plugging into equation (3) works just as well.

y2 = (x2 - x1) * slope25;

Use the slope-intercept formula and the procedure above to calculate all points. To calculate the third
point in the flow, first calculate the intersection of the region 3-4 boundary and the 3-6 boundary. The
angles of the boundary lines are calculated using the average of the angles with the horizontal. You
can then use trigonometry to find the slope, which is now computed in one step.

slope34 = tand( (typeOne(3) + typeOne(4)) / 2 );
slope36 = tand( (typeTwo(3) + typeTwo(6)) / 2 );

Because the boundary between region 3 and region 4 is a type I characteristic and the boundary
between region 3 and region 6 is a type II characteristic, be careful to take the angles for the
appropriate type. Use the point-slope form of these boundary lines subtracted from each other to
calculate the x-location of point 3.

x3 = (y2 - 1 - x2 * slope36) / (slope34 - slope36);
y3 = (x3 - x2) * slope36 + y2;

The first type II characteristic now propagates beyond the fan and does not interfere with any other
characteristics. The angle that defines the direction in which the steepest type II propagates is an
angle which is the average of type II waves in regions 4 and 7.

slope47 = tand( (typeTwo(4) + typeTwo(7)) / 2);

Solve also the second steepest type I characteristic to continue downstream. Start from the known
location of point 2 to calculate the x-intercept of the second type I characteristic. Again, the solution
uses the point-slope form of the line. However, there is no interference until the centerline boundary
is reached. We only need to consider one line to find the x-location of "point 4". The slope of the
boundary between region 5 and region 6 is a type I wave:

slope56 = tand( (typeOne(5) + typeOne(6)) / 2 );

The rearranged point-slope form (knowing y = 0 at the centerline) is used to find point 4.

x4 = ( slope56 * x2 - y2 ) / slope56;
y4 = 0;
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Calculate point 5 in the same manner as point 2. The region 6-7 boundary is type I and the region 6-8
boundary is type II.

slope67 = tand( ( typeOne(6) + typeOne(7)) / 2);
slope68 = tand( (typeTwo(6) + typeTwo(8)) / 2);

The known point on the region 6-7 boundary is point 3. The known point on the region 6-8 boundary
is point 4. Use this information in the slope-intercept form, subtracting the equations, and rearrange
to yield the location of the next point.

x5 = (-x4 * slope68 + x3 * slope67 + y4 -y3) / (slope67 - slope68);
y5 = (x5 - x4) * slope68 + y4;

The second type II characteristic propagates beyond the fan at an angle averaged between the region
7 and region 9 angles for type II waves.

slope79 = tand( (typeTwo(7) + typeTwo(9)) / 2);

The last point of interest is the x-intercept of the flattest type I wave. Calculate this point by knowing
the location of point 5 and finding the slope of the type I wave between region 8 and region 9.

slope89 = tand( (typeOne(8) + typeOne(9)) / 2);
y6      = 0;
x6      = (slope89 * x5 - y5) / slope89;

The final type II wave propagates away at an angle averaged between region 9 and region 10.

slope910 = tand( (typeTwo(9) + typeTwo(10)) /2);

With all the points calculated and the slope of the freely propagating lines known, connect the dots:

points = astexpandschematic('nozzlepoints');
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The method of characteristics is a potent method for solving supersonic gas dynamics problems.
Note, that this method represents an approximation for the characteristic lines. The approximation
approaches the exact case for an infinite number of characteristic lines.

close(upperNozzle,points)

Reference

[1] James, J. E. A., "Gas Dynamics, Second Edition", Allyn and Bacon, Inc, Boston, 1984.
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Visualizing World Magnetic Model Contours for 2020 Epoch
This example shows how to visualize contour plots of the calculated values for the Earth's magnetic
field using World Magnetic Model 2020 (WMM2020) overlaid on maps of the Earth.

The Mapping Toolbox™ is required to generate the maps of the Earth.

Generating Values for Earth's Magnetic Field

Calculate values for the Earth's magnetic field using wrldmagm function to implement the World
Magnetic Model 2020 (WMM2020):

• X - North component of magnetic field vector in nanotesla (nT)
• Y - East component of magnetic field vector in nanotesla (nT)
• Z - Down component of magnetic field vector in nanotesla (nT)
• H - Horizontal intensity in nanotesla (nT)
• DEC - Declination in degrees
• DIP - Inclination in degrees
• F - Total intensity in nanotesla (nT)

Based on the wrldmagm inputs:

• model_epoch - Epoch of WMM model.
• decimal_year - Scalar value representing the decimal year within the epoch for which the data was

generated.

model_epoch = '2020';
decimal_year = 2020;

For a given epoch and decimal year, use the following code to generate 13021 data points for
calculating values of Earth's magnetic field using wrldmagm. To reduce overhead calculation, this
model includes a mat-file that contains this data for epoch 2020 and decimal year 2020.

% % Assume zero height
% height = 0;
%
% % Geodetic Longitude value in degrees to use for latitude sweep.
% geod_lon = -180:1:180;      %degrees
%
% % Geodetic Latitude values to sweep.
% geod_lat = -89.5:.5:89.5;       %degrees
%
% % Loop through longitude values for each array of latitudes -89.5:89.5.
% for lonIdx = size(geod_lon,2):-1:1
%     for latIdx = size(geod_lat,2):-1:1
%
%     % Use WRLDMAGM function to obtain magnetic parameters for each lat/lon
%     % value.
%     [xyz, h, dec, dip, f] = wrldmagm(height, geod_lat(latIdx),geod_lon(lonIdx), decimal_year, model_epoch);
%
%     % Store results
%     WMMResults(latIdx,1:7,lonIdx) = [xyz' h dec dip f];
%
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%     end
% end

Load data saved in mat-file.

WMMFileName = 'astWMMResults_Epoch_2020_decyear_2020.mat';
load(WMMFileName);

Read in continent land areas for plot overlay using Mapping Toolbox function, shaperead.

landAreas = shaperead('landareas.shp','UseGeoCoords',true);

Plotting Earth's Magnetic Field Overlaid on Earth Maps

Load plot formatting data for each of the magnetic parameters.

plotWMM = load('astPlotWMM.mat');

hX = figure;
set(hX,'Position',[0 0 827 620],'Color','white')
astPlotWMMContours( WMMResults, plotWMM, 1, landAreas, geod_lat, geod_lon, decimal_year, model_epoch)
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Figure 1: North Component of Magnetic Field Vector, X (nT)

hY = figure;
set(hY,'Position',[0 0 827 620],'Color','white')
astPlotWMMContours( WMMResults, plotWMM, 2, landAreas, geod_lat, geod_lon, decimal_year, model_epoch)

Figure 2: East Component of Magnetic Field Vector, Y (nT)

hZ = figure;
set(hZ,'Position',[0 0 827 620],'Color','white')
astPlotWMMContours( WMMResults, plotWMM, 3, landAreas, geod_lat, geod_lon, decimal_year, model_epoch)
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Figure 3: Down Component of Magnetic Field Vector, Z (nT)

hH = figure;
set(hH,'Position',[0 0 827 620],'Color','white')
astPlotWMMContours( WMMResults, plotWMM, 4, landAreas, geod_lat, geod_lon, decimal_year, model_epoch)
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Figure 4: Horizontal Intensity, H (nT)

hDEC = figure;
set(hDEC,'Position',[0 0 827 620],'Color','white')
astPlotWMMContours( WMMResults, plotWMM, 5, landAreas, geod_lat, geod_lon, decimal_year, model_epoch)
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Figure 5: Declination, DEC (deg)

hDIP = figure;
set(hDIP,'Position',[0 0 827 620],'Color','white')
astPlotWMMContours( WMMResults, plotWMM, 6, landAreas, geod_lat, geod_lon, decimal_year, model_epoch)
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Figure 6: Inclination, DIP (deg)

hF = figure;
set(hF,'Position',[0 0 827 620],'Color','white')
astPlotWMMContours( WMMResults, plotWMM, 7, landAreas, geod_lat, geod_lon, decimal_year, model_epoch)
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Figure 7: Total Intensity, F (nT)

close (hX, hY, hZ, hH, hDEC, hDIP, hF)
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Visualizing Geoid Height for Earth Geopotential Model 1996
This example shows how to calculate the Earth's Geoid height using the EGM96 Geopotential Model
of the Aerospace Toolbox™ software. It also shows how to visualize the results with contour maps
overlaid on maps of the Earth. The Mapping Toolbox™ and Simulink® 3D Animation™ are required to
generate the visualizations.

Generating Values for Earth Geopotential Model 1996

Calculate values for the Earth's Geopotential using the geoidheight function to implement the
EGM96 Geopotential Model.

The following code can be used to generate 260281 data points for calculating values of the Earth's
Geoid height using geoidheight. To reduce computational overhead, this example includes a mat-
file that contains this data.

% % Set amount of increment between degrees
% gridDegInc = 0.5;                   %degrees
%
% % Longitude value in degrees to use for latitude sweep.
% lon = -180:gridDegInc:180;      %degrees
%
% % Geodetic Latitude values to sweep.
% geod_lat = -90:gridDegInc:90;       %degrees
%
% % Loop through longitude values for each array of latitudes -90:90.
% for lonIdx = size(lon,2):-1:1
%
%     % Longitude must be the same dimension as the latitude array
%     lon = lon(lonIdx)*ones(1,numLatitude);      % degrees
%     geoidResults(1:end,lonIdx) = geoidheight(geod_lat,lon,'None');
%
% end

Loading Geoid Data File and Coastal Data

geoidFileName = 'GeoidResults_05deg_180.mat';
load(geoidFileName);
coast = load('coastlines.mat');

Plot 2-D View of Geoid Height

% Create 2-D plot using |meshm|
h2D = figure;
set(h2D,'Position',[20 75 700 600],'Toolbar','figure');

% Reference matrix for mapping geoid heights to lat/lon on globe.
RRR = makerefmat('RasterSize',size(geoidResults), ...
    'Latlim', [-90 90], 'Lonlim', [-180 180] );

ast2DGeoidPlot(RRR,geoidResults,coast,gridDegInc)

% Viewing Geoid height using VR canvas
www2D = vrworld('astGeoidHeights.wrl');
open(www2D)

% Actual geoid heights for reference
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geoidGrid = vrnode(www2D,'EGM96_Grid');
actualHeights = getfield(geoidGrid,'height'); %#ok<GFLD>

% Initialize heights to 0 for slider control
geoidGrid.height = 0*actualHeights;

% Size canvas for plotting and set parameters
geoidcanvas2D = vr.canvas(www2D,'Parent',h2D,...
    'Antialiasing', 'on','NavSpeed','veryslow',...
    'NavMode','Examine','Units', 'normalized',...
    'Viewpoint','Perspective','Position',[.15 .04 .7 .42]);

% Create slider
slid=astGeoidSlider(geoidcanvas2D);
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Plot 3-D View of Geoid Height

h3D = figure;
set(h3D,'Position',[20 75 700 600]);

% Set up axes
hmapaxis = axesm ('globe','Grid', 'on');
set(hmapaxis,'Position',[.1 .5 .8 .4])

view(85,0)
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axis off

% Plot data on 3-D globe
meshm(geoidResults,RRR)

% Plot land mass outline
plotm(coast.coastlat,coast.coastlon,'Color','k')
colormap('jet');

% Plot Title
title({'EGM96 Geoid Heights';['Grid Increment: ' ,num2str(gridDegInc), ' Degrees; Height Units: Meters']})

colorbar;

% 3-D Globe: Geoid Height Using VR Canvas
www3D = vrworld('astGeoidSphere.wrl');
open(www3D)

% Position canvas
geoidcanvas3D = vr.canvas(www3D,'Parent',h3D,...
    'Antialiasing', 'on','NavSpeed','veryslow',...
    'NavMode','Examine','Units', 'normalized',...
    'Position',[.15 .04 .7 .4]);
vrdrawnow;
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Clean Up

close(h2D,h3D)
close(www2D);close(www3D);
delete(www2D);delete(www3D);

 Visualizing Geoid Height for Earth Geopotential Model 1996

5-97



Marine Navigation Using Planetary Ephemerides
This example shows how to use the planetary ephemerides and a Earth Centered Inertial to Earth
Centered Earth Fixed (ECI to ECEF) transformation to perform celestial navigation of a marine
vessel.

This example uses the Mapping Toolbox™. You must also download data for the example using the
aeroDataPackage command.

This example uses the route followed by the 1947 expedition across the Pacific Ocean Kon-Tiki. The
expedition, led by Thor Heyerdahl, aimed to prove the theory that the Polynesian islands were
populated by people from South America in pre-Columbian times. The expedition took 101 days and
sailed from the port of Callao, Peru to the Raroia atoll, French Polynesia.
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Notes: This example loosely recreates the expedition route. It takes some liberties to show the
planetary ephemerides and ECI to ECEF transformation simply.

Load Vessel Track

Load the astKonTikiData.mat file. It contains the ship trajectory, velocity and course for this example.
This file stores, the latitude and longitude for the different track points in the variables "lat" and
"long", respectively. The variables contain enough data for one track point per day from the port of
Callao to the Raroia atoll. Additionally, this file also stores values for each day's vessel velocity in
knots per day "V" and course in deg "T".

load astKonTikiData

Create an Observation Structure

The nautical reduction process is a series of steps that a navigator follows to determine the latitude
and longitude of his vessel. It is based on the theory described in The American Practical
Navigator[1], the Nautical Almanac[2], and the Explanatory Supplement to the Astronomical
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Almanac[3]. The process uses observational data obtained from a sextant, clock, compass, and
navigational charts. It returns the intercept (p) and true azimuth (Z) for each of the observed objects.
This example uses an observation structure array, obs, to contain the observational data. The fields
for the structure array are:

• h: Height of eye level of the observer, in m.
• IC: Sextant's index correction, in deg.
• P: Local ambient pressure, in mb.
• T: Local temperature, in C.
• year: Local year at the time of the observation.
• month: Local month at the time of the observation.
• day: Local day at the time of the observation.
• hour: Local hour at the time of the observation.
• UTC: Coordinated Universal Time for the observation, represented as a six element vector with

year, month, day, hour, minutes, and seconds.
• Hs: Sextant altitude of the celestial object above the horizon, in deg.
• object: Celestial object used for the measurement (i.e., Jupiter, Neptune, Saturn, etc).
• latitude: Estimated latitude of the vessel at the time of the observation, in deg.
• longitude: Estimated longitude of the vessel at the time of the observation, in deg.
• declination: Declination of the celestial object, in deg.
• altitude: Distance from the surface of the earth to the celestial object, in km.
• GHA: Greenwich Hour Angle, which is the angle in degrees of the celestial object relative to the

Greenwich meridian.

For simplicity, assume that all measurements are taken at the same location in the boat, with the
same sextant, at the same ambient temperature and pressure:

obs.h = 4;
obs.IC = 0;
obs.P = 982;
obs.T = 15;

The expedition departed on April 28th 1947. As a result, initialize the structure for the observation
for this date:

obs.year = 1947;
obs.month = 4;
obs.day = 28;

Initialize Dead Reckoning Process for Navigation

To start the dead reckoning process, define the initial conditions for the position of the vessel. Store
the latitude for a fixed solution for the latitude and longitude in the latFix and longFix variables,
respectively. In this example, for the first fix location, use the latitude and longitude of Callao, Peru:

longFix = zeros(size(long));
latFix = zeros(size(lat));
longFix(1) = long(1);
latFix(1) = lat(1);
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Daily Dead Reckoning

For this example, assume that a fix is obtained daily using the observational data. Therefore, this
example uses a "for loop" for each observation. The variable "m" acts as a counter representing every
elapsed day since the departure from the port:

for m = 1:size(lat,1)-1

Increment the day and make day adjustments for the months of June and April, both of which have
only 30 days:

    obs.day = obs.day + 1;
    [obs.month,obs.day] = astHelperDayCheck(obs.year,obs.month,obs.day);

Actual Latitude and Longitude

Extract the vessel actual position for each day from the track points loaded earlier. The example uses
this value to calculate the local time zone and the position of the selected planets in the sky:

    longActual = long(m+1);
    latActual = lat(m+1);

Planet Selection

Select the planets for observation if they are visible to the vessel for the given latitude and longitude.
The following code uses precalculated data:

    if longActual>-90
        obs.object = {'Saturn';'Neptune'};
    elseif longActual<=-90 && longActual>-95
        obs.object = {'Saturn';'Neptune';'Jupiter'};
    elseif longActual<=-95
        obs.object = {'Neptune';'Jupiter'};
    end

UTC Time Calculation

Adjust local time to UTC depending on the assumed longitude. For this example, assume that all
observations are taken at the same time every day at 8 p.m. local time.

    obs.hour = 20;

For the dead reckoning process, update the observation structure with the estimate of the current
location. In this case, the location is estimated using the previous fix, the vessel's velocity V, and
course T.

    obs.longitude = longFix(m)+(1/60)*V(m)*sind(T(m))/cosd(latFix(m));
    obs.latitude = latFix(m)+(1/60)*V(m)*cosd(T(m));

Adjust the local time to UTC using the helper function astHelperLongitudeHour. This function adjusts
the UTC observation time depending on the estimated longitude of the vessel.

    obs.UTC = astHelperLongitudeHour(obs);

Sextant Altitude Calculation

For each of the planets, the astHelperNauticalCalculation helper function calculates the sextant
measurement that the crew in the Kon-Tiki would have measured. This function models the actual
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behavior of the planets, while compensating for the local conditions. This function uses the planetary
ephemeris and the ECI to ECEF transformation matrix. The analysis doesn't include planetary
aberration, gravitational light deflection, and aberration of light phenomena.

    obs.Hs = astHelperNauticalCalculation(obs,latActual,longActual);

Calculate position

The following calculations replace the use of the nautical almanac. They include the use of the
planetary ephemerides and the ECI to ECEF transformation matrix.

Initialize declination, Greenwich Hour Angle (GHA), and altitude for the observed object:

    obs.declination = zeros(size(obs.Hs));
    obs.GHA = zeros(size(obs.Hs));
    obs.altitude = zeros(size(obs.Hs));

Calculate the modified Julian date for the measurement time:

    mjd = mjuliandate(obs.UTC);

Calculate the difference between UT1 and UTC:

    dUT1 = deltaUT1(mjd,'Action','None');

Calculate the ECI to ECEF transformation matrix using the values of TAI-UTC (dAT) from the U.S.
Naval Observatory:

    dAT = 1.4228180;
    TM = dcmeci2ecef('IAU-76/FK5',obs.UTC,dAT,dUT1);

Calculate Julian date for Terrestrial Time to approximate the Barycentric Dynamical Time:

    jdTT = juliandate(obs.UTC)+(dAT+32.184)/86400;

Calculate declination, Greenwich Hour Angle, and altitude for each of the celestial objects:

    for k =1:length(obs.object)

Calculate the ECI position for every planet:

        posECI = planetEphemeris(jdTT,'Earth',obs.object{k},'405','km');

Calculate the ECEF position of every planet:

        posECEF = TM*posECI';

Calculate the Greenwich Hour Angle (GHA) and declination using the ECEF position:

        obs.GHA(k) = -atan2d(posECEF(2),posECEF(1));
        obs.declination(k) = atan2d(posECEF(3),sqrt(posECEF(1)^2 + ...
            posECEF(2)^2));

Calculate the distance from the surface of the Earth to the center of the planet using the ECEF to
LLA transformation function:

        posLLA = ecef2lla(1000*posECEF');
        obs.altitude(k) = posLLA(3);
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    end

Sight Reduction for Planetary Objects

Reduce sight for each of the planets specified in the observation structure array:

    [p,Z] = astHelperNauticalReduction(obs);

Calculate the increments to the latitude and longitude from the last fix for the current fix using the
following equations. These equations are based on the Nautical Almanac.

    Ap = sum(cosd(Z).^2);
    Bp = sum(cosd(Z).*sind(Z));
    Cp = sum(sind(Z).^2);
    Dp = sum(p.*cosd(Z));
    Ep = sum(p.*sind(Z));
    Gp = Ap*Cp-Bp^2;

Calculate the increments for latitude and longitude according to the reduction:

    deltaLongFix = (Ap*Ep-Bp*Dp)/(Gp*cosd(latFix(m)));
    deltaLatFix = (Cp*Dp-Bp*Ep)/Gp;

After the increments for the latitude and longitude are calculated, add them to the estimated location,
obtaining the fix for the time of observation:

    longFix(m+1) = obs.longitude + deltaLongFix;
    latFix(m+1) = obs.latitude + deltaLatFix;

end

Navigation Solution Visualization

The following figure shows the actual track and sight reduction solutions:

astHelperVisualization(long,lat,longFix,latFix,'Plot')
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You can use the Mapping Toolbox to obtain a more detailed graph depicting the sight reduction
solutions with the American continent and French Polynesia.

astHelperVisualization(long,lat,longFix,latFix,'Map')
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The relative error in longitude and latitude is accumulated as the vessel sails from Callao to Raroia.
This error is due to small errors in the measurement of the sextant altitude. For June 9th, the
reduction method calculates a true azimuth (Z) for Neptune and Jupiter. The true azimuths for
Neptune and Jupiter are close to 180 deg apart. This difference causes a small peak in the relative
error. This error, however, is still within the reduction method error boundaries.
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Estimate Sun Analemma Using Planetary Ephemerides and ECI
to AER Transformation

This example shows how to estimate the analemma of the Sun. The analemma is the curve that
represents the variation of the angular offset of the Sun from its mean position on the celestial sphere
relative to a specific geolocation on the Earth surface. In this example, the analemma is estimated
relative to the Royal Observatory at Greenwich, United Kingdom. After the estimation, the example
plots the analemma.

This example uses data that you can download using the aeroDataPackage command.

Identify the Dates of a Year over Which to Calculate the Analemma of the Sun

Specify the dates for which to calculate the analemma. In this example, these dates range for the year
2014 from January 1st to December 31st at noon UTC.

dv = datetime(2014,1,1:365,12,0,0);
dvUTC = [dv.Year' dv.Month' dv.Day' dv.Hour' dv.Minute' dv.Second'];

Calculate the Position of the Sun

Use the planetEphemeris function to calculate the position of the Sun. In this example:

• The tdbjuliandate function calculates the Julian date for the dynamic barycentric time (TDB).
• The tdbjuliandate function requires the terrestrial time (TT).

The calculation of the terrestrial time in seconds from UTC requires the difference in Coordinated
Universal Time (UTC) and International Atomic Time (TAI).

• For 2014, this difference (dAT) is 35 seconds.
• The approximate terrestrial time (secTT) is the dAT + 32.184 seconds.
• The terrestrial time in year, month, day, hour, minutes, and seconds is contained in the dvTT array.

dAT = 35;
secTT = dAT + 32.184;
dvTT = dv + secTT/86400;

Estimate the Julian date for the dynamic barycentric time based on the terrestrial time using the
array dvTT:

jdTDB = tdbjuliandate([dvTT.Year' dvTT.Month' dvTT.Day' dvTT.Hour' dvTT.Minute' dvTT.Second']);

Determine the position of the Sun for these dates:

posSun = planetEphemeris(jdTDB,'Earth','Sun')*1000;

Calculate Difference Between UTC and Principal Universal Time (UT1)

Calculate the difference between UTC and UT1, deltaUT1, using the modified Julian dates for UTC.

mjdUTC = mjuliandate(dvUTC);
dUT1 = deltaUT1(mjdUTC);

Calculate Polar Motion and Displacement of the Celestial Intermediate Pole (CIP)

Calculate the polar motion and displacement of the CIP using the modified Julian dates for UTC.
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PM = polarMotion(mjdUTC);
dCIP = deltaCIP(mjdUTC);

Specify the Geopotential Position of the Royal Observatory at Greenwich, United Kingdom

Specify the geopotential location for the position against which to estimate the analemma. In this
example, this location is the latitude, longitude, and altitude for the Royal Observatory at Greenwich
(51.48 degrees North, 0.0015 degrees West, 0 meters altitude).

LLAGreenwich = [51.48,-0.0015,0];
aer = eci2aer(posSun,dvUTC,repmat(LLAGreenwich,length(jdTDB),1),...
              'deltaAT',dAT*ones(length(jdTDB),1),'deltaUT1',dUT1,...
              'PolarMotion',PM,'dCIP',dCIP);

Specify Days Within the Year of the Analemma That You Want to Plot

On the analemma, you can plot days of interest within the year of the analemma. This example plots:

• The first day of each month in 2014.
• The summer and winter solstices.
• The spring and fall equinoxes.

To get the first day of each month in 2014:

aerFirstMonth = aer(dvUTC(:,3)==1,:);

To get solstices and equinoxes (for 2014 are 3/20, 6/21, 9/22, 12/21):

solsticeEquinox = [ aer(and(dvUTC(:,2)==3,dvUTC(:,3)==20),1) aer(and(dvUTC(:,2)==3,dvUTC(:,3)==20),2); ...
                    aer(and(dvUTC(:,2)==6,dvUTC(:,3)==21),1) aer(and(dvUTC(:,2)==6,dvUTC(:,3)==21),2); ...
                    aer(and(dvUTC(:,2)==9,dvUTC(:,3)==22),1) aer(and(dvUTC(:,2)==9,dvUTC(:,3)==22),2); ...
                    aer(and(dvUTC(:,2)==12,dvUTC(:,3)==21),1) aer(and(dvUTC(:,2)==12,dvUTC(:,3)==21),2)];

Plot Results

Plot the analemma. Along the analemma, plot points for the whole year, first days of the month,
equinoxes, and solstices.

for ii = 12:-1:1
    firstDays{ii} = [num2str(ii) '/' num2str(1)];
end

f = figure;
plot(aer(:,1),aer(:,2),'.',...
    solsticeEquinox(:,1),solsticeEquinox(:,2),'ks',...
    aerFirstMonth(:,1),aerFirstMonth(:,2),'ko',...
    'MarkerSize',8,'MarkerFaceColor','k');
title('Analemma observed at Greenwich Observatory');
xlabel('Azimuth [deg]');
ylabel('Elevation [deg]');
axis([176,185,10,70])
text(aerFirstMonth(:,1)+.1, aerFirstMonth(:,2)+1.2, firstDays, 'Color', 'k','HorizontalAlignment', 'Left');
text(solsticeEquinox(1,1)+.2, solsticeEquinox(1,2)-1.5, 'Spring Equinox', 'Color', 'k','HorizontalAlignment', 'Left');
text(solsticeEquinox(2,1), solsticeEquinox(2,2)+2.5, 'Summer Solstice', 'Color', 'k','HorizontalAlignment', 'Left');
text(solsticeEquinox(3,1)+.1, solsticeEquinox(3,2)+1.2, 'Fall Equinox', 'Color', 'k','HorizontalAlignment', 'Left');
text(solsticeEquinox(4,1)+.1, solsticeEquinox(4,2)-2.5, 'Winter Solstice', 'Color', 'k','HorizontalAlignment', 'Left');
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Display Flight Trajectory Data Using Flight Instruments and
Flight Animation

This example shows how to visualize flight trajectories in a UI figure window using flight instrument
components. In this example, you will create and configure standard flight instruments in conjunction
with the Aero.Animation object.

Load Recorded Data for Flight Trajectories and Instrument Display

Load logged aircraft position, attitude, and time to the workspace.

load simdata

Create Animation Interface

To display the flight trajectories stored in the flight trajectory data, create an Aero.Animation object.
The aircraft used in this example is the Piper PA24-250 Comanche.

h = Aero.Animation;
h.createBody('pa24-250_orange.ac','Ac3d');
h.Bodies{1}.TimeSeriesSource = simdata;
h.Camera.PositionFcn = @staticCameraPosition;
h.Figure.Position(1) = h.Figure.Position(1) + 572/2;
h.show();
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Create Flight Instruments

Create a UI figure window to contain the flight instruments.

fig = uifigure('Name','Flight Instruments',...
    'Position',[h.Figure.Position(1)-572 h.Figure.Position(2)+h.Figure.Position(4)-502 572 502],...
    'Color',[0.2667 0.2706 0.2784],'Resize','off');

Load panel image into an axis:

imgPanel = imread('astFlightInstrumentPanel.png');
ax = uiaxes('Parent',fig,'Visible','off','Position',[10 30 530 460],...
    'BackgroundColor',[0.2667 0.2706 0.2784]);
image(ax,imgPanel);
disableDefaultInteractivity(ax);

Create standard flight instruments for navigation:

Create altimeter:

alt = uiaeroaltimeter('Parent',fig,'Position',[369 299 144 144]);

Create heading indicator:

head = uiaeroheading('Parent',fig,'Position',[212 104 144 144]);

Create airspeed indicator:

air = uiaeroairspeed('Parent',fig,'Position',[56 299 144 144]);

Change the airspeed indicator limits according to the Piper PA 24-250 Comanche capabilities:

air.Limits = [20 200];
air.ScaleColorLimits = [0 50;40 160;160 190;190 200];

Create artificial horizon:

hor = uiaerohorizon('Parent',fig,'Position',[212 299 144 144]);

Create climb rate indicator:

climb = uiaeroclimb('Parent',fig,'Position',[369 104 144 144]);

Change the climb indicator maximum climb rate according to the aircraft capabilities:

climb.MaximumRate = 4000;

Create turn coordinator:

turn = uiaeroturn('Parent',fig,'Position',[56 104 144 144]);

To update the flight instruments and animation figure, assign the ValueChangingFcn callback to the
astHelperFlightInstrumentsAnimation helper function. Then, when a time is selected on the
slider, the flight instruments and animation figure will be updated according to the selected time
value.

sl = uislider('Parent',fig,'Limits',[simdata(1,1) simdata(end,1)],'FontColor','white');
sl.Position = [50 60 450 3];
sl.ValueChangingFcn = @(sl,event) astHelperFlightInstrumentsAnimation(fig,simdata,h,event);
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To display the time selected in the slider, create a label component.

lbl = uilabel('Parent',fig,'Text',['Time: ' num2str(sl.Value,4) ' sec'],'FontColor','white');
lbl.Position = [230 10 90 30];
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Aerospace Flight Instruments in App Designer
This app shows how to display flight status information with standard cockpit instrumentation using
Aerospace Toolbox™ flight instruments in App Designer. On startup, the app loads saved flight data
from a MAT-file and starts a new Aero.Animation figure window. The app uses six flight
instruments to display flight data corresponding with the time selected in the slider. The animation
window updates to reflect the aircraft orientation at the selected time.

This example demonstrates the following app building tasks:

• Use a StartupFcn callback to load data from a file and create an Aero.Animation object.
• Use aerospace flight instrument components to visualize flight status information: Airspeed

Indicator, Artificial Horizon, Altimeter, Turn Coordinator, Heading Indicator, and Climb Indicator
• Use the slider component ValueChangingFcn callback to set aerospace flight instrument

component properties and interact with an Aero.Animation object.
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Perform Controls and Static Stability Analysis with Linearized
Fixed-Wing Aircraft

This example shows how to convert a fixed-wing aircraft to a linear time invariant (LTI) state-space
model for linear analysis.

This example describes:

• Importing and filling data from a DATCOM file.
• Constructing a fixed-wing aircraft from DATCOM data.
• Calculating static stability of the fixed-wing aircraft.
• Linearizing the fixed-wing aircraft around an initial state.
• Validating the static stability analysis with a dynamic response.
• Isolating the elevator-to-pitch transfer function and designing a feedback controller for the

elevator.

Defining the Fixed-Wing Aircraft and State

This example uses a DATCOM file created for the Sky Hogg aircraft.

First, import the DATCOM output file using datcomimport.

allData = datcomimport('astSkyHoggDatcom.out', false, 0);
skyHoggData = allData{1}

skyHoggData = struct with fields:
          case: 'SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG'
          mach: [0.1000 0.2000 0.3000 0.3500]
           alt: [1000 3000 5000 7000 9000 11000 13000 15000]
         alpha: [-16 -12 -8 -4 -2 0 2 4 8 12]
         nmach: 4
          nalt: 8
        nalpha: 10
         rnnub: []
        hypers: 0
          loop: 2
          sref: 225.8000
          cbar: 5.7500
         blref: 41.1500
           dim: 'ft'
         deriv: 'deg'
        stmach: 0.6000
        tsmach: 1.4000
          save: 0
         stype: []
          trim: 0
          damp: 1
         build: 1
          part: 0
       highsym: 1
       highasy: 0
       highcon: 0
          tjet: 0
        hypeff: 0
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            lb: 0
           pwr: 0
          grnd: 0
         wsspn: 18.7000
         hsspn: 5.7000
        ndelta: 5
         delta: [-20 -10 0 10 20]
        deltal: []
        deltar: []
           ngh: 0
        grndht: []
        config: [1x1 struct]
       version: 1976
            cd: [10x4x8 double]
            cl: [10x4x8 double]
            cm: [10x4x8 double]
            cn: [10x4x8 double]
            ca: [10x4x8 double]
           xcp: [10x4x8 double]
           cma: [10x4x8 double]
           cyb: [10x4x8 double]
           cnb: [10x4x8 double]
           clb: [10x4x8 double]
           cla: [10x4x8 double]
         qqinf: [10x4x8 double]
           eps: [10x4x8 double]
      depsdalp: [10x4x8 double]
           clq: [10x4x8 double]
           cmq: [10x4x8 double]
          clad: [10x4x8 double]
          cmad: [10x4x8 double]
           clp: [10x4x8 double]
           cyp: [10x4x8 double]
           cnp: [10x4x8 double]
           cnr: [10x4x8 double]
           clr: [10x4x8 double]
       dcl_sym: [5x4x8 double]
       dcm_sym: [5x4x8 double]
    dclmax_sym: [5x4x8 double]
    dcdmin_sym: [5x4x8 double]
      clad_sym: [5x4x8 double]
       cha_sym: [5x4x8 double]
       chd_sym: [5x4x8 double]
      dcdi_sym: [10x5x4x8 double]

Next, prepare the DATCOM lookup tables.

DATCOM lookup tables might have missing values due to the tables only filling one value for the
whole column.

This missing data is represented in the lookup tables as the value 99999 and can be filled using the
"previous" method of fillmissing.

In this example, Cyβ, Cnβ, CLq, and Cmq have missing data.

skyHoggData.cyb = fillmissing(skyHoggData.cyb, "previous", "MissingLocations", skyHoggData.cyb == 99999);
skyHoggData.cnb = fillmissing(skyHoggData.cnb, "previous", "MissingLocations", skyHoggData.cnb == 99999);
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skyHoggData.clq = fillmissing(skyHoggData.clq, "previous", "MissingLocations", skyHoggData.clq == 99999);
skyHoggData.cmq = fillmissing(skyHoggData.cmq, "previous", "MissingLocations", skyHoggData.cmq == 99999);

With the missing data filled, the fixed-wing aircraft can be constructed.

First, the fixed-wing aircraft is prepared with the desired aircraft name.

Optionally, the aircraft name can be extracted from the "case" field on the DATCOM struct by passing
an empty fixed-wing object.

skyHogg = Aero.FixedWing();
skyHogg.Properties.Name = "Sky_Hogg";
skyHogg.DegreesOfFreedom = "3DOF";
[skyHogg, cruiseState] = datcomToFixedWing(skyHogg, skyHoggData);

The datcomToFixedWing will convert all compatible data from the datcom struct into the fixed-wing
object and its state. However, the returned state still needs processing to get the desired initial
conditions of the aircraft.

In this example, the environment, mass, inertia, airspeed, and center of pressure need adjusting.

h = 2000;
cruiseState.AltitudeMSL = h;
cruiseState.Environment = aircraftEnvironment(skyHogg,"ISA",h);

cruiseState.U = 169.42;
cruiseState.Mass = 1299.214;
cruiseState.Inertia.Variables = [5787.969 0 117.64;0 6928.93 0;-117.64 0 11578.329];
cruiseState.CenterOfPressure = [0.183, 0, 0];

Calculating Static Stability

Performing a static stability analysis helps determine the dynamic stability of the system without
calculating a dynamic system response.

stability = staticStability(skyHogg, cruiseState)

stability=6×8 table
             U            V           W         Alpha        Beta           P           Q            R    
          ________    _________    ________    ________    _________    _________    ________    _________

    FX    "Stable"    ""           ""          ""          ""           ""           ""          ""       
    FY    ""          "Neutral"    ""          ""          ""           ""           ""          ""       
    FZ    ""          ""           "Stable"    ""          ""           ""           ""          ""       
    L     ""          ""           ""          ""          "Neutral"    "Neutral"    ""          ""       
    M     "Stable"    ""           ""          "Stable"    ""           ""           "Stable"    ""       
    N     ""          ""           ""          ""          "Neutral"    ""           ""          "Neutral"

With statically stable forces and moments, with perturbations to forward and vertical speeds, and
perturbations to angle of attack, the dynamic stability of the system tends towards an oscillating
steady-state when perturbing the forward and vertical speeds.

To verify this behavior, use the Control System Toolbox™.

Linearizing the Fixed-Wing Aircraft

To use the tools within the Control System Toolbox™, linearize the aircraft around a state.
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This is done by using the linearize method with the same cruise state as before.

linSys = linearize(skyHogg, cruiseState)

linSys =
 
  A = 
                  XN          XD           U           W           Q
   XN              0           0           1           0           0
   XD              0           0           0           1           0
   U               0   1.319e-06   -0.001714  -0.0007608           0
   W               0           0   -0.002705     -0.3319       2.557
   Q               0           0     0.03443       -1.19      -24.84
   Theta           0           0           0           0           1
 
               Theta
   XN     -2.586e-07
   XD         -2.957
   U         -0.5617
   W      -4.867e-08
   Q               0
   Theta           0
 
  B = 
               Delta
   XN              0
   XD              0
   U      -0.0004314
   W        -0.02084
   Q          -2.239
   Theta           0
 
  C = 
             XN     XD      U      W      Q  Theta
   XN         1      0      0      0      0      0
   XD         0      1      0      0      0      0
   U          0      0      1      0      0      0
   W          0      0      0      1      0      0
   Q          0      0      0      0      1      0
   Theta      0      0      0      0      0      1
 
  D = 
          Delta
   XN         0
   XD         0
   U          0
   W          0
   Q          0
   Theta      0
 
Continuous-time state-space model.

Validating Static Stability with Dynamic Response

With the linear state-space model constructed, you can plot the dynamic behavior of the system.

To verify the static stability results with the dynamic behavior of the system, plot the states space
model against the initial conditions.
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To induce a perturbation in the system, a 5 degree step for 1 second is added to the elevator signal.

x0 = getState(cruiseState, linSys.OutputName);
t = linspace(0, 50, 500);
u = zeros(size(t));
u(t > 1 & t < 2) = 5;
lsim(linSys,u,t,x0)

As expected from the static stability analysis, the airspeed and pitch-rate is stable when responding
to a small perturbation in the elevator.

Isolating the Elevator-Pitch Response

In addition to the static stability verification, isolating the control surfaces to their intended dynamic
response can help design controllers specific to the individual surfaces.

In this case, there is only a single control surface, the elevator.

The elevator controls the pitch response of the aircraft. To show a pitch response, isolate the elevator
input to the pitch angle to elevator transfer function.

linSysElevatorTF = tf(linSys(6,1))

linSysElevatorTF =
 
  From input "Delta" to output "Theta":
          -2.239 s^3 - 0.7221 s^2 - 0.001232 s - 8.935e-09
  -----------------------------------------------------------------
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  s^5 + 25.17 s^4 + 11.33 s^3 + 0.0387 s^2 + 0.008227 s + 5.712e-08
 
Continuous-time transfer function.

step(linSysElevatorTF)

As can be seen by the step plot, the pitch response to elevator input has an undesirable oscillatory
nature and large steady-state error.

By adding a PID feedback controller to the elevator input, a much more desirable pitch response can
be achieved.

C = pidtune(linSysElevatorTF, "PID")

C =
 
        1 
  Ki * ---
        s 

  with Ki = -0.000596
 
Continuous-time I-only controller.

elevatorFeedback = feedback(linSysElevatorTF * C, 1)

elevatorFeedback =
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  From input to output "Theta":
                                                                 
           0.001335 s^3 + 0.0004304 s^2 + 7.346e-07 s + 5.327e-12
                                                                 
  ------------------------------------------------------------------------
                                                                          
  s^6 + 25.17 s^5 + 11.33 s^4 + 0.04004 s^3 + 0.008657 s^2 + 7.917e-07 s  
                                                                          
                                                               + 5.327e-12
                                                                          
 
Continuous-time transfer function.

step(elevatorFeedback)

See Also

Related Examples
• “Get Started With Fixed-Wing Aircraft” on page 5-181
• “Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129

5 Aerospace Toolbox Examples

5-120



Customize Fixed-Wing Aircraft with Additional Aircraft States
This example shows how to construct and define a custom state for a fixed-wing aircraft.

This example describes:

• Defining custom states and when they might be used.
• Creating a basic custom state.
• Creating an advanced custom state.
• Using a custom state in the analysis of a fixed-wing aircraft.

What are Custom States?

By default, the fixed-wing state object has a fixed set of state values. These include angle of attack,
airspeed, altitude, and others.

These states are used within the fixed-wing object to dimensionalize non-dimensional coefficients or
provide data to lookup table breakpoints.

However, there are cases where this default set of states does not capture all of the desired states of
an aircraft. This is when custom states are used.

By defining a custom state, it is possible to create new state values which can be used within any
component of a fixed-wing aircraft.

Defining a Custom State

To create custom states with the Aero.FixedWing.State class:

1 Define a new class. This class must inherit from the Aero.FixedWing.State.
2 Define custom states by adding new dependent properties to the class.
3 Define the get.State method in the custom state class.

Below is a simple example state where the custom state class, MyState, is defined with a custom
state value, MyValue.

The get methods of dependent properties can access any other property on the state. In this case,
MyValue uses ground forward speed, U.

classdef MyState < Aero.FixedWing.State
    
    properties (Dependent)
        MyValue
    end
    
    methods
        function value = get.MyValue(obj)
            value = obj.U * 10;
        end
    end
end

A more advanced example of the custom state is the De Havilland Beaver aircraft model [1] which
uses a number of custom states to dimensionalize its coefficients. This custom state can be seen as
"astDehavillandBeaverState" below.
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classdef astDehavillandBeaverState < Aero.FixedWing.State
    
    properties (Dependent)
        Alpha2
        Alpha3
        Beta2
        Beta3
        
        b2V
        cV
        qcV
        pb2V
        rb2V
        betab2V
        
        AileronAlpha
        FlapAlpha
        ElevatorBeta2
        RudderAlpha
    end
    
    methods
        function value = get.Alpha2(obj)
            value = obj.Alpha ^ 2;
        end
        function value = get.Alpha3(obj)
            value = obj.Alpha ^ 3;
        end
        function value = get.Beta2(obj)
            value = obj.Beta ^ 2;
        end
        function value = get.Beta3(obj)
            value = obj.Beta ^ 3;
        end
        
        function value = get.b2V(obj)
           value = 14.6300 / (2*obj.Airspeed);
        end
        function value = get.cV(obj)
           value = 1.5875 / (obj.Airspeed);
        end
        
        function value = get.qcV(obj)
           value = obj.Q * obj.cV;
        end
        function value = get.pb2V(obj)
           value = obj.P * obj.b2V;
        end
        function value = get.rb2V(obj)
           value = obj.R * obj.b2V;
        end
        function value = get.betab2V(obj)
           value = obj.Beta * obj.b2V;
        end
        
        function value = get.AileronAlpha(obj)
            value = obj.getState("Aileron") * obj.Alpha;
        end
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        function value = get.FlapAlpha(obj)
            value = obj.getState("Flap") * obj.Alpha;
        end
        function value = get.ElevatorBeta2(obj)
            value = obj.getState("Elevator") * obj.Beta2;
        end
        function value = get.RudderAlpha(obj)
            value = obj.getState("Rudder") * obj.Alpha;
        end
    end
end

This custom state not only directly uses the pre-defined state properties from the fixed-wing state, but
also uses the getState method to extract the control surface deflection angles. Any combination of
states or methods can be used in the get methods for custom states.

Using a Custom State

With the custom state defined, use the custom state in the analysis methods.

[beaver, cruise] = astDehavillandBeaver()

beaver = 
  FixedWing with properties:

        ReferenceArea: 23.2300
        ReferenceSpan: 14.6300
      ReferenceLength: 1.5875
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x1 Aero.FixedWing.Thrust]
          AspectRatio: 9.2138
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

cruise = 
  astDehavillandBeaverState with properties:

                  Alpha2: 0.0170
                  Alpha3: 0.0022
                   Beta2: 0.0036
                   Beta3: 2.1974e-04
                     b2V: 0.1625
                      cV: 0.0353
                     qcV: 0
                    pb2V: 0
                    rb2V: 0
            AileronAlpha: 0.0012
               FlapAlpha: 0
           ElevatorBeta2: -1.5476e-04
             RudderAlpha: -0.0060
                   Alpha: 0.1303
                    Beta: 0.0603
                AlphaDot: 0
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                 BetaDot: 0
                    Mass: 2.2882e+03
                 Inertia: [3x3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 2202
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: -2202
                       U: 44.5400
                       V: 2.7140
                       W: 5.8360
                     Phi: 0
                   Theta: 0.1309
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 2.2448e+04
             AltitudeAGL: 2202
                Airspeed: 45.0026
             GroundSpeed: 45.0026
              MachNumber: 0.1357
            BodyVelocity: [44.5400 2.7140 5.8360]
          GroundVelocity: [44.5400 2.7140 5.8360]
                      Ur: 44.5400
                      Vr: 2.7140
                      Wr: 5.8360
         FlightPathAngle: 0.1303
             CourseAngle: 0.0609
    InertialToBodyMatrix: [3x3 double]
    BodyToInertialMatrix: [3x3 double]
        BodyToWindMatrix: [3x3 double]
        WindToBodyMatrix: [3x3 double]
         DynamicPressure: 998.6513
             Environment: [1x1 Aero.Aircraft.Environment]
           ControlStates: [1x5 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1x1 Aero.Aircraft.Properties]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"

cruise.Alpha2

ans = 0.0170

[F, M] = forcesAndMoments(beaver, cruise)

F = 3×1
103 ×

    0.4037
   -1.3285
    4.7465
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M = 3×1
103 ×

   -1.5125
    2.3497
    0.3744

dydt = nonlinearDynamics(beaver, cruise)

dydt = 12×1

   44.9207
    2.7140
   -0.0276
    0.1764
   -0.5806
    2.0743
   -0.2619
    0.3391
    0.0297
         0
      ⋮

[stability, derivatives] = staticStability(beaver, cruise)

stability=6×8 table
             U           V           W         Alpha        Beta         P           Q           R    
          ________    ________    ________    ________    ________    ________    ________    ________

    FX    "Stable"    ""          ""          ""          ""          ""          ""          ""      
    FY    ""          "Stable"    ""          ""          ""          ""          ""          ""      
    FZ    ""          ""          "Stable"    ""          ""          ""          ""          ""      
    L     ""          ""          ""          ""          "Stable"    "Stable"    ""          ""      
    M     "Stable"    ""          ""          "Stable"    ""          ""          "Stable"    ""      
    N     ""          ""          ""          ""          "Stable"    ""          ""          "Stable"

derivatives=6×8 table
             U          V          W          Alpha        Beta         P          Q          R   
          _______    _______    _______    ___________    _______    _______    _______    _______

    FX    -32.531     2.7704     601.22          26968     124.91          0    -552.22          0
    FY    -33.152    -398.64    -16.894        -558.01     -17973    -467.59          0     1382.4
    FZ    -410.16    -4.8834    -2867.8    -1.2531e+05    -220.18          0    -2445.2          0
    L     -37.919    -469.28    -10.703        -254.35     -21158     -27832          0     9350.9
    M      222.86     74.529     -930.3         -42740     3360.4          0     -20214    -1866.5
    N      12.771     62.732     1.6733       -0.35231     2828.4    -8744.1     1909.6    -6134.6

States can also be created using the fixedWingStateCustom function.

This function is identical to the fixedWingState function except for the addition of a string input
which specified the state object to create.

state = fixedWingStateCustom("astDehavillandBeaverState",beaver)

state = 
  astDehavillandBeaverState with properties:
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                  Alpha2: 0
                  Alpha3: 0
                   Beta2: 0
                   Beta3: 0
                     b2V: 0.1463
                      cV: 0.0318
                     qcV: 0
                    pb2V: 0
                    rb2V: 0
            AileronAlpha: 0
               FlapAlpha: 0
           ElevatorBeta2: 0
             RudderAlpha: 0
                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 0
                 Inertia: [3x3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 0
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3x3 double]
    BodyToInertialMatrix: [3x3 double]
        BodyToWindMatrix: [3x3 double]
        WindToBodyMatrix: [3x3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1x1 Aero.Aircraft.Environment]
           ControlStates: [1x5 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1x1 Aero.Aircraft.Properties]
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              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"

state2 = fixedWingStateCustom("astDehavillandBeaverState",beaver,aircraftEnvironment(beaver,"COESA",1000))

state2 = 
  astDehavillandBeaverState with properties:

                  Alpha2: 0
                  Alpha3: 0
                   Beta2: 0
                   Beta3: 0
                     b2V: 0.1463
                      cV: 0.0318
                     qcV: 0
                    pb2V: 0
                    rb2V: 0
            AileronAlpha: 0
               FlapAlpha: 0
           ElevatorBeta2: 0
             RudderAlpha: 0
                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 0
                 Inertia: [3x3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 0
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1486
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3x3 double]
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    BodyToInertialMatrix: [3x3 double]
        BodyToWindMatrix: [3x3 double]
        WindToBodyMatrix: [3x3 double]
         DynamicPressure: 1.3896e+03
             Environment: [1x1 Aero.Aircraft.Environment]
           ControlStates: [1x5 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1x1 Aero.Aircraft.Properties]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"

References

1 Rauw, M.O.: "A Simulink Environment for Flight Dynamics and Control analysis - Application to
the DHC-2 'Beaver' ". Part I: "Implementation of a model library in Simulink". Part II: "Nonlinear
analysis of the 'Beaver' autopilot". MSc-thesis, Delft University of Technology, Faculty of
Aerospace Engineering. Delft, The Netherlands, 1993.

See Also

Related Examples
• “Customize Fixed-Wing Aircraft with the Object Interface” on page 5-197
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Determine Nonlinear Dynamics and Static Stability of Fixed-
Wing Aircraft

This example shows the process of creating and analyzing a fixed-wing aircraft in MATLAB® using
Cessna C182 geometry and coefficient data.

The data used to create the aircraft is taken from Airplane Flight Dynamics and Controls by Jan
Roskam [1 on page 5-0 ].

This example describes:

• Setting up fixed-wing aerodynamic and control surfaces by creating and nesting an elevator
control surface and then creating the aileron, rudder, wing, and vertical stabilizer.

• Creating the propulsion models on the fixed-wing aircraft models similar to control surfaces.
• Defining the full aircraft.
• Defining the coefficients on the aircraft.
• Preparing the aircraft for numerical analysis.
• Performing numerical analysis.

Setting Up Fixed-Wing Aerodynamic and Control Surfaces

The Aero.FixedWing.Surface class can serve as both an aerodynamic and control surface.

This behavior is controlled by the Controllable property on the class.

Setting Controllable to on creates a control surface and a ControlState variable.

Nesting a control surface on an aerodynamic surface mimics the actual construction of the aircraft.

Below, the example creates an elevator control surface and nests it on the horizontal stabilizer.

elevator = fixedWingSurface("Elevator", "on","Symmetric",[-20,20])

elevator = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "Elevator"
          Properties: [1x1 Aero.Aircraft.Properties]

elevator.Coefficients = fixedWingCoefficient("Elevator")

elevator = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
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        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "Elevator"
          Properties: [1x1 Aero.Aircraft.Properties]

horizontalStabilizer = fixedWingSurface("HorizontalStabilizer", "Surfaces", elevator)

horizontalStabilizer = 
  Surface with properties:

            Surfaces: [1x1 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: Inf
        MinimumValue: -Inf
        Controllable: off
            Symmetry: "Symmetric"
    ControlVariables: [0x0 string]
          Properties: [1x1 Aero.Aircraft.Properties]

Each property on the fixed-wing objects can also be set through Name,Value arguments on
construction. This method of creation will be used in the rest of the example.

Next, construct the ailerons, rudder, wing, and vertical stabilizer.

aileron = fixedWingSurface("Aileron", "on", "Asymmetric", [-20,20], ...
    "Coefficients", fixedWingCoefficient("Aileron"));

rudder = fixedWingSurface("Rudder", "on", "Symmetric", [-20,20], ...
    "Coefficients", fixedWingCoefficient("Rudder"));

wing = fixedWingSurface("Wing","Surfaces", aileron);

verticalStabilizer = fixedWingSurface("VerticalStabilizer","Surfaces", rudder);

Defining Propulsion

Use the Aero.FixedWing.Thrust object to create the propulsion models on the fixed-wing aircraft
models similar to control surfaces.

The Aero.FixedWing.Thrust object is always controllable. It cannot be nested like aerodynamic
and control surfaces.

propeller = fixedWingThrust("Propeller","Coefficients", fixedWingCoefficient("Propeller"))

propeller = 
  Thrust with properties:

        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 1
        MinimumValue: 0
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "Propeller"
          Properties: [1x1 Aero.Aircraft.Properties]
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Constructing the Aircraft

With the aerodynamic surfaces, control surface, and thrust components defined, define the full
aircraft.

First, define a separate Aero.Aircraft.Properties class for the aircraft. Use this class to keep
track of versions on components and which components a given aircraft is using.

All Aero.FixedWing and Aero.Aircraft classes contain this property.

C182Properties = Aero.Aircraft.Properties(...
    "Name"       , "Cessna C182", ...
    "Type"       , "General Aviation", ...
    "Version"    , "1.0", ...
    "Description", "Cessna 182 Example")

C182Properties = 
  Properties with properties:

           Name: "Cessna C182"
    Description: "Cessna 182 Example"
           Type: "General Aviation"
        Version: "1.0"

C182 = Aero.FixedWing(...
    "Properties"       , C182Properties, ...
    "UnitSystem"       , "English (ft/s)", ...
    "AngleSystem"      , "Radians", ...
    "TemperatureSystem", "Fahrenheit", ...
    "ReferenceArea"    , 174, ...
    "ReferenceSpan"    , 36, ...
    "ReferenceLength"  , 4.9, ...
    "Surfaces"         , [wing, horizontalStabilizer, verticalStabilizer], ...
    "Thrusts"          , propeller)

C182 = 
  FixedWing with properties:

        ReferenceArea: 174
        ReferenceSpan: 36
      ReferenceLength: 4.9000
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x1 Aero.FixedWing.Thrust]
          AspectRatio: 7.4483
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "English (ft/s)"
          AngleSystem: "Radians"
    TemperatureSystem: "Fahrenheit"

Setting the Aircraft Coefficients

Next, define the coefficients on the aircraft.

These coefficients describe the dynamic behavior of the aircraft. This example defines scalar constant
coefficients, which define the linear behavior of the aircraft.
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To define non-linear dynamic behavior of a fixed-wing aircraft, define Simulink.LookupTable
coefficients. Simulink.LookupTables are not used in this example. To see an example using
Simulink.LookupTables, open the “Perform Controls and Static Stability Analysis with Linearized
Fixed-Wing Aircraft” on page 5-114 example.

By default, all coefficients are 0.

BodyCoefficients = {
    'CD', 'Zero', 0.027;
    'CL', 'Zero', 0.307;
    'Cm', 'Zero', 0.04;
    'CD', 'Alpha', 0.121;
    'CL', 'Alpha', 4.41;
    'Cm', 'Alpha', -0.613;
    'CD', 'AlphaDot', 0
    'CL', 'AlphaDot',  1.7;
    'Cm', 'AlphaDot', -7.27;
    'CD', 'Q', 0;
    'CL', 'Q', 3.9;
    'Cm', 'Q', -12.4;
    'CY', 'Beta', -0.393;
    'Cl', 'Beta', -0.0923;
    'Cn', 'Beta', 0.0587;
    'CY', 'P', -0.075;
    'Cl', 'P', -0.484;
    'Cn', 'P', -0.0278;
    'CY', 'R', 0.214;
    'Cl', 'R', 0.0798;
    'Cn', 'R', -0.0937;
    };
 
C182 = setCoefficient(C182, BodyCoefficients(:, 1), BodyCoefficients(:, 2), BodyCoefficients(:, 3));

Coefficients can be defined on any component on the aircraft. These components can include any
Aero.FixedWing.Surface or Aero.FixedWing.Thrust.

The setCoefficient method provides a Component Name,Value argument, which takes the
coefficients on the desired component name, obviating the need to know exactly where the
component is on the aircraft.

Valid component names depend on the Name property on the component.

AileronCoefficients = {
    'CY', 'Aileron', 0;
    'Cl', 'Aileron', 0.229;
    'Cn', 'Aileron', -0.0504;
    };
ElevatorCoefficients = {
    'CY', 'Elevator', 0.187;
    'Cl', 'Elevator', 0.0147;
    'Cn', 'Elevator', -0.0805;
    };
RudderCoefficients = {
    'CD', 'Rudder', 0;
    'CL', 'Rudder', 0.43;
    'Cm', 'Rudder', -1.369;
    };
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PropellerCoefficients = {
    'CD', 'Propeller', -21.1200;
    };

C182 = setCoefficient(C182, AileronCoefficients(:, 1), AileronCoefficients(:, 2), AileronCoefficients(:, 3), "Component", "Aileron");
C182 = setCoefficient(C182, ElevatorCoefficients(:, 1), ElevatorCoefficients(:, 2), ElevatorCoefficients(:, 3), "Component", "Elevator");
C182 = setCoefficient(C182, RudderCoefficients(:, 1), RudderCoefficients(:, 2), RudderCoefficients(:, 3), "Component", "Rudder");
C182 = setCoefficient(C182, PropellerCoefficients(:, 1), PropellerCoefficients(:, 2), PropellerCoefficients(:, 3), "Component", "Propeller");

Defining the Current State

The fixed-wing aircraft is fully constructed and ready for numerical analysis.

To perform numerical analysis on a fixed-wing aircraft, define an Aero.FixedWing.State object.

The Aero.FixedWing.State object defines the current state of the Aero.FixedWing object at an
instance in time. The Aero.FixedWing.State is also where dynamic physical properties of the
aircraft, including the mass and inertia, are defined.

In this example, we analyze the cruise state.

CruiseState = Aero.FixedWing.State(...
    "UnitSystem",C182.UnitSystem,...
    "AngleSystem",C182.AngleSystem, ...
    "TemperatureSystem",C182.TemperatureSystem, ...
    "Mass",82.2981, ...
    "U", 220.1, ...
    "AltitudeMSL",5000);

CruiseState.Inertia.Variables = [
    948, 0,    0   ;
    0  , 1346, 0   ;
    0  , 0   , 1967;
    ];

CruiseState.CenterOfGravity = [0.264, 0 , 0] .* C182.ReferenceLength;
CruiseState.CenterOfPressure = [0.25, 0, 0] .* C182.ReferenceLength;
CruiseState.Environment = aircraftEnvironment(C182,"ISA",CruiseState.AltitudeMSL);

Setting Up the Control States

In addition to the environment and dynamic physical properties, the Aero.FixedWing.State class
also holds the current control surface deflections and thrust positions. These positions are held in the
ControlStates property. Use this class to set up the control states.

By default, this property is empty. Initialize the property from the control surface and thrust
information on the aircraft.

To set up these control states, use the setupControlStates method below.

CruiseState = setupControlStates(CruiseState, C182)

CruiseState = 
  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
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                 BetaDot: 0
                    Mass: 82.2981
                 Inertia: [3x3 table]
         CenterOfGravity: [1.2936 0 0]
        CenterOfPressure: [1.2250 0 0]
             AltitudeMSL: 5000
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: -5000
                       U: 220.1000
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 2.6488e+03
             AltitudeAGL: 5000
                Airspeed: 220.1000
             GroundSpeed: 220.1000
              MachNumber: 0.2006
            BodyVelocity: [220.1000 0 0]
          GroundVelocity: [220.1000 0 0]
                      Ur: 220.1000
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3x3 double]
    BodyToInertialMatrix: [3x3 double]
        BodyToWindMatrix: [3x3 double]
        WindToBodyMatrix: [3x3 double]
         DynamicPressure: 49.6090
             Environment: [1x1 Aero.Aircraft.Environment]
           ControlStates: [1x6 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1x1 Aero.Aircraft.Properties]
              UnitSystem: "English (ft/s)"
             AngleSystem: "Radians"
       TemperatureSystem: "Fahrenheit"

Perform this only once per aircraft configuration. If no control surfaces or thrusts have been added or
removed to the aircraft, skip this step.

Performing Numerical Analysis

At this point, the aircraft and state are now fully constructed and defined.

A number of numerical analysis methods come with the fixed-wing aircraft, including forces and
moments, non-linear dynamics, and static stability.
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Forces and Moments

To calculate the forces and moments on the aircraft at an instance in time, use the
forcesAndMoments method.

These forces and moments are in the aircraft body frame. Coefficients defined in a different frame
have the appropriate transformation matrices applied to translate them to the body frame.

[F, M] = forcesAndMoments(C182, CruiseState)

F = 3×1

 -233.0633
         0
   -1.2484

M = 3×1
103 ×

         0
    1.5101
         0

Nonlinear Dynamics

To calculate the aircraft dynamic behavior, use the nonlinearDynamics method.

The nonlinearDynamics method returns a vector of the rates of change of the selected degrees of
freedom on the aircraft. The size of the vector depends on the degrees of freedom. To calculate the
aircraft dynamic behavior over time, use the vector in conjunction with an ode solver, such as ode45.

To quickly iterate between the fidelities of different aircraft designs, or trim unnecessary states from
the output vector, change the selected degrees of freedom. These rates of change are defined below:

load("astFixedWingDOFtable.mat").DOFtable

ans=12×4 table
                  PM4    PM6    3DOF    6DOF
                  ___    ___    ____    ____

    dXN /dt       "X"    "X"    "X"     "X" 
    dXE /dt       ""     "X"    ""      "X" 
    dXD /dt       "X"    "X"    "X"     "X" 
    dU /dt        "X"    "X"    "X"     "X" 
    dV /dt        ""     "X"    ""      "X" 
    dW /dt        "X"    "X"    "X"     "X" 
    dP /dt        ""     ""     ""      "X" 
    dQ /dt        ""     ""     "X"     "X" 
    dR /dt        ""     ""     ""      "X" 
    dPhi /dt      ""     ""     ""      "X" 
    dTheta /dt    ""     ""     "X"     "X" 
    dPsi /dt      ""     ""     ""      "X" 

dydt = nonlinearDynamics(C182, CruiseState)
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dydt = 12×1

  220.1000
         0
         0
   -2.8319
         0
   -0.0152
         0
    1.1219
         0
         0
      ⋮

Static Stability

Static stability is the tendency of an aircraft to return to its original state after a small perturbation
from an initial state. It is an important feature of aircraft for civilian use and reduces the need for
complex controllers to maintain dynamic stability. Under some conditions, aircraft that require
advanced maneuverability might opt for static instability.

The Aero.FixedWing object static stability method calculates from changes in forces and moments
due to perturbations at the current state of an aircraft.

The method compares the perturbations against a predefined set of criteria as less-than, greater-
than, or equal-to zero. You can also specify custom criteria. The method then evaluates the static
stability as:

• If the criteria is satisfied, then the perturbation is statically stable.
• If the criteria is not satisfied, then the perturbation is statically unstable.
• If the perturbation is 0, the perturbation is statically neutral.

The staticStability method does not perform a requirements-based analysis. Only use this
method in the preliminary design phase.

[stability, derivatives] = staticStability(C182, CruiseState)

stability=6×8 table
             U            V            W         Alpha        Beta         P           Q           R    
          ________    __________    ________    ________    ________    ________    ________    ________

    FX    "Stable"    ""            ""          ""          ""          ""          ""          ""      
    FY    ""          "Unstable"    ""          ""          ""          ""          ""          ""      
    FZ    ""          ""            "Stable"    ""          ""          ""          ""          ""      
    L     ""          ""            ""          ""          "Stable"    "Stable"    ""          ""      
    M     "Stable"    ""            ""          "Stable"    ""          ""          "Stable"    ""      
    N     ""          ""            ""          ""          "Stable"    ""          ""          "Stable"

derivatives=6×8 table
             U            V            W       Alpha       Beta           P              Q            R   
          _______    ___________    _______    ______    _________    __________    ___________    _______

    FX    -2.1178    -7.2475e-07     7.2946    1605.9    -0.035089             0              0          0
    FY          0         14.354          0         0       3159.3         647.4              0    -1847.2
    FZ     -24.08     -5.457e-07    -174.01    -38300      -0.0265             0         -33665          0
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    L           0           -138          0         0       -30374    -1.504e+05              0      24798
    M      13.722    -5.7526e-06    -129.74    -28555     -0.28018             0    -5.2679e+05          0
    N           0         81.892          0         0        18024       -8683.3              0     -28991

References

1 Roskam, J., "Airplane Flight Dynamics and Automatic Flight Controls (Part 1)", DAR Corporation,
2003.

See Also

Related Examples
• “Get Started With Fixed-Wing Aircraft” on page 5-181
• “Perform Controls and Static Stability Analysis with Linearized Fixed-Wing Aircraft” on page 5-

114
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Modeling Satellite Constellations Using Ephemeris Data
This example demonstrates how to add time-stamped ephemeris data for a constellation of 24
satellites (similar to ESA Galileo GNSS constellation) to a satellite scenario for access analysis. The
example uses data generated by the Aerospace Blockset Orbit Propagator block. For more
information, see the Aerospace Blockset example Constellation Modeling with the Orbit Propagator
Block.

The satelliteScenario object supports loading previously generated, time-stamped satellite
ephemeris data into a scenario from a timeseries or timetable object. An ephemeris is a table
containing position (and optionally velocity) state information of a satellite during a given period of
time. Ephemeris data used to add satellites to the scenario object is interpolated via the makima
interpolation method to align with the scenario time steps. This allows you to incorporate data
generated by a Simulink model into either a new or existing satelliteScenario.

Define Mission Parameters and Constellation Initial Conditions

Specify a start date and duration for the mission. This example uses MATLAB structures to organize
mission data. These structures make accessing data later in the example more intuitive. They also
help declutter the global base workspace.

mission.StartDate = datetime(2020, 11, 30, 22, 23, 24);
mission.Duration  = hours(24);

The constellation in this example is a Walker-Delta constellation modeled similar to Galileo, the
European GNSS (global navigation satellite system) constellation. The constellation consists of 24
satellites in medium Earth orbit (MEO). The satellites' Keplerian orbital elements at the mission start
date epoch are:

mission.ConstellationDefinition = table( ...
    29599.8e3 * ones(24,1), ... % Semi-major axis (m)
    0.0005    * ones(24,1), ... % Eccentricity
    56        * ones(24,1), ... % Inclination (deg)
    350       * ones(24,1), ... % Right ascension of the ascending node (deg)
    sort(repmat([0 120 240], 1,8))', ... % Argument of periapsis (deg)
    [0:45:315, 15:45:330, 30:45:345]', ... % True anomaly (deg)
    'VariableNames', ["a (m)", "e", "i (deg)", "Ω (deg)", "ω (deg)", "ν (deg)"]);
mission.ConstellationDefinition

ans=24×6 table
     a (m)        e       i (deg)    Ω (deg)    ω (deg)    ν (deg)
    ________    ______    _______    _______    _______    _______

    2.96e+07    0.0005      56         350          0          0  
    2.96e+07    0.0005      56         350          0         45  
    2.96e+07    0.0005      56         350          0         90  
    2.96e+07    0.0005      56         350          0        135  
    2.96e+07    0.0005      56         350          0        180  
    2.96e+07    0.0005      56         350          0        225  
    2.96e+07    0.0005      56         350          0        270  
    2.96e+07    0.0005      56         350          0        315  
    2.96e+07    0.0005      56         350        120         15  
    2.96e+07    0.0005      56         350        120         60  
    2.96e+07    0.0005      56         350        120        105  
    2.96e+07    0.0005      56         350        120        150  
    2.96e+07    0.0005      56         350        120        195  
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    2.96e+07    0.0005      56         350        120        240  
    2.96e+07    0.0005      56         350        120        285  
    2.96e+07    0.0005      56         350        120        330  
      ⋮

Load Ephemeris Timeseries Data

The timeseries objects contain position and velocity data for all 24 satellites in the constellation. The
data is referenced in the International Terrestrial Reference frame (ITRF), which is an Earth-centered
Earth-fixed (ECEF) coordinate system. The data was generated using the Aerospace Blockset Orbit
Propagator block. For more information, see the Aerospace Blockset example Constellation
Modeling with the Orbit Propagator Block.

mission.Ephemeris = load("SatelliteScenarioEphemerisData.mat", "TimeseriesPosITRF", "TimeseriesVelITRF");
mission.Ephemeris.TimeseriesPosITRF

  timeseries

  Common Properties:
            Name: ''
            Time: [57x1 double]
        TimeInfo: [1x1 tsdata.timemetadata]
            Data: [24x3x57 double]
        DataInfo: [1x1 tsdata.datametadata]

  More properties, Methods

mission.Ephemeris.TimeseriesVelITRF

  timeseries

  Common Properties:
            Name: ''
            Time: [57x1 double]
        TimeInfo: [1x1 tsdata.timemetadata]
            Data: [24x3x57 double]
        DataInfo: [1x1 tsdata.datametadata]

  More properties, Methods

Load the Satellite Ephemerides into a satelliteScenario Object

Create a satellite scenario object for the analysis.

scenario = satelliteScenario(mission.StartDate, mission.StartDate + hours(24), 60);

Use the satellite method to add all 24 satellites to the satellite scenario from the ECEF position
and velocity timeseries objects. This example uses position and velocity information; however
satellites can also be added from position data only and velocity states are then estimated. Available
coordinate frames for Name-Value pair CoordinateFrame are "ECEF", "Inertial", and
"Geographic". If the timeseries object contains a value for ts.TimeInfo.StartDate, the method
uses that value as the epoch for the timeseries object. If no StartDate is defined, the method uses
the scenario start date by default.

sat = satellite(scenario, mission.Ephemeris.TimeseriesPosITRF, mission.Ephemeris.TimeseriesVelITRF, ...
    "CoordinateFrame", "ecef", "Name", "GALILEO " + (1:24))
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sat = 
  1x24 Satellite array with properties:

    Name
    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    GroundTrack
    Orbit
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontColor
    LabelFontSize

disp(scenario)

  satelliteScenario with properties:

         StartTime: 30-Nov-2020 22:23:24
          StopTime: 01-Dec-2020 22:23:24
        SampleTime: 60
           Viewers: [0×0 matlabshared.satellitescenario.Viewer]
        Satellites: [1×24 matlabshared.satellitescenario.Satellite]
    GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Alternatively, satellites can also be added as ephemerides to the satellite scenario as a MATLAB
timetable, table, or tscollection. For example, a timetable containing the first 3 satellites
of the position timeseries object in the previous section, formatted for use with
satelliteScenario objects is shown below.

• Satellites are represented by variables (column headers).
• Each row contains a position vector associated with the row's Time property.

timetable(...
datetime(getabstime(mission.Ephemeris.TimeseriesPosITRF), 'Locale', 'en_US'), ...
squeeze(mission.Ephemeris.TimeseriesPosITRF.Data(1,:,:))', ...
squeeze(mission.Ephemeris.TimeseriesPosITRF.Data(2,:,:))', ...
squeeze(mission.Ephemeris.TimeseriesPosITRF.Data(3,:,:))',...
'VariableNames', ["Satellite_1", "Satellite_2", "Satellite_3"])

ans=57×3 timetable
            Time                          Satellite_1                                 Satellite_2                                 Satellite_3               
    ____________________    ________________________________________    ________________________________________    ________________________________________

    30-Nov-2020 22:23:24    1.8249e+07    -2.2904e+07    -4.2009e+06    2.3678e+07     -1.075e+07     1.4119e+07    1.5239e+07     7.7076e+06     2.4177e+07
    30-Nov-2020 22:23:38    1.8252e+07    -2.2909e+07    -4.1563e+06    2.3662e+07    -1.0735e+07     1.4156e+07    1.5214e+07     7.7334e+06     2.4184e+07
    30-Nov-2020 22:24:53    1.8268e+07    -2.2937e+07     -3.933e+06    2.3584e+07    -1.0663e+07      1.434e+07    1.5088e+07     7.8627e+06     2.4222e+07
    30-Nov-2020 22:31:05    1.8326e+07    -2.3055e+07    -2.8121e+06    2.3185e+07     -1.028e+07     1.5243e+07    1.4466e+07     8.5229e+06     2.4378e+07
    30-Nov-2020 22:48:39    1.8326e+07    -2.3223e+07     3.9182e+05    2.2005e+07    -8.9966e+06     1.7621e+07    1.2798e+07     1.0506e+07     2.4539e+07
    30-Nov-2020 23:08:30    1.8076e+07    -2.3078e+07     3.9992e+06    2.0643e+07    -7.2057e+06     1.9943e+07    1.1124e+07     1.2894e+07     2.4217e+07
    30-Nov-2020 23:28:27    1.7624e+07    -2.2538e+07     7.5358e+06    1.9321e+07    -5.0678e+06     2.1838e+07    9.7076e+06     1.5379e+07     2.3362e+07
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    30-Nov-2020 23:50:59    1.6968e+07    -2.1428e+07     1.1328e+07    1.7977e+07    -2.3021e+06       2.34e+07    8.4636e+06     1.8183e+07     2.1782e+07
    01-Dec-2020 00:14:27    1.6244e+07    -1.9712e+07     1.4937e+07    1.6838e+07     8.7771e+05     2.4329e+07    7.5789e+06     2.0966e+07     1.9489e+07
    01-Dec-2020 00:38:42    1.5585e+07    -1.7375e+07     1.8189e+07    1.6017e+07      4.355e+06     2.4512e+07    7.0779e+06     2.3551e+07     1.6498e+07
    01-Dec-2020 01:04:35    1.5124e+07    -1.4345e+07     2.1006e+07    1.5585e+07     8.1065e+06      2.383e+07    6.9314e+06     2.5831e+07     1.2718e+07
    01-Dec-2020 01:31:17    1.5035e+07     -1.079e+07     2.3096e+07     1.562e+07     1.1816e+07     2.2205e+07    7.0715e+06     2.7527e+07     8.3282e+06
    01-Dec-2020 01:58:58    1.5443e+07    -6.8501e+06     2.4303e+07    1.6102e+07     1.5274e+07     1.9601e+07     7.348e+06     2.8484e+07     3.4363e+06
    01-Dec-2020 02:27:08    1.6406e+07    -2.8152e+06     2.4478e+07    1.6925e+07     1.8197e+07     1.6103e+07    7.5521e+06     2.8587e+07    -1.6897e+06
    01-Dec-2020 02:55:18    1.7869e+07      1.001e+06     2.3582e+07    1.7894e+07     2.0376e+07     1.1901e+07    7.4614e+06     2.7856e+07    -6.7427e+06
    01-Dec-2020 03:23:29    1.9711e+07      4.381e+06     2.1653e+07    1.8787e+07     2.1739e+07     7.1754e+06    6.8858e+06     2.6405e+07    -1.1504e+07
      ⋮

Set Graphical Properties on the Satellites

Viewer windows with many satellites can become crowded and difficult to read. To keep the window
readable, manually control graphical properties of the scenario elements.

Hide the satellite labels and ground tracks.

set(sat, "ShowLabel", false);
hide([sat(:).GroundTrack]);

Set satellite in the same orbital plane to have the same orbit color.

set(sat(1:8), "MarkerColor", "red");
set(sat(9:16), "MarkerColor", "blue");
set(sat(17:24), "MarkerColor", "green");
orbit = [sat(:).Orbit];
set(orbit(1:8), "LineColor", "red");
set(orbit(9:16), "LineColor", "blue");
set(orbit(17:24), "LineColor", "green");

Add Ground Stations to Scenario

To provide accurate positioning data, a location on Earth must have access to at least 4 satellites in
the constellation at any given time. In this example, use three locations to compare total constellation
access over the 1 day analysis window to different regions of Earth:

• Natick, Massachusetts, USA (42.30048°, -71.34908°)
• München, Germany (48.23206°, 11.68445°)
• Bangalore, India (12.94448°, 77.69256°)

gsUS = groundStation(scenario, 42.30048, -71.34908, ...
    "MinElevationAngle", 10, "Name", "Natick");
gsDE = groundStation(scenario, 48.23206, 11.68445, ...
    "MinElevationAngle", 10, "Name", "Munchen");
gsIN = groundStation(scenario, 12.94448, 77.69256, ...
    "MinElevationAngle", 10, "Name", "Bangalore");

figure
geoscatter([gsUS.Latitude gsDE.Latitude gsIN.Latitude], ...
    [gsUS.Longitude gsDE.Longitude gsIN.Longitude], "red", "filled")
geolimits([-75 75], [-180 180])
title("Ground Stations")
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Compute Ground Station to Satellite Access (Line-of-Sight Visibility)

Calculate line-of-sight access between the ground stations and each individual satellite using the
access method.

for idx = 1:numel(sat)
    access(gsUS, sat(idx));
    access(gsDE, sat(idx));
    access(gsIN, sat(idx));
end
accessUS = [gsUS(:).Accesses];
accessDE = [gsDE(:).Accesses];
accessIN = [gsIN(:).Accesses];

Set access colors to match orbital plane colors assigned earlier in the example.

set(accessUS(1:8), "LineColor", "red");
set(accessUS(9:16), "LineColor", "blue");
set(accessUS(17:24), "LineColor", "green");

set(accessDE(1:8), "LineColor", "red");
set(accessDE(9:16), "LineColor", "blue");
set(accessDE(17:24), "LineColor", "green");

set(accessIN(1:8), "LineColor", "red");
set(accessIN(9:16), "LineColor", "blue");
set(accessIN(17:24), "LineColor", "green");
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View the full access table between each ground station and all satellites in the constellation as tables.
Sort the access intervals by interval start time. Satellites added from ephemeris data do not display
values for StartOrbit and EndOrbit.

intervalsUS = accessIntervals(accessUS);
intervalsUS = sortrows(intervalsUS, "StartTime", "ascend")

intervalsUS=40×8 table
     Source        Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    ________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Natick"    "GALILEO 1"           1           30-Nov-2020 22:23:24    01-Dec-2020 04:04:24     20460         NaN          NaN   
    "Natick"    "GALILEO 2"           1           30-Nov-2020 22:23:24    01-Dec-2020 01:24:24     10860         NaN          NaN   
    "Natick"    "GALILEO 3"           1           30-Nov-2020 22:23:24    30-Nov-2020 22:57:24      2040         NaN          NaN   
    "Natick"    "GALILEO 12"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:00:24      5820         NaN          NaN   
    "Natick"    "GALILEO 13"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:05:24      2520         NaN          NaN   
    "Natick"    "GALILEO 18"          1           30-Nov-2020 22:23:24    01-Dec-2020 04:00:24     20220         NaN          NaN   
    "Natick"    "GALILEO 19"          1           30-Nov-2020 22:23:24    01-Dec-2020 01:42:24     11940         NaN          NaN   
    "Natick"    "GALILEO 20"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:46:24      1380         NaN          NaN   
    "Natick"    "GALILEO 11"          1           30-Nov-2020 22:25:24    01-Dec-2020 00:18:24      6780         NaN          NaN   
    "Natick"    "GALILEO 17"          1           30-Nov-2020 22:50:24    01-Dec-2020 05:50:24     25200         NaN          NaN   
    "Natick"    "GALILEO 8"           1           30-Nov-2020 23:20:24    01-Dec-2020 07:09:24     28140         NaN          NaN   
    "Natick"    "GALILEO 7"           1           01-Dec-2020 01:26:24    01-Dec-2020 10:00:24     30840         NaN          NaN   
    "Natick"    "GALILEO 24"          1           01-Dec-2020 01:40:24    01-Dec-2020 07:12:24     19920         NaN          NaN   
    "Natick"    "GALILEO 14"          1           01-Dec-2020 03:56:24    01-Dec-2020 07:15:24     11940         NaN          NaN   
    "Natick"    "GALILEO 6"           1           01-Dec-2020 04:05:24    01-Dec-2020 12:14:24     29340         NaN          NaN   
    "Natick"    "GALILEO 23"          1           01-Dec-2020 04:10:24    01-Dec-2020 08:03:24     13980         NaN          NaN   
      ⋮

intervalsDE = accessIntervals(accessDE);
intervalsDE = sortrows(intervalsDE, "StartTime", "ascend")

intervalsDE=40×8 table
     Source         Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Munchen"    "GALILEO 2"           1           30-Nov-2020 22:23:24    01-Dec-2020 04:34:24     22260         NaN          NaN   
    "Munchen"    "GALILEO 3"           1           30-Nov-2020 22:23:24    01-Dec-2020 01:58:24     12900         NaN          NaN   
    "Munchen"    "GALILEO 4"           1           30-Nov-2020 22:23:24    30-Nov-2020 23:05:24      2520         NaN          NaN   
    "Munchen"    "GALILEO 10"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:58:24      5700         NaN          NaN   
    "Munchen"    "GALILEO 19"          1           30-Nov-2020 22:23:24    01-Dec-2020 01:36:24     11580         NaN          NaN   
    "Munchen"    "GALILEO 20"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:15:24      6720         NaN          NaN   
    "Munchen"    "GALILEO 21"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:28:24       300         NaN          NaN   
    "Munchen"    "GALILEO 9"           1           30-Nov-2020 22:34:24    01-Dec-2020 02:22:24     13680         NaN          NaN   
    "Munchen"    "GALILEO 18"          1           30-Nov-2020 22:41:24    01-Dec-2020 02:31:24     13800         NaN          NaN   
    "Munchen"    "GALILEO 1"           1           30-Nov-2020 23:05:24    01-Dec-2020 06:42:24     27420         NaN          NaN   
    "Munchen"    "GALILEO 16"          1           30-Nov-2020 23:29:24    01-Dec-2020 04:47:24     19080         NaN          NaN   
    "Munchen"    "GALILEO 15"          1           01-Dec-2020 00:50:24    01-Dec-2020 07:27:24     23820         NaN          NaN   
    "Munchen"    "GALILEO 17"          1           01-Dec-2020 01:05:24    01-Dec-2020 03:00:24      6900         NaN          NaN   
    "Munchen"    "GALILEO 8"           1           01-Dec-2020 01:57:24    01-Dec-2020 08:25:24     23280         NaN          NaN   
    "Munchen"    "GALILEO 14"          1           01-Dec-2020 02:36:24    01-Dec-2020 10:19:24     27780         NaN          NaN   
    "Munchen"    "GALILEO 7"           1           01-Dec-2020 04:35:24    01-Dec-2020 09:43:24     18480         NaN          NaN   
      ⋮

intervalsIN = accessIntervals(accessIN);
intervalsIN = sortrows(intervalsIN, "StartTime", "ascend")
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intervalsIN=31×8 table
      Source          Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    ___________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Bangalore"    "GALILEO 3"           1           30-Nov-2020 22:23:24    01-Dec-2020 05:12:24     24540         NaN          NaN   
    "Bangalore"    "GALILEO 4"           1           30-Nov-2020 22:23:24    01-Dec-2020 02:59:24     16560         NaN          NaN   
    "Bangalore"    "GALILEO 5"           1           30-Nov-2020 22:23:24    01-Dec-2020 00:22:24      7140         NaN          NaN   
    "Bangalore"    "GALILEO 9"           1           30-Nov-2020 22:23:24    01-Dec-2020 03:37:24     18840         NaN          NaN   
    "Bangalore"    "GALILEO 10"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:09:24      6360         NaN          NaN   
    "Bangalore"    "GALILEO 16"          1           30-Nov-2020 22:23:24    01-Dec-2020 08:44:24     37260         NaN          NaN   
    "Bangalore"    "GALILEO 21"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:25:24      3720         NaN          NaN   
    "Bangalore"    "GALILEO 22"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:58:24      2100         NaN          NaN   
    "Bangalore"    "GALILEO 15"          1           01-Dec-2020 00:17:24    01-Dec-2020 11:16:24     39540         NaN          NaN   
    "Bangalore"    "GALILEO 2"           1           01-Dec-2020 00:25:24    01-Dec-2020 07:10:24     24300         NaN          NaN   
    "Bangalore"    "GALILEO 22"          2           01-Dec-2020 00:48:24    01-Dec-2020 05:50:24     18120         NaN          NaN   
    "Bangalore"    "GALILEO 21"          2           01-Dec-2020 01:32:24    01-Dec-2020 08:29:24     25020         NaN          NaN   
    "Bangalore"    "GALILEO 1"           1           01-Dec-2020 03:06:24    01-Dec-2020 07:17:24     15060         NaN          NaN   
    "Bangalore"    "GALILEO 20"          1           01-Dec-2020 03:36:24    01-Dec-2020 12:38:24     32520         NaN          NaN   
    "Bangalore"    "GALILEO 14"          1           01-Dec-2020 05:48:24    01-Dec-2020 13:29:24     27660         NaN          NaN   
    "Bangalore"    "GALILEO 19"          1           01-Dec-2020 05:53:24    01-Dec-2020 17:06:24     40380         NaN          NaN   
      ⋮

View the Satellite Scenario

Open a 3-D viewer window of the scenario. The viewer window contains all 24 satellites and the three
ground stations defined earlier in this example. A line is drawn between each ground station and
satellite during their corresponding access intervals.

viewer3D = satelliteScenarioViewer(scenario);
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Compare Access Between Ground Stations

Calculate access status between each satellite and ground station using the accessStatus method.
Plot cumulative access for each ground station over the one day analysis window.

% Initialize array with size equal to number of timesteps in scenario
timeSteps = mission.StartDate:seconds(60):mission.StartDate+days(1);
statusUS = zeros(1, numel(timeSteps));
statusDE = statusUS;
statusIN = statusUS;

% Sum cumulative access at each timestep
for idx = 1:24
    statusUS = statusUS + accessStatus(accessUS(idx));
    statusDE = statusDE + accessStatus(accessDE(idx));
    statusIN = statusIN + accessStatus(accessIN(idx));
end
clear idx;
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subplot(3,1,1);
plot(timeSteps, statusUS);
title("Natick to GALILEO")
ylabel("# of satellites")
subplot(3,1,2);
plot(timeSteps, statusDE);
title("München to GALILEO")
ylabel("# of satellites")
subplot(3,1,3);
plot(timeSteps, statusIN);
title("Bangalore to GALILEO")
ylabel("# of satellites")

Collect access interval metrics for each ground station in a table for comparison.

statusTable = [table(height(intervalsUS), height(intervalsDE), height(intervalsIN)); ...
    table(sum(intervalsUS.Duration)/3600, sum(intervalsDE.Duration)/3600, sum(intervalsIN.Duration)/3600); ...
    table(mean(intervalsUS.Duration/60), mean(intervalsDE.Duration/60), mean(intervalsIN.Duration/60)); ...
    table(mean(statusUS, 2), mean(statusDE, 2), mean(statusIN, 2)); ...
    table(min(statusUS), min(statusDE), min(statusIN)); ...
    table(max(statusUS), max(statusDE), max(statusIN))];
statusTable.Properties.VariableNames = ["Natick", "München", "Bangalore"];
statusTable.Properties.RowNames = ["Total # of intervals", "Total interval time (hrs)",...
    "Mean interval length (min)", "Mean # of satellites in view", ...
    "Min # of satellites in view", "Max # of satellites in view"];
statusTable

5 Aerospace Toolbox Examples

5-146



statusTable=6×3 table
                                    Natick    München    Bangalore
                                    ______    _______    _________

    Total # of intervals                40        40          31  
    Total interval time (hrs)       167.88    169.95      180.42  
    Mean interval length (min)      251.82    254.93      349.19  
    Mean # of satellites in view     7.018    7.1041      7.5337  
    Min # of satellites in view          5         5           5  
    Max # of satellites in view          9        10           9  

Walker-Delta constellations like Galileo are evenly distributed across longitudes. Natick and München
are located at similar latitudes, and therefore have very similar access characteristics with respect to
the constellation. Bangalore is at a latitude closer to the equator. Despite having a lower number of
individual access intervals, it has the highest average number of satellites in view, the highest overall
interval time, and the longest average interval duration (by about 95 minutes). All locations always
have at least 4 satellites in view, as is required for GNSS trilateration.
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Satellite Constellation Access to a Ground Station
This example demonstrates how to set up access analysis between a ground station and conical
sensors onboard a constellation of satellites. A ground station and a conical sensor belonging to a
satellite are said to have access to one another if the ground station is inside the conical sensor's field
of view and the conical sensor's elevation angle with respect to the ground station is greater than or
equal to the latter's minimum elevation angle. The scenario involves a constellation of 40 low-Earth
orbit satellites and a geographical site. Each satellite has a camera with a field of view of 90 degrees.
The entire constellation of satellites is tasked with photographing the geographical site, which is
located at 42.3001 degrees North and 71.3504 degrees West. The photographs are required to be
taken between 12 May 2020 1:00 PM UTC and 12 May 2020 7:00 PM UTC when the site is
adequately illuminated by the sun. In order to capture good quality pictures with minimal
atmospheric distortion, the satellite's elevation angle with respect to the site should be at least 30
degrees (please note that 30 degrees was arbitrarily chosen for illustrative purposes). During the 6
hour interval, it is required to determine the times during which each satellite can photograph the
site. It is also required to determine the percentage of time during this interval when at least one
satellite's camera can see the site. This percentage quantity is termed the system-wide access
percentage.

Create a Satellite Scenario

Create a satellite scenario using satelliteScenario. Use datetime to set the start time to 12-
May-2020 1:00:00 PM UTC, and the stop time to 12-May-2020 7:00:00 PM UTC. Set the simulation
sample time to 30 seconds.

startTime = datetime(2020,5,12,13,0,0);
stopTime = startTime + hours(6);
sampleTime = 30; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 12-May-2020 13:00:00
          StopTime: 12-May-2020 19:00:00
        SampleTime: 30
           Viewers: [0×0 matlabshared.satellitescenario.Viewer]
        Satellites: [1×0 matlabshared.satellitescenario.Satellite]
    GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
          AutoShow: 1

Add Satellites to the Satellite Scenario

Use satellite to add satellites to the scenario from the TLE file
leoSatelliteConstellation.tle. The TLE file defines the mean orbital parameters of 40
generic satellites in nearly circular low-Earth orbits at an altitude and inclination of approximately
500 km and 55 degrees respectively.

tleFile = "leoSatelliteConstellation.tle";
sat = satellite(sc,tleFile)

sat = 
  1x40 Satellite array with properties:

    Name
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    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    GroundTrack
    Orbit
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontColor
    LabelFontSize

Add Cameras to the Satellites

Use conicalSensor to add a conical sensor to each satellite. These conical sensors represent the
cameras. Specify their MaxViewAngle to be 90 degrees, which defines the field of view.

for idx = 1:numel(sat)
    name = sat(idx).Name + " Camera";
    conicalSensor(sat(idx),"Name",name,"MaxViewAngle",90);
end

% Retrieve the cameras
cam = [sat.ConicalSensors]

cam = 
  1x40 ConicalSensor array with properties:

    Name
    ID
    MountingLocation
    MountingAngles
    MaxViewAngle
    Accesses
    FieldOfView

Define the Geographical Site to be Photographed in the Satellite Scenario

Use groundStation to add a ground station, which represents the geographical site to be
photographed. Specify its MinElevationAngle to be 30 degrees. If latitude and longitude are not
specified, they default to 42.3001 degrees North and 71.3504 degrees West.

name = "Geographical Site";
minElevationAngle = 30; % degrees
geoSite = groundStation(sc, ...
    "Name",name, ...
    "MinElevationAngle",minElevationAngle)

geoSite = 
  GroundStation with properties:

                 Name:  Geographical Site
                   ID:  81
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             Latitude:  42.3 degrees
            Longitude:  -71.35 degrees
             Altitude:  0 meters
    MinElevationAngle:  30 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [0 1 1]
           MarkerSize:  10
            ShowLabel:  true
       LabelFontColor:  [0 1 1]
        LabelFontSize:  15

Add Access Analysis Between the Cameras and the Geographical Site

Use access to add access analysis between each camera and the geographical site. The access
analyses will be used to determine when each camera can photograph the site.

for idx = 1:numel(cam)
    access(cam(idx),geoSite);
end

% Retrieve the access analysis objects
ac = [cam.Accesses];

% Properties of access analysis objects
ac(1)

ans = 
  Access with properties:

    Sequence:  [41 81]
    LineWidth:  1
    LineColor:  [0.5 0 1]

Visualize the Scenario

Use satelliteScenarioViewer to launch a satellite scenario viewer and visualize the scenario.

v = satelliteScenarioViewer(sc);
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The viewer may be used as a visual confirmation that the scenario has been set up correctly. The
violet line indicates that the camera on Satellite 4 and the geographical site have access to one
another. This means that the geographical site is inside the camera's field of view and the camera's
elevation angle with respect to the site is greater than or equal to 30 degrees. For the purposes of
this scenario, this means that the camera can successfully photograph the site.

Visualize the Field Of View of the Camera

Use fieldOfView to visualize the field of view of each camera on Satellite 4.

fov = fieldOfView(cam([cam.Name] == "Satellite 4 Camera"))

fov = 
  FieldOfView with properties:

         LineWidth: 1
         LineColor: [0 1 0]
    VisibilityMode: 'inherit'
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The presence of the geographical site inside the contour is a visual confirmation that it is inside the
field of view of the camera onboard Satellite 4.

Customize the Visualizations

Use hide to hide the satellite orbits and declutter the visualization.

hide([sat.Orbit]);
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Change the color of access visualizations to green.

for idx = 1:numel(ac)
    ac(idx).LineColor = 'green';
end
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Determine the Times when the Cameras can Photograph the Geographical Site

Use accessIntervals to determine the times when there is access between each camera and the
geographical site. These are the times when the camera can photograph the site.

accessIntervals(ac)

ans=30×8 table
           Source                  Target           IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _____________________    ___________________    ______________    ____________________    ____________________    ________    __________    ________

    "Satellite 1 Camera"     "Geographical Site"          1           12-May-2020 13:36:00    12-May-2020 13:39:30      210           1            1    
    "Satellite 1 Camera"     "Geographical Site"          2           12-May-2020 15:23:00    12-May-2020 15:25:00      120           2            2    
    "Satellite 2 Camera"     "Geographical Site"          1           12-May-2020 14:30:30    12-May-2020 14:34:30      240           1            1    
    "Satellite 3 Camera"     "Geographical Site"          1           12-May-2020 13:28:30    12-May-2020 13:32:30      240           1            1    
    "Satellite 4 Camera"     "Geographical Site"          1           12-May-2020 13:00:00    12-May-2020 13:02:30      150           1            1    
    "Satellite 4 Camera"     "Geographical Site"          2           12-May-2020 14:46:00    12-May-2020 14:48:30      150           2            2    
    "Satellite 5 Camera"     "Geographical Site"          1           12-May-2020 16:28:30    12-May-2020 16:33:00      270           3            3    
    "Satellite 6 Camera"     "Geographical Site"          1           12-May-2020 17:05:30    12-May-2020 17:09:30      240           3            3    
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    "Satellite 7 Camera"     "Geographical Site"          1           12-May-2020 16:20:00    12-May-2020 16:24:30      270           2            3    
    "Satellite 8 Camera"     "Geographical Site"          1           12-May-2020 15:18:00    12-May-2020 15:20:00      120           2            2    
    "Satellite 8 Camera"     "Geographical Site"          2           12-May-2020 17:03:30    12-May-2020 17:07:00      210           3            3    
    "Satellite 9 Camera"     "Geographical Site"          1           12-May-2020 17:55:30    12-May-2020 17:57:00       90           3            3    
    "Satellite 10 Camera"    "Geographical Site"          1           12-May-2020 18:44:30    12-May-2020 18:49:00      270           4            4    
    "Satellite 11 Camera"    "Geographical Site"          1           12-May-2020 18:39:30    12-May-2020 18:44:00      270           4            4    
    "Satellite 12 Camera"    "Geographical Site"          1           12-May-2020 17:58:00    12-May-2020 18:01:00      180           3            3    
    "Satellite 29 Camera"    "Geographical Site"          1           12-May-2020 13:09:30    12-May-2020 13:13:30      240           1            1    
      ⋮

The above table consists of the start and end times of each interval during which a given camera can
photograph the site. The duration of each interval is reported in seconds. StartOrbit and EndOrbit are
the orbit counts of the satellite that the camera is attached to when the access begins and ends. The
count starts from the scenario start time.

Use play to visualize the simulation of the scenario from its start time to stop time. It can be seen
that the green lines appear whenever the camera can photograph the geographical site.

play(sc);
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Calculate System-Wide Access Percentage

In addition to determining the times when each camera can photograph the geographical site, it is
also required to determine the system-wide access percentage, which is the percentage of time from
the scenario start time to stop time when at least one satellite can photograph the site. This is
computed as follows:

• For each camera, calculate the access status history to the site using accessStatus. For a given
camera, this is a row vector of logicals, where each element in the vector represents the access
status corresponding to a given time sample. A value of True indicates that the camera can
photograph the site at that specific time sample.

• Perform a logical OR on all these row vectors corresponding to access of each camera to the site.
This will result in a single row vector of logicals, in which a given element is true if at least one
camera can photograph the site at the corresponding time sample for a duration of one scenario
sample time of 30 seconds.
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• Count the number of elements in the vector whose value is True. Multiply this quantity by the
sample time of 30 seconds to determine the total time in seconds when at least one camera can
photograph the site.

• Divide this quantity by the scenario duration of 6 hours and multiply by 100 to get the system-
wide access percentage.

for idx = 1:numel(ac)
    [s,time] = accessStatus(ac(idx));
    
    if idx == 1
        % Initialize system-wide access status vector in the first iteration
        systemWideAccessStatus = s;
    else
        % Update system-wide access status vector by performing a logical OR
        % with access status for the current camera-site access
        % analysis
        systemWideAccessStatus = or(systemWideAccessStatus,s);
    end
end

Use plot to plot the system-wide access status with respect to time.

plot(time,systemWideAccessStatus,"LineWidth",2);
grid on;
xlabel("Time");
ylabel("System-Wide Access Status");
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Whenever system-wide access status is 1 (True), at least one camera can photograph the site.

Use nnz to determine the number of elements in systemWideAccessStatus whose value is True.

n = nnz(systemWideAccessStatus)

n = 203

Determine the total time when at least one camera can photograph the site. This is accomplished by
multiplying the number of True elements by the scenario's sample time.

systemWideAccessDuration = n*sc.SampleTime % seconds

systemWideAccessDuration = 6090

Use seconds to calculate the total scenario duration.

scenarioDuration = seconds(sc.StopTime - sc.StartTime)

scenarioDuration = 21600

Calculate the system-wide access percentage.
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systemWideAccessPercentage = (systemWideAccessDuration/scenarioDuration)*100

systemWideAccessPercentage = 28.1944

Improve the System-Wide Access Percentage by Making the Cameras Track the
Geographical Site

The default attitude configuration of the satellites is such that their yaw axes point straight down
towards nadir (the point on Earth directly below the satellite). Since the cameras are aligned with the
yaw axis by default, they point straight down as well. As a result, the geographical site goes outside
the field of view of the cameras before their elevation angle dips below 30 degrees. Therefore, the
cumulative access percentage is limited by the cameras' field of view.

If instead the cameras always point at the geographical site, the latter is always inside the cameras'
field of view as long as the Earth is not blocking the line of sight. Consequently, the system-wide
access percentage will now be limited by the MinElevationAngle of the geographical site, as
opposed to the cameras' field of view. In the former case, the access intervals began and ended when
the site entered and left the camera's field of view. It entered the field of view some time after the
camera's elevation angle went above 30 degrees, and left the field of view before its elevation angle
dipped below 30 degrees. However, if the cameras constantly point at the site, the access intervals
will begin when the elevation angle rises above 30 degrees and end when it dips below 30 degrees,
thereby increasing the duration of the intervals. Therefore, the system-wide access percentage will
increase as well.

Since the cameras are rigidly attached to the satellites, each satellite is required to be continuously
reoriented along its orbit so that its yaw axis tracks the geographical site. As the cameras are aligned
with the yaw axis, they too will point at the site. Use pointAt to make each satellite's yaw axis track
the geographical site.

for idx = 1:numel(sat)
    pointAt(sat(idx),geoSite);
end

Re-calculate the system-wide access percentage.

% Calculate system-wide access status
for idx = 1:numel(ac)
    [s,time] = accessStatus(ac(idx));
    
    if idx == 1
        % Initialize system-wide access status vector in the first iteration
        systemWideAccessStatus = s;
    else
        % Update system-wide access status vector by performing a logical OR
        % with access status for the current camera-site combination
        systemWideAccessStatus = or(systemWideAccessStatus,s);
    end
end

% Calculate system-wide access percentage
n = nnz(systemWideAccessStatus);
systemWideAccessDuration = n*sc.SampleTime;
systemWideAccessPercentageWithTracking = (systemWideAccessDuration/scenarioDuration)*100

systemWideAccessPercentageWithTracking = 38.3333
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The system-wide access percentage has improved by about 36%. This is the result of the cameras
continuously pointing at the geographical site. This can be visualized by using play again.

play(sc)

The field of view contour is no longer circular because the camera is not pointing straight down
anymore as it is tracking the geographical site.

Exploring the Example

This example demonstrated how to determine the times at which cameras onboard satellites in a
constellation can photograph a geographical site. The cameras were modeled using conical sensors
and access analysis was used to calculate the times when the cameras can photograph the site.
Additionally, system-wide access percentage was computed to determine the percentage of time
during a 6 hour period when at least one satellite can photograph the site. It was seen that these
results depended on the direction at which the cameras were pointing.

These results are also a function of:
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• Orbit of the satellites
• MinElevationAngle of the geographical site
• Mounting position and location of the cameras with respect to the satellites
• Field of view (MaxViewAngle) of the cameras if they are not continuously pointing at the

geographical site

Modify the above parameters to your requirements and observe their influence on the access
intervals and system-wide access percentage. The orbit of the satellites can be changed by explicitly
specifying their Keplerian orbital elements using satellite. Additionally, the cameras can be
mounted on gimbals, which can be rotated independent of the satellite. This way, the satellites can
point straight down (the default behavior), while the gimbals can be configured so that the cameras
independently track the geographical site.
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Comparison of Orbit Propagators
This example compares the orbits predicted by the Two-Body-Keplerian, Simplified General
Perturbations-4 (SGP4) and Simplified Deep-Space Perturbations-4 (SDP4) orbit propagators. An orbit
propagator is a solver that calculates the position and velocity of an object whose motion is
predominantly influenced by gravity from celestial bodies. The Two-Body-Keplerian orbit propagator
is based on the relative two-body model that assumes a spherical gravity field for the Earth and
neglects third body effects and other environmental perturbations, and hence, is the least accurate.
The SGP4 orbit propagator accounts for secular and periodic orbital perturbations caused by Earth's
geometry and atmospheric drag, and is applicable to near-Earth satellites whose orbital period is less
than 225 minutes. The SDP4 orbit propagator builds upon SGP4 by accounting for solar and lunar
gravity, and is applicable to satellites whose orbital period is greater than or equal to 225 minutes.
The default orbit propagator for satelliteScenario is SGP4 for satellites whose orbital period is
less than 225 minutes, and SDP4 otherwise.

Create a Satellite Scenario

Create a satellite scenario by using the satelliteScenario function. Set the start time to 11-
May-2020 12:35:38 PM UTC, and the stop time to 13-May-2020 12:35:38 PM UTC, by using the
datetime function. Set the sample time to 60 seconds.

startTime = datetime(2020,5,11,12,35,38);
stopTime = startTime + days(2);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc = 
  satelliteScenario with properties:

         StartTime: 11-May-2020 12:35:38
          StopTime: 13-May-2020 12:35:38
        SampleTime: 60
           Viewers: [0×0 matlabshared.satellitescenario.Viewer]
        Satellites: []
    GroundStations: []
          AutoShow: 1

Add Satellites to the Satellite Scenario

Add three satellites to the satellite scenario from the two-line element (TLE) file
eccentricOrbitSatellite.tle by using the satellite function. TLE is a data format used for
encoding the orbital elements of an Earth-orbiting object defined at a specific time. Assign a Two-
Body-Keplerian orbit propagator to the first satellite, SGP4 to the second satellite, and SDP4 to the
third satellite.

tleFile = "eccentricOrbitSatellite.tle";
satTwoBodyKeplerian = satellite(sc,tleFile, ...
    "Name","satTwoBodyKeplerian", ...
    "OrbitPropagator","two-body-keplerian")

satTwoBodyKeplerian = 
  Satellite with properties:

               Name: "satTwoBodyKeplerian"
                 ID: 1

5 Aerospace Toolbox Examples

5-162



     ConicalSensors: []
            Gimbals: []
       Transmitters: []
          Receivers: []
           Accesses: []
        GroundTrack: [1×1 matlabshared.satellitescenario.GroundTrack]
              Orbit: [1×1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator: "two-body-keplerian"
        MarkerColor: [1 0 0]
         MarkerSize: 10
          ShowLabel: 1
     LabelFontColor: [1 0 0]
      LabelFontSize: 15

satSGP4 = satellite(sc,tleFile, ...
    "Name","satSGP4", ...
    "OrbitPropagator","sgp4")

satSGP4 = 
  Satellite with properties:

               Name: "satSGP4"
                 ID: 2
     ConicalSensors: []
            Gimbals: []
       Transmitters: []
          Receivers: []
           Accesses: []
        GroundTrack: [1×1 matlabshared.satellitescenario.GroundTrack]
              Orbit: [1×1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator: "sgp4"
        MarkerColor: [1 0 0]
         MarkerSize: 10
          ShowLabel: 1
     LabelFontColor: [1 0 0]
      LabelFontSize: 15

satSDP4 = satellite(sc,tleFile, ...
    "Name","satSDP4", ...
    "OrbitPropagator","sdp4")

satSDP4 = 
  Satellite with properties:

               Name: "satSDP4"
                 ID: 3
     ConicalSensors: []
            Gimbals: []
       Transmitters: []
          Receivers: []
           Accesses: []
        GroundTrack: [1×1 matlabshared.satellitescenario.GroundTrack]
              Orbit: [1×1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator: "sdp4"
        MarkerColor: [1 0 0]
         MarkerSize: 10
          ShowLabel: 1
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     LabelFontColor: [1 0 0]
      LabelFontSize: 15

Visualize the Satellites and their Orbits

Launch a satellite scenario viewer and visualize the satellite scenario by using the
satelliteScenarioViewer function. Set the visualizations of satTwoBodyKeplerian to red,
satSGP4 to green, and satSDP4 to magenta.

v = satelliteScenarioViewer(sc);
satSGP4.MarkerColor = [0 1 0];
satSGP4.Orbit.LineColor = [0 1 0];
satSGP4.LabelFontColor = [0 1 0];
satSDP4.MarkerColor = [1 0 1];
satSDP4.Orbit.LineColor = [1 0 1];
satSDP4.LabelFontColor = [1 0 1];

Focus the camera on satTwoBodyKeplerian by using the camtarget function.
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camtarget(v,satTwoBodyKeplerian);

Left-click anywhere inside the satellite scenario viewer window and move the mouse while holding
the click to pan the camera. Adjust the zoom level using the scroll wheel to bring all three satellites
into view.

Visualize a Dynamic Animation of the Satellite Movement

Visualize the movement of the satelliles by using the play function on the satellite scenario. The
play function simulates the satellite scenario from the specified StartTime to StopTime using a
step size specified by SampleTime, and plays the results on the satellite scenario viewer.

play(sc)

Use the playback controls located at the bottom of the satellite scenario viewer window to control the
playback speed and direction. Focus the camera again on satTwoBodyKeplerian by using the
camtarget function, and bring all three satellites into view by adjusting the zoom level.

camtarget(v,satTwoBodyKeplerian);
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The positions of the three satellites diverge over time.

Obtain the Position and Velocity History of the Satellites

Return the position and velocity history of the satellites in the Geocentric Celestial Reference Frame
(GCRF) by using the states function.

[positionTwoBodyKeplerian,velocityTwoBodyKeplerian,time] = states(satTwoBodyKeplerian);
[positionSGP4,velocitySGP4] = states(satSGP4);
[positionSDP4,velocitySDP4] = states(satSDP4);

Plot Magnitude of Relative Position with Respect to Two-Body-Keplerian Prediction

Calculate the magnitude of the relative position of satSGP4 and satSDP4 with respect to
satTwoBodyKeplerian by using the vecnorm function.

sgp4RelativePosition = vecnorm(positionSGP4 - positionTwoBodyKeplerian,2,1);
sdp4RelativePosition = vecnorm(positionSDP4 - positionTwoBodyKeplerian,2,1);
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Plot the magnitude of the relative positions in kilometers of satSGP4 and satSDP4 with respect to
that of satTwoBodyKeplerian by using the plot function.

sgp4RelativePositionKm = sgp4RelativePosition/1000;
sdp4RelativePositionKm = sdp4RelativePosition/1000;
plot(time,sgp4RelativePositionKm,time,sdp4RelativePositionKm)
xlabel("Time")
ylabel("Relative position (km)")
legend("SGP4","SDP4")

The initial relative position of satSGP4 is non-zero and that of satSDP4 is zero because the initial
positions of satTwoBodyKeplerian and satSDP4 are calculated from the TLE file using the SDP4
orbit propagator, while the initial position of satSGP4 is calculated using the SGP4 orbit propagator.
Over time, the position of satSDP4 deviates from that of satTwoBodyKeplerian because the
subsequent positions of the former are calculated using the SDP4 orbit propagator, while those of the
latter are calculated using the Two-Body-Keplerian orbit propagator. The SDP4 orbit propagator
provides higher precision because unlike the Two-Body-Keplerian orbit propagator, it accounts for
oblateness of the Earth, atmospheric drag, and gravity from the sun and the moon.

Plot Magnitude of Relative Velocity with Respect to Two-Body-Keplerian Prediction

Calculate the magnitude of the relative velocity of satSGP4 and satSDP4 with respect to
satTwoBodyKeplerian by using the vecnorm function.

sgp4RelativeVelocity = vecnorm(velocitySGP4 - velocityTwoBodyKeplerian,2,1);
sdp4RelativeVelocity = vecnorm(velocitySDP4 - velocityTwoBodyKeplerian,2,1);
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Plot the magnitude of the relative velocities in meters per second of satSGP4 and satSDP4 with
respect to satTwoBodyKeplerian by using the plot function.

plot(time,sgp4RelativeVelocity,time,sdp4RelativeVelocity)
xlabel("Time")
ylabel("Velocity deviation (m/s)")
legend("SGP4","SDP4")

The initial relative velocity of satSDP4 is zero because just like the initial position, the initial velocity
of satTwoBodyKeplerian and satSDP4 are also calculated from the TLE file using the SDP4 orbit
propagator. Over time, the velocity of satSDP4 deviates from that of satTwoBodyKeplerian
because at all other times, the velocity of satTwoBodyKeplerian is calculated using the Two-Body-
Keplerian orbit propagator, which has lower precision when compared to that of the SDP4 orbit
propagator that is used for calculating the velocity of satSDP4. The spikes correspond to the
periapsis (the closest point in the orbit from the center of mass of the Earth), where the magnitudes
of the velocity errors are pronounced.

Conclusion

The deviations in the plots are the result of varying levels of accuracy of the three orbit propagators.
The Two-Body-Keplerian orbit propagator is the least accurate as it assumes that the gravity field of
the Earth is spherical, and also neglects all other sources of orbital perturbations. The SGP4 orbit
propagator is more accurate as it accounts for the oblateness of the Earth and atmospheric drag. The
SDP4 orbit propagator is the most accurate among the three because it also accounts for solar and
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lunar gravity, which is more pronounced in this example because the orbital period is greater than
225 minutes, thereby taking the satellite farther away from the Earth.
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Detect and Track LEO Satellite Constellation with Ground
Radars

This example shows how to import a Two-Line Element (TLE) file of a satellite constellation, simulate
radar detections of the constellation, and track the constellation.

The task of populating and maintaining a catalog of space objects orbiting Earth is crucial in space
surveillance. This task consists of several processes: detecting and identifying new objects and
adding them to the catalog, updating known objects orbits in the catalog, tracking orbit changes
throughout their lifetime, and predicting reentries in the atmosphere. In this example, we are study
how to detect and track new satellites and add them to a catalog.

To guarantee safe operations in space and prevent collisions with other satellites or known debris, it
important to correctly detect and track newly launched satellites. Space agencies typically share
prelaunch information, which can be used to select a search strategy. A Low Earth Orbit (LEO)
satellite search strategy consisting of fence-type radar systems is commonly used. A fence-type radar
system searches a finite volume in space and detects satellites as they pass through its field of view.
This strategy can detect and track newly launched constellation quickly. [1]

Importing a satellite constellation from a TLE file

Two-Line Element sets are a common data format to save orbital information of satellites. You can use
the satelliteScenario object to import satellite orbits defined in a TLE file. By default, the
imported satellite orbits are propagated using the SGP4 orbit propagation algorithm which provides
good accuracy for LEO objects. In this example, these orbits provide with the ground truth to test the
radar tracking system capability to detect newly launched satellites.

% Create a satellite scenario
satscene = satelliteScenario;
% Add satellites from TLE file.
tleFile = "leoSatelliteConstellation.tle";
constellation = satellite(satscene, tleFile);

Use the satellite scenario viewer to visualize the constellation.

play(satscene);

Simulating synthetic detections and track constellation

Modeling space surveillance radars

Define two stations with fan-shaped radar beams looking into space. The fans cut through the
satellite orbits to maximize the number of detections. The radar stations located on North America
form an East-West fence.

% First station coordinates in LLA
station1 = [48 -80 0];

% Second station coordinates in LLA
station2 = [50 -117 0];

Each station is equipped with a radar, which is modeled by using a fusionRadarSensor object. In
order to detect satellites in the LEO range, the radar has the following requirements:

• Detecting a 10 dBsm object up to 2000 km away
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• Resolving objects horizontally and vertically with a precision of 100 m at 2000 km range
• Having a field of view of 120 degrees in azimuth and 30 degrees in elevation
• Looking up into space

% Create fan-shaped monostatic radars
fov = [120;40];
radar1 = fusionRadarSensor(1,...
    'UpdateRate',0.1,... 10 sec
    'ScanMode','No scanning',...
    'MountingAngles',[0 90 0],... look up
    'FieldOfView',fov,... degrees
    'ReferenceRange',2000e3,... m
    'RangeLimits',  [0 2000e3], ... m
    'ReferenceRCS', 10,... dBsm
    'HasFalseAlarms',false,...
    'HasNoise', true,...
    'HasElevation',true,...
    'AzimuthResolution',0.03,... degrees
    'ElevationResolution',0.03,... degrees
    'RangeResolution',2000, ... m % accuracy ~= 2000 * 0.05 (m)
    'DetectionCoordinates','Sensor Spherical',...
    'TargetReportFormat','Detections');

radar2 = clone(radar1);
radar2.SensorIndex = 2;

Radar Processing Chain

In this example, several coordinate conversions and axes transformation are performed to properly
run the radar tracking chain. The diagram below illustrates how the inputs defined above are
transformed and passed to the radar.

In the first step, you calculate each satellite pose in the local radar station NED axes. You achieve this
by first obtaining the ground station ECEF pose and converting the satellite position and velocity to
the ECEF coordinates. The radar input is obtained by taking the differences between the satellite
pose and the ground station pose and rotating the differences into ground station local NED axes. See
the assembleRadarInputs supporting function for the implementation details.

In the second step, you add the required information to the detection object so that the tracker can
operate with an ECEF state. You use the MeasurementParameters property in each object
detection to achieve that purpose, as shown in the addMeasurementParams supporting function.
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Defining a tracker

The radar models you defined above output detections. To estimate the satellite orbits, you use a
tracker. The Sensor Fusion and Tracking Toolbox™ provides a variety of multi-object trackers. In this
example, you choose a Joint Probabilistic Data Association (JPDA) tracker because it offers a good
balance of tracking performance and computational cost.

You need to define a tracking filter for the tracker. You can use a lower fidelity model than SGP4, such
as a Keplerian integration of the equation of motion, to track the satellite. Often, the lack of fidelity in
the motion model of targets is compensated by measurement updates and incorporating process
noise in the filter. The supporting function initKeplerUKF defines the tracking filter.

% Define the tracker
tracker = trackerJPDA('FilterInitializationFcn',@initKeplerUKF,...
    'HasDetectableTrackIDsInput',true,...
    'ClutterDensity',1e-40,...
    'AssignmentThreshold',1e4,...
    'DeletionThreshold',[5 8],...
    'ConfirmationThreshold',[5 8]);

Running the simulation

In the remainder of this example, you step through the scenario to simulate radar detections and
track satellites. This section uses the trackingGlobeViewer for visualization. You use this class to
display sensor and tracking data with uncertainty ellipses and show the true position of each satellite.

viewer = trackingGlobeViewer('ShowDroppedTracks',false, 'PlatformHistoryDepth',700);

% Define coverage configuration of each radar and visualize it on the globe
ned1 = dcmecef2ned(station1(1), station1(2));
ned2 = dcmecef2ned(station2(1), station2(2));
covcon(1) = coverageConfig(radar1,lla2ecef(station1),quaternion(ned1,'rotmat','frame'));
covcon(2) = coverageConfig(radar2,lla2ecef(station2),quaternion(ned2, 'rotmat','frame'));
plotCoverage(viewer, covcon, 'ECEF');

You first generate the entire history of the states of the constellation over 5 hours. Then, you simulate
radar detections and generate tracks in a loop.

satscene.StopTime = satscene.StartTime + hours(5);
satscene.SampleTime = 10;
numSteps = ceil(seconds(satscene.StopTime - satscene.StartTime)/satscene.SampleTime);

% Get constellation positions and velocity over the course of the simulation
plats = repmat(...
    struct('PlatformID',0,'Position',[0 0 0], 'Velocity', [0 0 0]),...
    numSteps, 40);
for i=1:numel(constellation)
    [pos, vel] = states(constellation(i),'CoordinateFrame',"ECEF");
    for j=1:numSteps
        plats(j,i).Position = pos(:,j)';
        plats(j,i).Velocity = vel(:,j)';
        plats(j,i).PlatformID = i;
    end
end

% Initialize tracks and tracks log
confTracks = objectTrack.empty(0,1);
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trackLog = cell(1,numSteps);

% Initialize radar plots
radarplt = helperRadarPlot(fov);

% Set random seed for reproducible results
s = rng;
rng(2020);
step = 0;
while step < numSteps
    time = step*satscene.SampleTime;
    step = step + 1;
    
    % Generate detections of the constellation following the radar
    % processing chain
    targets1 = assembleRadarInputs(station1, plats(step,:));
    [dets1,numdets1] = radar1(targets1, time);
    dets1 = addMeasurementParams(dets1,numdets1,station1);
    
    targets2 = assembleRadarInputs(station2, plats(step,:));
    [dets2, numdets2] = radar2(targets2, time);
    dets2 = addMeasurementParams(dets2, numdets2, station2);
    
    detections = [dets1; dets2];
    updateRadarPlots(radarplt,targets1, targets2 ,dets1, dets2)
    
    % Generate and update tracks
    detectableInput = isDetectable(tracker,time, covcon);
    if ~isempty(detections) || isLocked(tracker)
        [confTracks,~,~,info] = tracker(detections,time,detectableInput);
    end
    trackLog{step} = confTracks;

    % Update viewer
    plotPlatform(viewer, plats(step,:),'ECEF', 'Color',[1 0 0],'LineWidth',1);
    plotDetection(viewer, detections,'ECEF');
    plotTrack(viewer, confTracks, 'ECEF','Color',[0 1 0], 'LineWidth',3);
            
end
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The plot above shows the orbits (blue dots) and the detections (red circles) from the point of view of
each radar.

% Restore previous random seed state
rng(s);

figure;
snapshot(viewer);
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After 5 hours of tracking, about half the constellation is tracked successfully. Maintaining tracks with
a partial orbit coverage is challenging since satellites can often stay undetected for long periods of
time in this configuration. In this example, there are only two radar stations. Additional tracking
stations are expected to generate better tracking performance. The assignment metrics, which
evaluate the tracking performance by comparing between the true objects and the tracks, are shown
below.

% Show Assignment metrics
truthIdFcn = @(x)[x.PlatformID];

tam = trackAssignmentMetrics('DistanceFunctionFormat','custom',...
    'AssignmentDistanceFcn',@distanceFcn,...
    'DivergenceDistanceFcn',@distanceFcn,...
    'TruthIdentifierFcn',truthIdFcn,...
    'AssignmentThreshold',1000,...
    'DivergenceThreshold',2000);

for i=1:numSteps
    % Extract the tracker and ground truth at the i-th tracker update
    tracks = trackLog{i};
    truths = plats(i,:);
    % Extract summary of assignment metrics against tracks and truths
    [trackAM,truthAM] = tam(tracks, truths);
end
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% Show cumulative metrics for each individual recorded truth object
results = truthMetricsTable(tam);
results(:,{'TruthID','AssociatedTrackID','BreakLength','EstablishmentLength'})

ans=40×4 table
    TruthID    AssociatedTrackID    BreakLength    EstablishmentLength
    _______    _________________    ___________    ___________________

       1               57                 5                232        
       2               45               680                598        
       3               29                 0                664        
       4               61                11                492        
       5               18                 0                436        
       6               54                 5                807        
       7               22                 0                513        
       8               47                 6                675        
       9               42                 0               1221        
      10               56                 0               1500        
      11               49                 0               1339        
      12               40                 0               1056        
      13              NaN                 0               1800        
      14              NaN                 0               1800        
      15              NaN                 0               1800        
      16              NaN                 0               1800        
      ⋮

The table above lists 40 satellites in the launched constellation and shows the tracked satellites with
associated track IDs. A track ID of value NaN indicates that the satellite is not tracked by the end of
the simulation. This either means that the orbit of the satellite did not pass through the field of view
of one of the two radars or the track of the satellite has been dropped. The tracker can drop a track
due to an insufficient number of initial detections, which leads to a large uncertainty on the estimate.
Alternately, the tracker can drop the track if the satellite is not re-detected soon enough, such that
the lack of updates leads to divergence and eventually deletion.

Summary

In this example, you have learned how to use the satelliteScenario object from the Aerospace
Toolbox™ to import orbit information from TLE files. You propagated the satellite trajectories using
SGP4 and visualized the scenario using the Satellite Scenario Viewer. You learned how to use the
radar and tracker models from the Sensor Fusion and Tracking Toolbox™ to model a space
surveillance radar tracking system. The constructed tracking system can predict the estimated orbit
of each satellite using a low fidelity model.

Supporting functions

initKeplerUKF initializes an Unscented Kalman filter using the Keplerian motion model.

function filter = initKeplerUKF(detection)

radarsphmeas = detection.Measurement;
[x, y, z] = sph2cart(deg2rad(radarsphmeas(1)),deg2rad(radarsphmeas(2)),radarsphmeas(3));
radarcartmeas = [x y z];
Recef2radar = detection.MeasurementParameters.Orientation;
ecefmeas = detection.MeasurementParameters.OriginPosition + radarcartmeas*Recef2radar;
% This is equivalent to:
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% Ry90 = [0 0 -1 ; 0 1 0; 1 0 0]; % frame rotation of 90 deg around y axis
% nedmeas(:) = Ry90' * radarcartmeas(:);
% ecefmeas = lla2ecef(lla) +  nedmeas * dcmecef2ned(lla(1),lla(2));
initState = [ecefmeas(1); 0; ecefmeas(2); 0; ecefmeas(3); 0];

sigpos = 2;% m
sigvel = 0.5;% m/s^2

filter = trackingUKF(@keplerorbit,@cvmeas,initState,...
    'StateCovariance', diag(repmat([1000, 10000].^2,1,3)),...
    'ProcessNoise',diag(repmat([sigpos, sigvel].^2,1,3)));

end

function state = keplerorbit(state,dt)
% keplerorbit performs numerical integration to predict the state of
% Keplerian bodies. The state is [x;vx;y;vy;z;vz]

% Runge-Kutta 4th order integration method:
k1 = kepler(state);
k2 = kepler(state + dt*k1/2);
k3 = kepler(state + dt*k2/2);
k4 = kepler(state + dt*k3);

state = state + dt*(k1+2*k2+2*k3+k4)/6;

    function dstate=kepler(state)
        x =state(1,:);
        vx = state(2,:);
        y=state(3,:);
        vy = state(4,:);
        z=state(5,:);
        vz = state(6,:);

        mu = 398600.4405*1e9; % m^3 s^-2
        omega = 7.292115e-5; % rad/s
        
        r = norm([x y z]);
        g = mu/r^2;
        
        % Coordinates are in a non-intertial frame, account for Coriolis
        % and centripetal acceleration
        ax = -g*x/r + 2*omega*vy + omega^2*x;
        ay = -g*y/r - 2*omega*vx + omega^2*y;
        az = -g*z/r;
        dstate = [vx;ax;vy;ay;vz;az];
    end
end

isDetectable is used in the example to determine which tracks are detectable at a given time.

function detectInput = isDetectable(tracker,time,covcon)

if ~isLocked(tracker)
    detectInput = zeros(0,1,'uint32');
    return
end
tracks = tracker.predictTracksToTime('all',time);
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if isempty(tracks)
    detectInput = zeros(0,1,'uint32');
else
    alltrackid = [tracks.TrackID];
    isDetectable = zeros(numel(tracks),numel(covcon),'logical');
    for i = 1:numel(tracks)
        track = tracks(i);
        pos_scene = track.State([1 3 5]);
        for j=1:numel(covcon)
            config = covcon(j);
            % rotate position to sensor frame:
            d_scene = pos_scene(:) - config.Position(:);
            scene2sens = rotmat(config.Orientation,'frame');
            d_sens = scene2sens*d_scene(:);
            [az,el] = cart2sph(d_sens(1),d_sens(2),d_sens(3));
            if abs(rad2deg(az)) <= config.FieldOfView(1)/2 && abs(rad2deg(el)) < config.FieldOfView(2)/2
                isDetectable(i,j) = true;
            else
                isDetectable(i,j) = false;
            end
        end
    end
    
    detectInput = alltrackid(any(isDetectable,2))';
end
end

assembleRadarInput is used to construct the constellation poses in each radar body frame. This is
the first step described in the diagram.

function targets = assembleRadarInputs(station, constellation)
% For each satellite in the constellation, derive its pose with respect to
% the radar frame.
% inputs:
%          - station        :  LLA vector of the radar ground station
%          - constellation  :  Array of structs containing the ECEF position
%                              and ECEF velocity of each satellite
% outputs:
%          - targets        :  Array of structs containing the pose of each
%                              satellite with respect to the radar, expressed in the local
%                              ground radar frame (NED)

% Template structure for the outputs which contains all the field required
% by the radar step method
targetTemplate =  struct( ...
                'PlatformID', 0, ...
                'ClassID', 0, ...
                'Position', zeros(1,3), ...
                'Velocity', zeros(1,3), ...
                'Acceleration', zeros(1,3), ...
                'Orientation', quaternion(1,0,0,0), ...
                'AngularVelocity', zeros(1,3),...
                'Dimensions', struct( ...
                             'Length', 0, ...
                             'Width', 0, ...
                             'Height', 0, ...
                             'OriginOffset', [0 0 0]), ...
                'Signatures', {{rcsSignature}});
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% First fill in the current satellite ECEF pose
targetPoses = repmat(targetTemplate, 1, numel(constellation));
for i=1:numel(constellation)
    targetPoses(i).Position = constellation(i).Position;
    targetPoses(i).Velocity = constellation(i).Velocity;
    targetPoses(i).PlatformID = constellation(i).PlatformID;
    % Orientation and angular velocity are left null, assuming satellite to
    % be point targets with a uniform rcs
end

% Then derive the radar pose in ECEF based on the ground station location
Recef2station = dcmecef2ned(station(1), station(2));
radarPose.Orientation = quaternion(Recef2station,'rotmat','frame');
radarPose.Position = lla2ecef(station);
radarPose.Velocity = zeros(1,3);
radarPose.AngularVelocity = zeros(1,3);

% Finally, take the difference and rotate each vector to the ground station
% NED axes
targets = targetPoses;
for i=1: numel(targetPoses)
    thisTgt = targetPoses(i);
    pos = Recef2station*(thisTgt.Position(:) - radarPose.Position(:));
    vel = Recef2station*(thisTgt.Velocity(:) - radarPose.Velocity(:)) - cross(radarPose.AngularVelocity(:),pos(:));
    angVel = thisTgt.AngularVelocity(:) - radarPose.AngularVelocity(:);
    orient = radarPose.Orientation' * thisTgt.Orientation;

    % Store into target structure array
    targets(i).Position(:) = pos;
    targets(i).Velocity(:) = vel;
    targets(i).AngularVelocity(:) = angVel;
    targets(i).Orientation = orient;
end
end

addMeasurementParam implements step 2 in the radar chain process as described in the diagram.

function dets = addMeasurementParams(dets, numdets, station)
% Add radar station information to the measurement parameters
Recef2station = dcmecef2ned(station(1), station(2));
for i=1:numdets
    dets{i}.MeasurementParameters.OriginPosition = lla2ecef(station);
    dets{i}.MeasurementParameters.IsParentToChild = true; % parent = ecef, child = radar
    dets{i}.MeasurementParameters.Orientation = dets{i}.MeasurementParameters.Orientation' * Recef2station;
end
end

distanceFcn is used with the assignment metrics to evaluate the tracking assignment.

function d = distanceFcn(track, truth)

estimate = track.State([1 3 5 2 4 6]);
true = [truth.Position(:) ; truth.Velocity(:)];
cov = track.StateCovariance([1 3 5 2 4 6], [1 3 5 2 4 6]);
d = (estimate - true)' / cov * (estimate - true);
end
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Get Started With Fixed-Wing Aircraft
This example shows how to create and use fixed-wing aircraft in MATLAB®.

For an example of setting realistic coefficients on an aircraft and calculating static stability, see
"Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft”.

For an example of importing coefficients from Digital DATCOM analysis and linearizing to a state-
space model, see “Perform Controls and Static Stability Analysis with Linearized Fixed-Wing
Aircraft”.

For an example of creating custom states, see “Customize Fixed-Wing Aircraft with Additional
Aircraft States”.

What is a Fixed-Wing Aircraft?

Fixed-wing aircraft encompass all aircraft that generate lift from fixed airfoil surfaces extending off
the main body. The standard configuration for fixed-wing aircraft is a large main wing near the center
of gravity and horizontal and vertical stabilizers at the end of the body.

The large main wing of the fixed-wing aircraft generates lift, with the horizontal and vertical
stabilizers providing reaction forces and moments for stability and control. However, unlike rotary-
wing aircraft, the fixed-wing aircraft's wings are fixed in place. Therefore, to provide the airflow to
generate the necessary lift to fly aircraft off the ground, the fixed-wing aircraft wings require forward
movement. This forward movement is typically created from a thrust vector generated by a jet engine
or propeller.

Fixed-Wing Aircraft Construction Workflow

The construction of a fixed-wing aircraft model requires these components:

• The configuration of the aircraft
• What aerodynamic surfaces exist on the aircraft?
• What control surfaces exist on the aircraft?
• What thrust vectors exist on the aircraft?
• The numerical model of the aircraft
• The current state of the aircraft

This example follows this workflow to illustrate how to construct a fixed-wing aircraft application for
numerical analysis in MATLAB.

Fixed-Wing Aircraft Configuration

This example constructs a basic 3-control surface, standard-configuration aircraft.

For this example, only the control surfaces and body will be defined.

To start, define the control surfaces using the fixedWingSurface function.

surface = fixedWingSurface("mysurface")

surface = 
  Surface with properties:

 Get Started With Fixed-Wing Aircraft

5-181



            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: Inf
        MinimumValue: -Inf
        Controllable: off
            Symmetry: "Symmetric"
    ControlVariables: [0x0 string]
          Properties: [1x1 Aero.Aircraft.Properties]

The surface has many properties that help define a fixed-wing aircraft surface, in particular the
controllability, coefficients, maximum and minimum values. symmetry, and any nested surfaces a
surface might have.

For this aircraft, the aileron is an asymmetric control surface with a maximum and minimum
deflection of 20 and -20 degrees, respectively.

To construct this surface, name-value pairs can be specified to set each property to their desired
level.

aileron = fixedWingSurface("aileron", "on", "Asymmetric", [-20, 20])

aileron = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Asymmetric"
    ControlVariables: ["aileron_1"    "aileron_2"]
          Properties: [1x1 Aero.Aircraft.Properties]

Using the same pattern as the aileron construct the elevators and rudders.

These two surfaces follow the same pattern as the aileron, but are defined as symmetric control
surfaces.

elevator = fixedWingSurface("elevator", "on", "Symmetric", [-20, 20])

elevator = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "elevator"
          Properties: [1x1 Aero.Aircraft.Properties]

rudder = fixedWingSurface("rudder", "on", "Symmetric", [-20, 20])

rudder = 
  Surface with properties:
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            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "rudder"
          Properties: [1x1 Aero.Aircraft.Properties]

In addition to the control surfaces of the aircraft, also define the thrust vectors.

For this example, it is assumed that there is a single thrust vector along the body of the aircraft.

Define this thrust vector using the fixedWingThrust function.

propeller = fixedWingThrust("propeller","on","Symmetric",[0, 0.75])

propeller = 
  Thrust with properties:

        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 0.7500
        MinimumValue: 0
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "propeller"
          Properties: [1x1 Aero.Aircraft.Properties]

Thrust is nearly identical to surface with the exception that it is assumed to be controllable by
default, whereas the surface is not controllable by default.

With these control surfaces and thrust vectors defined, create an aircraft using the fixedWingAircraft
function.

This aircraft carries the full definition of the fixed-wing aircraft. This example uses it in all analysis
methods.

The reference area, span, and length help dimensionalize non-dimensional coefficients used in the
analysis methods.

For simplicity, this aircraft uses a reference area, span, and length of 3, 2, and 1, respectively.

aircraft = fixedWingAircraft("MyAircraft", 3,2,1)

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x0 Aero.FixedWing.Surface]
              Thrusts: [1x0 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
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           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

Additionally, the control surfaces and thrust vectors can be applied to the aircraft

aircraft.Surfaces = [aileron, elevator, rudder]

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x0 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

aircraft.Thrusts = propeller

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x1 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

With the aircraft body construct and control surfaces set, the aircraft is now fully constructed.

However, the current construction of the aircraft does not have much numerical meaning as the
numerical model has defaults of 0.

To remedy this, set numeric coefficients.

Fixed-Wing Aircraft Numerical Modeling

To perform numerical modeling using fixed-wing aircraft in MATLAB, define known coefficients that
represent the nonlinear behavior of the aircraft at its various operating states. Aircraft coefficients
are the fixed set of coefficients that define body forces and moments, excluding reaction forces due to
control surfaces or thrust vectors.
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Obtain these coefficients through a variety of methods, such as Digital DATCOM, Computational Fluid
Dynamics (CFD) analysis, or using first-principles preliminary analysis calculations.

If using Digital DATCOM to calculate the numeric coefficients, directly convert the Digital DATCOM
struct to a fixed-wing aircraft using datcomToFixedWing.

You can also manually import assign the coefficients to the aircraft.

Fixed-wing aircraft coefficients reside on the aircraft in several places. As can be seen above, the
aircraft itself, and every surface and thrust on the aircraft, has a set of coefficients.

Control surface coefficients define the forces and moments due to control surface deflections.

Thrust coefficients define the forces and moments due to the various propulsion methods.

All these independent forces and moments summed together provide the full forces and moments
definition of the aircraft, and in turn the nonlinear dynamics.

Define coefficients using the fixedWingCoefficient function.

coeff = fixedWingCoefficient

coeff = 
  Coefficient with properties:

                     Table: [6x1 table]
                    Values: {6x1 cell}
            StateVariables: "Zero"
               StateOutput: [6x1 string]
            ReferenceFrame: "Wind"
    MultiplyStateVariables: on
            NonDimensional: on
                Properties: [1x1 Aero.Aircraft.Properties]

The fixedWingCoefficient function defines coefficient-specific properties, including the reference
frame, specifying dimensional or non-dimensional coefficients, and specifying the state variable
multiply behavior.

Setting coefficient values can be done through the setCoefficient function.

Retrieving coefficient values can be done through the getCoefficient function.

To view the coefficients of a component in a table, use the Table property on the returned coefficient.

CL_alpha = 0.2;
aircraft = setCoefficient(aircraft, "CL", "Alpha", CL_alpha)

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
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              Thrusts: [1x1 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

getCoefficient(aircraft, "CL", "Alpha")

ans = 0.2000

aircraft.Coefficients.Table

ans=6×9 table
          Zero    U    Alpha    AlphaDot    Q    Beta    BetaDot    P    R
          ____    _    _____    ________    _    ____    _______    _    _

    CD     0      0       0        0        0     0         0       0    0
    CY     0      0       0        0        0     0         0       0    0
    CL     0      0     0.2        0        0     0         0       0    0
    Cl     0      0       0        0        0     0         0       0    0
    Cm     0      0       0        0        0     0         0       0    0
    Cn     0      0       0        0        0     0         0       0    0

You can also set coefficients on the nested surfaces and thrust vectors using their component name.

The component name is the same name that was set on the aircraft, surface, and thrust.

CL_0_elevator = 0.15;
aircraft = setCoefficient(aircraft, "CL", "Zero", CL_0_elevator, Component="elevator")

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x1 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

getCoefficient(aircraft, "CL", "Zero",Component="elevator")

ans = 0.1500

aircraft.Surfaces(2).Coefficients.Table

ans=6×1 table
          Zero
          ____
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    CD       0
    CY       0
    CL    0.15
    Cl       0
    Cm       0
    Cn       0

Set the specific coefficients using the setCoefficient function. Retrieve them using the getCoefficient
function. These coefficients depend on:

• The input fixed-wing object
• The reference frame on the coefficient
• The state variables defined on the coefficient

The second input to setCoefficient and getCoefficient is the state output. To determine valid state
outputs, refer to see the reference frame on the coefficient.

For example, if the reference frame is "Body", the valid state outputs are:

• "CX" - Coefficient of body X force
• "CY" - Coefficient of body Y force
• "CZ" - Coefficient of body Z force
• "Cl" - Rolling moment coefficient
• "Cm" - Pitching moment coefficient
• "Cn" - Yawing moment coefficient

coeff.ReferenceFrame = "Body";
coeff.Table

ans=6×1 table
          Zero
          ____

    CX     0  
    CY     0  
    CZ     0  
    Cl     0  
    Cm     0  
    Cn     0  

If the reference frame is "Wind", the valid state outputs are:

• "CD" - Coefficient of drag force
• "CY" - Coefficient of body Y force
• "CL" - Coefficient of lift force
• "Cl" - Rolling moment coefficient
• "Cm" - Pitching moment coefficient
• "Cn" - Yawing moment coefficient

coeff.ReferenceFrame = "Wind";
coeff.Table
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ans=6×1 table
          Zero
          ____

    CD     0  
    CY     0  
    CL     0  
    Cl     0  
    Cm     0  
    Cn     0  

The third input argument to setCoefficient and getCoefficient is the state variables that determine the
states the coefficients are defined with.

By default, the coefficient assumes no state relationship. These coefficients are defined with the
"Zero" state variable, which means the coefficient has no states to multiply against.

In the case of the fixed-wing aircraft, there are a set of additional default states that are common to
many aircraft definitions, namely, U, Alpha, AlphaDot, Beta, BetaDot, P, Q, and R.

Use any combination of these state outputs and state variables with setCoefficient and getCoefficient.

coeff.StateVariables = ["Alpha", "Beta"];
coeff = setCoefficient(coeff, "CL", "Beta", 5);
coeff.Table

ans=6×2 table
          Alpha    Beta
          _____    ____

    CD      0       0  
    CY      0       0  
    CL      0       5  
    Cl      0       0  
    Cm      0       0  
    Cn      0       0  

With the coefficients set on the aircraft, define the aircraft current state.

Fixed-Wing Aircraft States

The current state of an aircraft defines the properties that are independent of the fixed configuration.

These properties include the mass, inertia, airspeed, altitude, deflection angles, and others.

By separating the current state from the configuration, the aircraft coefficient data can remain fixed
while individual states change over time.

Define fixed-wing aircraft states using the fixedWingState function.

state = fixedWingState(aircraft)

state = 
  State with properties:

                   Alpha: 0
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                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 0
                 Inertia: [3x3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 0
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3x3 double]
    BodyToInertialMatrix: [3x3 double]
        BodyToWindMatrix: [3x3 double]
        WindToBodyMatrix: [3x3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1x1 Aero.Aircraft.Environment]
           ControlStates: [1x6 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1x1 Aero.Aircraft.Properties]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"

The names of the properties on this state are the same as the state variable string names in the
coefficients.

In the aircraft coefficient table above, each coefficient in the "Alpha" column is multiplied by the
"Alpha" property in the state if "MultiplyStateVariables" is on.

This action applies for every state variable in every coefficient on the aircraft.

Some states are dependent states and depend on other properties within the state itself.
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If a state depends on properties within the environment, you must define the current flying
environment as well.

Define the current flying environment using the aircraftEnvironment function or by assigning to the
environment directly on the state.

environment = aircraftEnvironment(aircraft, "ISA", 0)

environment = 
  Environment with properties:

    WindVelocity: [0 0 0]
         Density: 1.2250
     Temperature: 288.1500
        Pressure: 101325
    SpeedOfSound: 340.2941
         Gravity: 9.8100
      Properties: [1x1 Aero.Aircraft.Properties]

state.Environment = environment

state = 
  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 0
                 Inertia: [3x3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 50
                       V: 0
                       W: 0
                     Phi: 0
                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 0
             AltitudeAGL: 0
                Airspeed: 50
             GroundSpeed: 50
              MachNumber: 0.1469
            BodyVelocity: [50 0 0]
          GroundVelocity: [50 0 0]
                      Ur: 50
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
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             CourseAngle: 0
    InertialToBodyMatrix: [3x3 double]
    BodyToInertialMatrix: [3x3 double]
        BodyToWindMatrix: [3x3 double]
        WindToBodyMatrix: [3x3 double]
         DynamicPressure: 1.5312e+03
             Environment: [1x1 Aero.Aircraft.Environment]
           ControlStates: [1x6 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1x1 Aero.Aircraft.Properties]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"

The environment is assumed to be the same unit system as the state. It is important to keep these
unit systems aligned and to align the unit systems between each state and aircraft.

Creating an array of many states can be helpful for designing the sweep of parameters over which to
perform calculations on the aircraft.

In this example, 11 states are created by varying mass, but holding airspeed constant.

mass = num2cell(1000:50:1500)

mass=1×11 cell array
  Columns 1 through 6

    {[1000]}    {[1050]}    {[1100]}    {[1150]}    {[1200]}    {[1250]}

  Columns 7 through 11

    {[1300]}    {[1350]}    {[1400]}    {[1450]}    {[1500]}

state = fixedWingState(aircraft, U=100)

state = 
  State with properties:

                   Alpha: 0
                    Beta: 0
                AlphaDot: 0
                 BetaDot: 0
                    Mass: 0
                 Inertia: [3x3 table]
         CenterOfGravity: [0 0 0]
        CenterOfPressure: [0 0 0]
             AltitudeMSL: 0
            GroundHeight: 0
                      XN: 0
                      XE: 0
                      XD: 0
                       U: 100
                       V: 0
                       W: 0
                     Phi: 0
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                   Theta: 0
                     Psi: 0
                       P: 0
                       Q: 0
                       R: 0
                  Weight: 0
             AltitudeAGL: 0
                Airspeed: 100
             GroundSpeed: 100
              MachNumber: 0.2939
            BodyVelocity: [100 0 0]
          GroundVelocity: [100 0 0]
                      Ur: 100
                      Vr: 0
                      Wr: 0
         FlightPathAngle: 0
             CourseAngle: 0
    InertialToBodyMatrix: [3x3 double]
    BodyToInertialMatrix: [3x3 double]
        BodyToWindMatrix: [3x3 double]
        WindToBodyMatrix: [3x3 double]
         DynamicPressure: 6125
             Environment: [1x1 Aero.Aircraft.Environment]
           ControlStates: [1x6 Aero.Aircraft.ControlState]
        OutOfRangeAction: "Limit"
        DiagnosticAction: "Warning"
              Properties: [1x1 Aero.Aircraft.Properties]
              UnitSystem: "Metric"
             AngleSystem: "Radians"
       TemperatureSystem: "Kelvin"

states = repmat(state, size(mass))

states=1×11 object
  1x11 State array with properties:

    Alpha
    Beta
    AlphaDot
    BetaDot
    Mass
    Inertia
    CenterOfGravity
    CenterOfPressure
    AltitudeMSL
    GroundHeight
    XN
    XE
    XD
    U
    V
    W
    Phi
    Theta
    Psi
    P
    Q
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    R
    Weight
    AltitudeAGL
    Airspeed
    GroundSpeed
    MachNumber
    BodyVelocity
    GroundVelocity
    Ur
    Vr
    Wr
    FlightPathAngle
    CourseAngle
    InertialToBodyMatrix
    BodyToInertialMatrix
    BodyToWindMatrix
    WindToBodyMatrix
    DynamicPressure
    Environment
    ControlStates
    OutOfRangeAction
    DiagnosticAction
    Properties
    UnitSystem
    AngleSystem
    TemperatureSystem

[states.Mass] = mass{:}

states=1×11 object
  1x11 State array with properties:

    Alpha
    Beta
    AlphaDot
    BetaDot
    Mass
    Inertia
    CenterOfGravity
    CenterOfPressure
    AltitudeMSL
    GroundHeight
    XN
    XE
    XD
    U
    V
    W
    Phi
    Theta
    Psi
    P
    Q
    R
    Weight
    AltitudeAGL
    Airspeed
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    GroundSpeed
    MachNumber
    BodyVelocity
    GroundVelocity
    Ur
    Vr
    Wr
    FlightPathAngle
    CourseAngle
    InertialToBodyMatrix
    BodyToInertialMatrix
    BodyToWindMatrix
    WindToBodyMatrix
    DynamicPressure
    Environment
    ControlStates
    OutOfRangeAction
    DiagnosticAction
    Properties
    UnitSystem
    AngleSystem
    TemperatureSystem

The second environment input can also help create a state array that iterates over many altitudes
using a standard atmosphere model.

statesH = fixedWingState(aircraft, aircraftEnvironment(aircraft, "ISA", [0, 1000, 2000]))

statesH=1×3 object
  1x3 State array with properties:

    Alpha
    Beta
    AlphaDot
    BetaDot
    Mass
    Inertia
    CenterOfGravity
    CenterOfPressure
    AltitudeMSL
    GroundHeight
    XN
    XE
    XD
    U
    V
    W
    Phi
    Theta
    Psi
    P
    Q
    R
    Weight
    AltitudeAGL
    Airspeed
    GroundSpeed

5 Aerospace Toolbox Examples

5-194



    MachNumber
    BodyVelocity
    GroundVelocity
    Ur
    Vr
    Wr
    FlightPathAngle
    CourseAngle
    InertialToBodyMatrix
    BodyToInertialMatrix
    BodyToWindMatrix
    WindToBodyMatrix
    DynamicPressure
    Environment
    ControlStates
    OutOfRangeAction
    DiagnosticAction
    Properties
    UnitSystem
    AngleSystem
    TemperatureSystem

Fixed-Wing Analysis Methods

With the construction of the aircraft and its states, you can now perform fixed-wing specific
calculations.

These calculations can include:

1 Forces and moments
2 Nonlinear dynamics
3 Static stability
4 Linearization to a state-space model

for i = 1:numel(states)
    [F(i,:), M(i,:)] = forcesAndMoments(aircraft, states(i));
    dydt(i,:) = nonlinearDynamics(aircraft, states(i));
end

The aircraft can also be used as a generic container to hold the aircraft definition as it is passed
around to other parts of the program, such as in a Simulink lookup table or custom MATLAB analysis
functions.

In summary, the fixed-wing aircraft functions provide a common definition to creating and
manipulating fixed-wing aircraft within MATLAB.

See Also

Related Examples
• “Perform Controls and Static Stability Analysis with Linearized Fixed-Wing Aircraft” on page 5-

114
• “Customize Fixed-Wing Aircraft with Additional Aircraft States” on page 5-121
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• “Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft” on page 5-129
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Customize Fixed-Wing Aircraft with the Object Interface
This example shows how to customize fixed-wing aircraft in MATLAB using objects.

For an example of how to get started using fixed-wing aircraft in MATLAB, see “Get Started with
Fixed-Wing Aircraft”. 

For an example of setting realistic coefficients on an aircraft and calculating
static stability, see  “Determine Nonlinear Dynamics and Static Stability of Fixed-Wing Aircraft”. 

For an example of importing coefficients from Digital DATCOM analysis and linearizing to a state-
space model, see “Perform Controls and Static Stability Analysis with Linearized Fixed-Wing
Aircraft”. 

Fixed-Wing Object Interface

Each fixed-wing aircraft function returns an object of its defining type.

Functions provide convenience to constructing each object. However, their predefined input structure
might be inconvenient to some workflows. For example, consider using objects if you want more
control over the specific inputs of each component, or if you want to avoid repmat calls to create
arrays of each component. Objects let you directly construct each component.

The table mapping each function to object can be seen below.

Component = ["Properties"; "Environment"; "Aircraft"; "States"; "Coefficients"; "Surfaces"; "Thrust"];
Formal = ["Aero.Aircraft.Properties"; "Aero.Aircraft.Environment"; "Aero.FixedWing"; "Aero.FixedWing.State"; "Aero.FixedWing.Coefficient";"Aero.FixedWing.Surface"; "Aero.FixedWing.Thrust"];
Informal = ["aircraftProperties"; "aircraftEnvironment"; "fixedWingAircraft"; "fixedWingState"; "fixedWingCoefficient"; "fixedWingSurface"; "fixedWingThrust"];
objMap = table(Formal, Informal, 'RowNames', Component, 'VariableNames',["Formal Interface", "Informal Interface"])

objMap=7×2 table
                          Formal Interface            Informal Interface  
                    ____________________________    ______________________

    Properties      "Aero.Aircraft.Properties"      "aircraftProperties"  
    Environment     "Aero.Aircraft.Environment"     "aircraftEnvironment" 
    Aircraft        "Aero.FixedWing"                "fixedWingAircraft"   
    States          "Aero.FixedWing.State"          "fixedWingState"      
    Coefficients    "Aero.FixedWing.Coefficient"    "fixedWingCoefficient"
    Surfaces        "Aero.FixedWing.Surface"        "fixedWingSurface"    
    Thrust          "Aero.FixedWing.Thrust"         "fixedWingThrust"     

The constructor for each fixed-wing aircraft component is structured the same way:

• The first argument is either a vector or repeating set of integers that specifies the size of the
returned object array, like the "zeros" function, with the default being size 1.

• Every argument after the first argument is a name-value pair specifying the object property and
value for setting non-default values.

• Each non-default value is set for every object in the returned object array.

For example, creating a 3-element fixed-wing state vector where each state has a mass of 50 kg
would have the following syntax:

states = Aero.FixedWing.State(1,3, Mass=50)
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states=1×3 object
  1x3 State array with properties:

    Alpha
    Beta
    AlphaDot
    BetaDot
    Mass
    Inertia
    CenterOfGravity
    CenterOfPressure
    AltitudeMSL
    GroundHeight
    XN
    XE
    XD
    U
    V
    W
    Phi
    Theta
    Psi
    P
    Q
    R
    Weight
    AltitudeAGL
    Airspeed
    GroundSpeed
    MachNumber
    BodyVelocity
    GroundVelocity
    Ur
    Vr
    Wr
    FlightPathAngle
    CourseAngle
    InertialToBodyMatrix
    BodyToInertialMatrix
    BodyToWindMatrix
    WindToBodyMatrix
    DynamicPressure
    Environment
    ControlStates
    OutOfRangeAction
    DiagnosticAction
    Properties
    UnitSystem
    AngleSystem
    TemperatureSystem

states.Mass

ans = 50

ans = 50

ans = 50
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As can be seen from the returned Mass values, each state has a mass of 50 in the vector.

Following this format, this example constructs the same aircraft from the "Get Started with Fixed-
Wing Aircraft" example, replacing the function interface with the associated object interface.

Fixed-Wing Aircraft Configuration

Create the 3 control surfaces using Aero.FixedWing.Surface.

By default, the surface objects are defined to be symmetric and not controllable, so these two
properties must be set for the aileron along with the maximum and minimum values.

aileron = Aero.FixedWing.Surface(...
              Controllable="on", ...
              Symmetry="Asymmetric", ...
              MinimumValue=-20, ...
              MaximumValue=20)

aileron = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Asymmetric"
    ControlVariables: ["_1"    "_2"]
          Properties: [1x1 Aero.Aircraft.Properties]

Additionally, the set the name on the properties of the aileron surface object. This is helpful for
setting coefficients later.

aileron.Properties.Name = "aileron"

aileron = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Asymmetric"
    ControlVariables: ["aileron_1"    "aileron_2"]
          Properties: [1x1 Aero.Aircraft.Properties]

For the elevator and rudder, the symmetry is already the desired value, so the "Symmetry" name-
value argument can be excluded.

elevator = Aero.FixedWing.Surface(...
              Controllable="on", ...
              MinimumValue=-20, ...
              MaximumValue=20)

elevator = 
  Surface with properties:
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            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: ""
          Properties: [1x1 Aero.Aircraft.Properties]

rudder = Aero.FixedWing.Surface(...
               Controllable="on", ...
               MinimumValue=-20, ...
               MaximumValue=20)

rudder = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: ""
          Properties: [1x1 Aero.Aircraft.Properties]

elevator.Properties.Name = "Elevator"

elevator = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "Elevator"
          Properties: [1x1 Aero.Aircraft.Properties]

rudder.Properties.Name = "Rudder"

rudder = 
  Surface with properties:

            Surfaces: [1x0 Aero.FixedWing.Surface]
        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 20
        MinimumValue: -20
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "Rudder"
          Properties: [1x1 Aero.Aircraft.Properties]

With the control surfaces defined, define the thrust object using the Aero.FixedWing.Thrust object.

5 Aerospace Toolbox Examples

5-200



By default, the minimum and maximum values for the thrust object are 0 and 1, which represent the
throttle lever position.

In this aircraft, they are limited to 0 and 0.75.

propeller = Aero.FixedWing.Thrust(MaximumValue=0.75)

propeller = 
  Thrust with properties:

        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 0.7500
        MinimumValue: 0
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: ""
          Properties: [1x1 Aero.Aircraft.Properties]

The name of the thrust vector can also be set at this time.

propeller.Properties.Name = "propeller"

propeller = 
  Thrust with properties:

        Coefficients: [1x1 Aero.FixedWing.Coefficient]
        MaximumValue: 0.7500
        MinimumValue: 0
        Controllable: on
            Symmetry: "Symmetric"
    ControlVariables: "propeller"
          Properties: [1x1 Aero.Aircraft.Properties]

With these control surfaces and thrust vectors defined, they can now be set on the body of the
aircraft.

The aircraft body is defined through the Aero.FixedWing object.

For simplicity, this aircraft will have a reference area, span, and length of 3, 2, and 1, respectively.

aircraft = Aero.FixedWing(...
           ReferenceArea=3, ...
           ReferenceSpan=2, ...
           ReferenceLength=1)

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x0 Aero.FixedWing.Surface]
              Thrusts: [1x0 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333

 Customize Fixed-Wing Aircraft with the Object Interface

5-201



           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

aircraft.Surfaces = [aileron, elevator, rudder]

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x0 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

aircraft.Thrusts = propeller

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x1 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

Set the aircraft coefficients using the setCoefficient and getCoefficient methods, creating a coefficient
using the Aero.FixedWing.Coefficient object, or indexing directly to the coefficient values.

coeff = Aero.FixedWing.Coefficient

coeff = 
  Coefficient with properties:

                     Table: [6x1 table]
                    Values: {6x1 cell}
            StateVariables: "Zero"
               StateOutput: [6x1 string]
            ReferenceFrame: "Wind"
    MultiplyStateVariables: on
            NonDimensional: on
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                Properties: [1x1 Aero.Aircraft.Properties]

aircraft.Coefficients.Values{3,3} = 0.2

aircraft = 
  FixedWing with properties:

        ReferenceArea: 3
        ReferenceSpan: 2
      ReferenceLength: 1
         Coefficients: [1x1 Aero.FixedWing.Coefficient]
     DegreesOfFreedom: "6DOF"
             Surfaces: [1x3 Aero.FixedWing.Surface]
              Thrusts: [1x1 Aero.FixedWing.Thrust]
          AspectRatio: 1.3333
           Properties: [1x1 Aero.Aircraft.Properties]
           UnitSystem: "Metric"
          AngleSystem: "Radians"
    TemperatureSystem: "Kelvin"

aircraft.Coefficients.Table

ans=6×9 table
          Zero    U    Alpha    AlphaDot    Q    Beta    BetaDot    P    R
          ____    _    _____    ________    _    ____    _______    _    _

    CD     0      0       0        0        0     0         0       0    0
    CY     0      0       0        0        0     0         0       0    0
    CL     0      0     0.2        0        0     0         0       0    0
    Cl     0      0       0        0        0     0         0       0    0
    Cm     0      0       0        0        0     0         0       0    0
    Cn     0      0       0        0        0     0         0       0    0

Fixed-Wing Aircraft States

Define fixed-wing aircraft states using the Aero.FixedWing.State object.

To directly create an array of states that all have the same properties, use the state constructor
instead of using the repmat function.

In this example, 11 states are created by varying mass, but with constant airspeed.

mass = num2cell(1000:50:1500)

mass=1×11 cell array
  Columns 1 through 6

    {[1000]}    {[1050]}    {[1100]}    {[1150]}    {[1200]}    {[1250]}

  Columns 7 through 11

    {[1300]}    {[1350]}    {[1400]}    {[1450]}    {[1500]}

states = Aero.FixedWing.State(size(mass), U=100);
[states.Mass] = mass{:}
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states=1×11 object
  1x11 State array with properties:

    Alpha
    Beta
    AlphaDot
    BetaDot
    Mass
    Inertia
    CenterOfGravity
    CenterOfPressure
    AltitudeMSL
    GroundHeight
    XN
    XE
    XD
    U
    V
    W
    Phi
    Theta
    Psi
    P
    Q
    R
    Weight
    AltitudeAGL
    Airspeed
    GroundSpeed
    MachNumber
    BodyVelocity
    GroundVelocity
    Ur
    Vr
    Wr
    FlightPathAngle
    CourseAngle
    InertialToBodyMatrix
    BodyToInertialMatrix
    BodyToWindMatrix
    WindToBodyMatrix
    DynamicPressure
    Environment
    ControlStates
    OutOfRangeAction
    DiagnosticAction
    Properties
    UnitSystem
    AngleSystem
    TemperatureSystem

However, unlike the fixedWingState function, the control states are not automatically set up on the
states from the aircraft.

To set up the control states, use the setupControlStates function.

states = setupControlStates(states, aircraft)
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states=1×11 object
  1x11 State array with properties:

    Alpha
    Beta
    AlphaDot
    BetaDot
    Mass
    Inertia
    CenterOfGravity
    CenterOfPressure
    AltitudeMSL
    GroundHeight
    XN
    XE
    XD
    U
    V
    W
    Phi
    Theta
    Psi
    P
    Q
    R
    Weight
    AltitudeAGL
    Airspeed
    GroundSpeed
    MachNumber
    BodyVelocity
    GroundVelocity
    Ur
    Vr
    Wr
    FlightPathAngle
    CourseAngle
    InertialToBodyMatrix
    BodyToInertialMatrix
    BodyToWindMatrix
    WindToBodyMatrix
    DynamicPressure
    Environment
    ControlStates
    OutOfRangeAction
    DiagnosticAction
    Properties
    UnitSystem
    AngleSystem
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    TemperatureSystem

See Also

Related Examples
• “Customize Fixed-Wing Aircraft with Additional Aircraft States” on page 5-121
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AC3D Files and Thumbnails Overview
Aerospace Toolbox demos use the following AC3D files, located in the matlabroot\toolbox\aero
\astdemos folder. For other AC3D files, see https://www.flightgear.org/download/
download-aircraft/ and click the Download Aircraft link.

Thumbnail AC3D File
ac3d_xyzisrgb.ac

blueoctagon.ac

bluewedge.ac

body_xyzisrgb.ac

delta2.ac

greenarrow.ac

pa24–250_blue.ac

pa24–250_orange.ac

redwedge.ac

testrocket.ac

A AC3D Files and Thumbnails Overview
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